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Abstract. We investigate the properties of non-local Reynolds stress models of turbulent convec-
tion in a spherical geometry. Regularity at the centre r = 0 places constraints on the behaviour
of 3rd order moments. Some of the down-gradient and algebraic closure models have inconsistent
behaviour at r = 0. A combination of down-gradient and algebraic closures gives a consistent
prescription that can be used to model convection in stellar cores.
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1. Reynolds Stress Models
With no mean flow the equations for the second order correlations in a general coor-

dinate system {xj} with metric ds2 = gijdxidxj are (cf. Canuto 1992)

∂

∂t
(θ2) + (ujθ2);j = 2(ujθ)βj + χgjk(θ2);jk − 2εθ (1)

∂

∂t
(uiθ) + (θuiuj);j = uiujβj + giαθ2 − Πθ

i + ηi (2)

∂

∂t
(uiuj)+(uiujuk);k = αgi(ujθ)+αgj(uiθ)−

2
3
δj
i (puk);k +νgmk(uiuj);mk−Πj

i −εj
i (3)

where {; j} denotes the covariant derivatives with respect to xj . Here (u1, u2, u3) is the
covariant velocity, T = To + θ is the temperature with To the mean and θ the fluctuating
component, ν, χ the kinematic viscosity and thermometric conductivity, α = 1/To is the
coefficient of thermal expansion, (g1, g2, g3) is the covariant acceleration due to gravity.
The covariant superadiabatic temperature gradient (β1, β2, β3) and εθ are defined as

βi =
(

∂To

∂xi

)
ad

− ∂To

∂xi
, εθ = χgjkθ;jθ;k (4)

For simplicity we here neglect the pressure correlations and make the approximations

ηi =
(ν + χ)

2
gjk(uiθ);jk εj

i =
2
3
δj
i ε (5)

In covariant spherical polar coordinates (x1, x2, x3) = (r, θ, φ), the line element and
covariant and contravariant velocities are

ds2 = gijdxidxj = dr2 + r2dθ2 + r2 sin2 θdφ2

{ui} = {vr, rvθ, r sin θvφ}, {ui} =
{

vr,
vθ

r
,

vφ

r sin θ

}
(6)

where vr, vθ, vφ are the physical components of velocity along the coordinate directions.
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With spherical symmetry the acceleration due to gravity {gi} = (g, 0, 0), the supera-
diabatic temperature gradient {βi} = (β, 0, 0), and the non vanishing correlations are

θ2, v2
r , v2

θ = v2
φ, vrθ, v2

rθ, v2
θθ = v2

φθ, vrθ2, v3
r , vrv2

θ = vrv2
φ (7)

Equations (1-3) in spherical polar coordinates then reduce to the 4 independent equations

∂ θ2

∂t
+

1
r2

d

dr
(r2 vrθ2) = 2β vrθ + χ

1
r2

d

dr

(
r2 d θ2

dr

)
− 2εθ (8)

∂ vrθ

∂t
+

d v2
rθ

dr
+ 2

v2
rθ − v2

θθ

r
= β v2

r + gα θ2 +
(

ν + χ

2

)
d

dr

(
1
r2

d

dr
(r2 vrθ)

)
(9)

∂ v2
r

∂t
+

d v3
r

dr
+ 2

v3
r

r
− 4

vrv2
θ

r
= 2αg vrθ + ν

[
1
r2

d

dr

(
r2 d v2

r

dr

)
− 4

v2
r − v2

θ

r2

]
− 2

3
ε (10)

∂ v2
θ

∂t
+

d vrv2
θ

dr
+ 4

vrv2
θ

r
= ν

[
1
r2

d

dr

(
r2 d v2

θ

dr

)
+ 2

v2
r − v2

θ

r2

]
− 2

3
ε (11)

2. Requirements on the 3rd order moments for regularity at r = 0
As r → 0, g, β ∝ r and θ2, v2

r , v2
θ have even expansions (with a10 = a20 from (11))

θ2 = a00 + a02r
2 + . . . , v2

r = a10 + a12r
2 + . . . , v2

θ = a20 + a22r
2 + . . . (12)

