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WEAKLY CONTINUOUS ACCRETIVE OPERATORS
IN GENERAL BANACH SPACES

W.E. FITZGIBBON

Global wellposedness theorems are established for a class of abstract Cauchy initial
value problems and a class of abstract Volterra equations which have a linear
semigroup as a convolution kernel. These existence theorems are used to show
that a class of nonlinear operators and a class of perturbed linear operators are
m-accretive. The m-accretiveness results are used in turn to represent solutions
to the differential and integral equations.

1. INTRODUCTION

We shall be concerned with conditions sufficient to guarantee that a weakly con-
tinuous accretive operator on a general Banach space X be m-accretive and conditions
which guarantee that an additive perturbation of a linear m-accretive operator by a
weakly continuous accretive operator be m-accretive. The author has settled these
questions for reflexive Banach spaces and the work herein may be considered as a con-
tinuation of work in [8, 9).

The question of m-accretiveness of a nonlinear accretive operator A is intimately
connected with the question of global existence of solutions to the nonlinear Cauchy
initial value problem u(t) + Au(t) = 0, u(0) = z. Roughly speaking one establishes a
local existence result, uses the accretiveness of A to extend the local theory and then
employs the global theory to prove m-accretiveness. In this sense it is fair to say that
the question of the m-accretiveness for an operator is predicated upon local existence
theory. Local theory for abstract ordinary differential equation with weakly continuous
vector fields has been considered in a variety of publications, see, (3, 4, 21, 22]. The
local result we shall use appears in [4]. The most general and recent investigations of
the local theory appear in {18, 19] and the interested reader is referred to these papers
for a historical discussion of the question.
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2. DEFINITIONS AND PRELIMINARIES

In what follows X will denote a Banach space having norm, ||-||. The dual space
of X will be denoted by X* and the pairing between X and X* is designated by (, ).
The symbols — and — mean strong and weak convergence respectively with im and
w-lim distinguishing the strong and weak limits. Unless otherwise specified all operators
on X will be nonlinear.

DEFINITION 2.1: A strongly continuous semigroup is a one parameter family of
mappings {S(t) |t = 0} of X to itself having the properties that:
@) S@)=1;
(i1) S(E+s) = S(t)S(s) for s,t > 0;
(iii) }m(l) ISt)e —<z|| =0 forallze X .

The semigroup is said to be nonezpansiveif ||S(t)z — S(t)y|| < ||z —y|| for t > 0, z,y €
X . The infinitesimal generator A of {S(t) | t > 0} is defined by the relation Az =
}l;in%; (S(h)z — z)/h and the weak infinitesimal generator A,z =z —lllin:) (S(h)z —z)/h.

We remark that the notions of weak infinitesimal generator and infinitesimal gener-
ator coincide for the case of a strongly continuous semigroup of bounded linear operators

[19, p.43]. We now make precise our notion of an accretive operator.

DEFINITION 2.2: An operator A: X — X is said to be accretive provided that
I(z + AAz) — (y + AAy)|| > ||z — y|| forall z,y € X and X > 0. An accretive operator
is said to be m-accretive provided that R(I + AA) = X forall A > 0.

It is known, see [12] that accretiveness is equivalent to the statement that
Re(Az — Ay, f) > 0 for z,y € D(A) and f € F(z —y) where F: X — 2X° s
the duality map. We recall that by definition the duality map is the unique multiple
valued mapping from X to X* with D(f) = X such that f € F(z) if and only if
(z, f) = |lz]> = ||IfI*>- If A is an m-accretive operator A has no proper accretive
extension, however not every maximal accretive operator is m-accretive. We remark
that multi-valued accretive operators arise in a natural way in the study of semigroups
of nonexpansive operators, however in the work at hand we shall limit our discussion
to the single-valued case.

An operator A: X — X is said to be weakly continuous if it is continuous from
the weak topology of X to the weak topology of X . Such an operator will map weakly
convergent sequences to weakly convergent sequences. However, we point out that a
sequentially weakly continuous operator need not be weakly continuous.

We shall have occasion to consider two types of integrals of vector-valued functions.
A function z(): R 2 [a, b)) — X is said to be Petlis integrable if there exists a y €
X such that {y, f) = f:(z(s), f)ds for all f € X*. The integrand is a complex-
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valued function and the integral is taken in the sense of Lebesgue. In the case when
the Pettis integral exists we write y = f:z(s)ds. A function z(): [a,b] — X is
said to be Bochner integrable if there exists a sequence of countable-valued functions
{za()} converging for a.e. s € [a, b] such that nango f: l|lzn(s) — z(s)||ds = 0. In this

case, the Bochner integral can be defined to be f: z(s)ds = nh_.n:o f: z,(s)ds where the
integrals on the right are Pettis integrals. Every Bochner integrable function is Pettis
integrable. A vector-valued function z() is weakly measurable if (x(), f) is measurable
and it is strongly measurable if it is weakly measurable and almost separably valued.
A function can be shown to be Bochner integrable if it is strongly measurable and
the Lebesgue integral f: |lz(s)|] ds exists. Needless to say, our discussion has been
exceedingly cursory. An in-depth treatment of the notions of integration in abstract
spaces appears in [10],

Given a weakly continuous vector field A: X — X we consider the following
Cauchy initial value problem

(2.32) u(t) + Au(t) =0,
(2.3b) u(0) = =.

By a weak solution on [0, T| we understand a strongly continuous, once weakly differ-
entiable function u: [0, T] — X such that u(0) = = and the weak derivative satisfies
(2.32). For a strong solution we shall require additionally that the function be abso-
lutely continuous and have a strong derivative for a.e. ¢ € [0, T]. We point out the
obvious lack of parity in the notions of weak and strong solution and hope that it will
not lead to confusion. Because our solutions turn out to be both weak solutions and
strong solutions we use the same symbol @(t) to denote both the weak and the strong
derivative. .

Our existence theory requires the following measure of weak noncompactness which
was introduced in [6].

DEFINITION 2.4: Let U be a bounded nonempty subset of a Banach space X.
The measure of weak noncompactness of U, S(U) is defined by

B(U) = inf{t > 0| (3V € K*)(U C V +tB,(0))}.

Here K™ denotes the collection of weakly compact subsets of X and B;(0) is the unit
ballin X.

The following lemma which appears in [19)] asseerts that §( ) is a sublinear measure
of noncompactness.
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LEMMA 2.5. If U and V are bounded subsets of X, the following are true:
(1) U CV implies A(U) < A(V),
(2) B(U) = pB(wclU), where welU denotes the weak closure of U,
(83) B(U) =0 if wclU is compact,
(4) B(UUV) = max[B(U), B(V)],
(5) B(convU) = B(U) where convU denotes the convex hull of U,
(6) BU+V)<BU)+B(V),
(7) B(z+U)=BU) forallze X,
(8) B(AU) =[A|B(V),
(9) ﬂ( U tU)=Tﬂ(U)-

ogtsr

In addition to requiring that an operator be weakly continuous our local existence
theory needs the concept of a Kamke function. A continuous function w: Rt — Rt is
said to be a Kamke function provided that u = 0 is the only solution of the integral in-
equality u(t) < fot w(u(s))ds, u(0) = 0. The following local existence theorem appears
in [4].

THEOREM 2.6. Let A be a weakly continuous operator on a Banach space. If
there exists a Kamke function w(): R* — R* such that B(AU) < w(B(U)) for each
bounded subset U then for each z € X there exists a T, > 0 and u(): [0, T2] - X
which is a weak solution to the Cauchy initial value problem

() + Au(t) =0 for te€[0, Tz,
u(0) = =z.

Strictly speaking the result in {4] requires that A be bounded in a neighbourhood
of the initial point. However the Kamke condition we use ensures that 4 maps bounded
subsets to bounded subsets.

We point out that in the course of the proof one shows that u( ) is Lipschitz. Hence
it is of strong bounded variation and by virtue of [10, Theorem 3.8.6], u( ) is strongly
differentiable for a.e. ¢ € [0, T;]. When it exists, the strong derivative equals the weak
derivative and we therefore obtain strong solutions to the Cauchy problem. We feel
that requirements similar to local boundedness and the Kamke condition are needed for
local existence when dealing with weakly continuous vector fields. It has been shown
that weak continuity of the vector field is not sufficient to guarantee local existence in
general Banach spaces [1]. Weakly continuous functions need not be locally bounded in
general Banach spaces. Moreover the existence proofs rely on the extraction of weakly
convergent approximating sequences. The Kamke condition ensures this extraction.
It is well-known that closed and bounded subsets of nonreflexive spaces need not be
weakly sequentially compact.
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We shall also need a weak Arzela-Ascoli Theorem which is proved in [4].