With regularity at r = 0 it follows from equations (8), (9), (10), and (11) that

vrθ = a31r + a33r
3 + . . . , vrθ2 = a41r + a43r

3 + . . . , (13)

v2
rθ = a52r

2 + a54r
4 + . . . , v2

θθ = a62r
2 + a64r

4 + . . . , (14)

v3
r = a71r + a73r

3 + . . . , vrv2
θ = a81r + a83r

3 + . . . (15)

3. Down-gradient closure approximations for third order moments
The down-gradient closures for the third order moments uiθ2, uiujθ, uiujuk need to

be expressed in tensorial form. For plane symmetry we take these as

wθ2 = −χt
d w2

dz
, w2θ = − (νt + χt)

2
d wθ

dz
, w3 = −νt

d w2

dz
(16)

where w is the fluctuating vertical velocity and νt, χt are eddy transport coefficients.
In a general coordinate system with velocity {ui} these can be expressed as

uiθ2 = −χt(θ2);i, uiujθ = − (νt + χt)
2

(
uiθ ;j + ujθ ;i

2

)

uiujuk = −νt

(
uiuj ;k + uiuk ;j + ujuk ;i

3

)
(17)

which are invariant under a re-ordering of indices and reduce to (16) for plane symmetry.
In spherical polar coordinates, with spherical symmetry (v2

θ = v2
φ), these reduce to

vrθ2 = −χt
d

dr

(
θ2

)
, v2

rθ = − (νt + χt)
2

d

dr

(
vrθ

)
, v2

θθ = − (νt + χt)
2

(
vrθ

r

)
(18)
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v3
r = −νt

d

dr

(
v2

r

)
, vrv2

θ = −νt

3

[
d

dr
(v2

θ) +
2
r
(v2

r − v2
θ)

]
(19)

We note that the down-gradient closure approximations for v2
rθ and v2

θθ are incompatible
with the behaviour as r → 0 deduced from regularity of the governing equations, unless
the flux vrθ ∝ r3 as r → 0. As both the radiative flux and the total flux ∝ r as r → 0,
this would require the core to be convectively neutral at r = 0 (cf. Xiong, 1979).

4. Algebraic closures for 3rd order moments
An alternative closure procedure is to use algebraic relations as deduced by Gryanik

and Hartmann (2002) which for plane symmetry are

w2θ =
w3 wθ

w2
, wθ2 =

θ3 wθ

θ2
(20)

where w is the fluctuating vertical velocity. In tensorial form with velocity {ui} this
generalises to

uiujθ =
1
3

(
uiujuk ukθ

V 2
+

uiukuk ujθ

V 2
+

ujukuk uiθ

V 2

)
, uiθ2 =

θ3 uiθ

θ2
(21)

where V 2 = uiui. For spherical symmetry this reduces to

v2
rθ =

1
3

(
v3

r + 2 vrV 2

V 2

)
vrθ, v2

θθ =
1
3

vrv2
θ

V 2
vrθ, vrθ2 =

θ3

θ2
vrθ (22)

We note that the algebraic closures give the correct behaviour (∝ r2) for v2
rθ, v2

θθ as
r → 0, with the flux vrθ ∝ r as r → 0. However, they do not give the correct behaviour
of vrθ2 since by symmetry θ3 → 0 as r → 0 so that vrθ2 cannot be ∝ r. These results
are independent of the form of uiujθ and the values of a31 and a33 in (13).

5. A combined down-gradient and algebraic closure model
By combining the above results we can obtain a closure approximation that at least

has the correct behaviour as r → 0, namely:

vrθ2 = −χt
d

dr

(
θ2

)
, v3

r = −νt
d

dr

(
v2

r

)
, vrv2

θ = −νt

3

[
d

dr
(v2

θ) +
2
r
(v2

r − v2
θ)

]
(23)

v2
rθ =

1
3

(
v3

r + 2 vrV 2

V 2

)
vrθ, v2

θθ =
1
3

vrv2
θ

V 2
vrθ (24)

where V 2 = v2
r + v2

θ + v2
φ. This could be used in models of convection in stellar cores.

Here we have only considered closure approximations for third order moments. It would
be desirable to develop the equations for third order moments in spherical geometry and
to use algebraic closures on the fourth order moments. This is work in progress.
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