THEOREM 2.7. Let J be a weakly equicontinuous family of functions from an
interval [a, b] to X. If {z,()} C J is a sequence such that for each t € [a, b], {zn(t)}
is weakly precompact, then there exists a subsequence {z,,()} which converges weakly
uniformly on [a, b] to a weakly continuous function z( ).

3. GLOBAL EXISTENCE RESULTS

In this section we obtain global existence for our Cauchy initial value problem by
imposing the additional requirement that A be accretive and use this result to see that
A is m-accretive.

THEOREM 3.1. Let A: X — X be a weakly continuous accretive operator. If
there also exists a Kamke function w(): R* — R* such that B(AU) < w(B(U)) for
each bounded U C X, then for ¢ € X there exists a strong solution to

(3.22) w(t)+ Au(t) =0 fort € (0, o),
(3.2b) u(0) = z.
Moreover if u( ,z) and u( ,y) are strong solutions with initial points z, y respec-
tively
(3.3) lult, ) — u(t, ) < Iz —yll  forall £ > 0.

ProoOF: The local result guarantees the existence of a solution in a small time
interval and using standard arguments of ordinary differential equations we obtain a
maximal interval of existence [0, T*). We assume for the sake of contradiction that
T* <oo.If t,t+ h € [0, T*) then by a lemma appearing in [11] we have

2 Ju(t+ ) —w(2)]" = —Re(du(t + ) — Au(t), (1) for n.c.

where f(t) € F(u(t+ k) —u(t)) and F(): X — 2X" is the duality map. Using the
accretiveness of A we have

-‘-1‘-12 lu(t + k) —u@)|® <O for ae. t.
The inequality may be integrated to produce
llu(t + k) — u(®)]| < [lu(h) — uw(0)l| = llu(h) —=|

and we use the strong continuity of u( ) to compute tlilg. u(t) = u{T*). Thelocal theory

allows us to continue the solution past T* and thereby contradict the maximality of T*.
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To obtain the final assertion we differentiate ||u(t, z) — u(t, )||* and use the accretivity
of A to observe

% [lu(2, 2) — u(t, y)||2 <0 fora.e. t.

We obtain the inequality by integration.
If z€ X and t > 0 we define S(t): X — X by setting

(3.4) S(t)z = u(t, z).
0

Clearly S()z is continuous ion ¢; uniqueness implies that S(t)S(s) = S(t + s)z;
$(0) = I. Moreover, ||S(t)z — S(t)y|| < ||z — y||. Thus, we associate a strongly contin-
uous semigrouup of nonexpansive mappings with solutions to the Cauchy initial value
problem.

Our next result insures that our accretive operators are m-accretive.

THEOREM 3.5. If A satisfies the conditions of Theorem 3.1, then A is m-

accretive.
PROOF: It has been shown in [16] that if R(I + AA) = X for some Ay > 0
then R(I+ AA) = X for all A > 0. Consequently it will be sufficient to show that

for any @ € X there exists an 9 € S so that Azy + zp = a. We introduce an
operator A; = A—a. Clearly A, is weakly continuous, is locally bounded and accretive.

Because B(A,U) = B(AU —a) = B(AU) < w(B(U)), the existence of solutions to
(t) + A;u(t) = 0; u(0) = z is assured. It is trivial to see that e~*u(t) = v(t) gives the
unique solution to ¥(t) + A,v(t) =0, v(0) = ¢ when A; = A, + 1. If {S2(¢) |t > 0}
is the semigroup associated with the solutions we differentiate ||S3(t)z — S»()y||> and
use the accretiveness of 4; to observe that

d
5 152(t)z — S2(8)yll* < 2Re((4 + D)S; () — (A1 + DS:(t)y, £(2)
< -2|S:(t)= ~ Sz (t)yl* -
We may integrate and observe
[1S2(t)z — Sz(t)yll < e™* ||z - 9l

If tp > 0, the Banach Fixed Point Theorem guarantees a unique fixed point S3(t9)z¢ =
zo. To see that S»(t)zo = zo for all ¢ > 0 we observe that S,(t)zq = S2(t)S2(to)zo =
S2(t0)S2(t)zo. Because Sz(t)zo is seen to be a fixed point of S2(tg) we know that
S2(t)zo = zo. Thus z¢ is a rest point of {S2(¢) | > 0} and we have

d
0= Esz(t)so lt=0= —A2z¢ =0
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and hence Az + z¢ = a and we reach our intended conclusion. 0
We obtain immediately a representation of solutions to (3.2 a-b).

COROLLARY. If A satisfies the condition of Theorem 3.1 and {S(t) |t = 0} is
the semigroup associated with solutions to the Cauchy initial value problem, then for
allt>0andz e X

S(t)z — lim (I+ %A) z

n—o0
and the convergence is uniform on compact subintervals of R.

ProoF: This result is an immediate consequence of the m-accretiveness of A and
the Crandall-Liggett Representation Theorem for nonlinear semigroups, [5]. d

4. ADDITIVE PERTURBATION

In this section we consider the perturbation of linear accretive operators by weakly
continuous operators. More specifically we provide conditions which guarantee their
sum is m-accretive. Whereas the key to the m-accretiveness of a weakly continuous
operator was an abstract differential equation, the key to the perturbation result will
be an abstract Volterra equation with a linear semigroup acting as a convolution kernel.
If A and B are two operators whose domains are subsets of X, we define their sum
A+ B by the equation (A + B)z = Az + Bz for z € D(AN B).

For the remainder of this section A shall denote a linear m-accretive operator
and {T(t) | t > 0} shall denote the semigroup of nonexpansive linear transformations
generated by —A. Hence

T(t)z = lim (I+1A> z forallze X,t>0

and if z € D(A)

d

ET(t)z + AT(t)z =0 fort>0.
B shall be a weakly continuous locally bounded accretive operator satisfying the hy-
potheses of Theorem 3.1. Because A has been shown to be m-accretive we know that

Jxz = (I+ AB)™'z is a nonexpansive operator on X and it is not hard to show that
[|Ixz — Ja 2| < (A1 — A2)||Bz||. We can define the so-called Yosida approzimations

Bp,z = n(I— Jl/n):c,

It is immediate that B, is everywhere defined, Lipschitz and accretive. A simple
computation shows that Bp,z = BJ;;,z and ||B,z| < ||Bz||.

The following lemma concerns the action of semigroup of linear nonexpansive op-
erators on the measure of weak noncompactness.
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LEMMA 4.1. If U is a closed and bounded subset of a Banach space X and
{T(t) | t > 0} is a semigroup of nonexpansive linear operators on X then B(T(t)U) <
BU).

Proorf: If V is a weakly compact subset of X and s > 0 are such that U C
V + 3B1(0) then T(t)U C T(t)V + sT(t)B1(0) C T(t)V + 8B1(0). Because T(t)V is
the weakly continuous image of a weakly compact set it is weakly compact and our
desired result follows from the definition of the measure of weak noncompactness. 0

Our next theorem concerns the well-posedness of an abstract semilinear Volterra
integral equation.

THEOREM 4.2. Let A be a linear m-accretive operator from a Banach space X
to itself and let {T(t) | t > 0} be the linear semigroup generated by —A. If B is a
weakly continuous operator satisfying the hypotheses of Theorem 3.1 and = € X, then
for all t > 0 there exists a unique solution to

t

(4.3) u(t, ) = T(t)z — / T(T — s)Bu(s, z)ds.
0

Moreover

(44) lu(t, 2) —u(t, Y)ll < llz —yl| forz,y € X.

PROOF: We begin by assuming z € D(A). Because B, is continuous we can
use the theory of continuous nonlinear perturbations developed in [22]. The operator
A + B,, is m-accretive and for any T > 0 there exists a unique solution

(4.5) un(t) = T(t)z —/; T(t — 8)Bpuy(s)ds.

Moreover u,(t) has the exponential representation

t e
un(t) = mh—I»noo (I + ;(A + Bn)> .

We use this representation to show that u,(t) is uniformly Lipschitz continuous on
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[0, T]. For t, T € [0, T] we see that

-m

(I + %(A + B,,)) s (I+Z(4+B2) =

m m—j+1 -1j-1 1
< Z{ I1 (I+%(A+B,.)) H (I+ %(A+B,,)) z
_'ﬁj (z+ Lias B,.)) - H (r+ Z(4+82) }
<S{a-llasa T (e gurn)”

}

< [t — 7| Az + Bnz| < [t — 7[([|A=2] + || B=]]).

- f[ (1+ ~(4+ B.)) ~a

i=1

Because (I +t/m(A + B,)) "z converges uniformly to u,(t) we have
llun(t) —wa(T)ll < It — 7| (| 42| + || B=|)).

Because u,(0) = z, the sequence {z,()} is uniformly bounded.

We set p(t) = B({un(t)}) where B() is the weak measure of noncompactness.
By virtue of [2, Lemma 13, 2.1] we know that p() is Lipschitz continuous and hence
differentiable for a.e. ¢ € [0, T]. Let t € [0, t] be a Lebesgue point of p(). If ¢ > 0
select § > 0 so that |z — p(t)| < § implies |w(z) — w(p(t))] < € where w() is the
Kamke function of Theorem 3.1. Let Kj denote {u,(s) |t <3< t+h <T}. From
{19, Lemma 2.2} there exists T € {t,t + h] so that

B(Kr)= sup B({ua(s)}) = 2(?).
s€[t,t+h)

We let Lp = {Ji/atua()}. Then B(Lp) = B(Kh) is a consequence of the fact
that ||J; /ntn() —ua(t)||, — O which follows readily from the observation that
171 /atn(t) — wn(?)]| = 1/n|Baua(t)]| < 1/n]|Bun(t)]| and that the Kamke condition
implies B maps bounded subsets of X to bounded subsets of X .

Let h be such that

0 < B(Kx) - p(t) = |p(?) - p(2)] < &.
From the choice of § > 0 we have |w(B(Kj))—-w(p(t)))] < € and thus
|w(B(L1)) —w(p(t))] < €. We return to the Volterra equation (4.5) and observe that

t+h
un(t + ) = T(h)un(t) — /‘ T(¢ + h — 5)Boun(s)ds.
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Thus,
un(t +h) € T(hun(t) ~h@av | J T(t+h~ s)Bpun(s)
2€[t,1+h)

and

funlt + W)} € {T(RYun(t) — h 007, {T(t+ b= 2)Brun(a)}}.

‘We therefore observe that

B({ua(t + h)}) < B{T(A)un(t)}) + Bh conv{T(t + h — 5)Bnun(s)}

and from Lemma 4.1 we deduce

B({ua(t + h)}) < B({ua(t)}) + RB(Lx)
= B({un(t)}) + hB(K4)
< B({ua(t)}) + A(w(B({un(t)}) + £))-
Consequently
p(t + hz — p(t)

and, because t is a Lebesgue point,

Sw(p(t)) +e

p'(t) <w(p(t)) +e.

Recalling that ¢ > 0 was arbitrarily chosen,

?'(t) < w(p(t))-

Since p(0) = B(z) = 0, p(t) = 0 and we use the weak Arzela-Ascoli theorem. There
exists a subsequence of {u,()} which converges weakly uniformly to a weakly contin-
uous function u( ,z). We relabel this convergent subsequence on {u,()}. Because
Brun(t) = BJypun(t) and ||J;/nua() —u.,.”w < 1/n||Bun()|los Bnun(t) converges
weakly to Bu(t) for each t € [0, T]. We compute the weak limit of each side of (4.5)
to see that

u(t, 7) = T(t)e — /0 T(t — s)Bu(s, z)ds

where the integral is taken in the sense of Pettis. Because Bu() is the weak limit of
strongly continuous functions Bpu,( ) one can argue that Bu() is strongly measurable.
Because || Bu(s)|| is bounded the integral exists in the sense of Bochner. If z,, z; €
D(A) and un(,z1) and un( ,z2) are solutions to (4.5) emanating from z, and z,
then [lun(t, 1) — ua(t, z2)|| € ||z1 — z2}|, see [22, Theorem 1]. Thus

llu(t, 21) — u(t, z2)|| < [|21 — =2l
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We define U(t): D(A) — X by writing U(t)z = u(t, z). Because D(A) = X we can
extend U(t) to define a nonexpansive mapping U(t) of X onto itself. In this manner we
define a family of nonexpansive mappings {U(t) | £ > 0} of X toitself. If {z,} C D(4)
and z,, — z then U()z, = u( ,z,) converges uniformly to U()z on [0, T]. Because
Bu(t, z,) converges to BU(t)x we argue that solutions to

t
u(t, zn) = T(t)zn — / T(t — s)Bu(s, z,)ds
)
converge weakly to the equation
t
U(t)z =T(t)z - / T(t — 8)BU(s)zds.
0

The integral exists in the sense of Pettis and an argument similar to the previous one
ensures that it is a Bochner integral. Thus u(t, z) = U(t)z gives a solution to (4.3).
Moreover because u(t, z) = w — limu(t,z,) one can argue that

lu(t, 1) — u(t, z2)|| € ||z1 — 22| forall z;, 2, € X, 120

and thereby establish the final assertion of theorem. 1

We point out that the family {U(t) | t > 0} is a strongly continuous semigroup of
nonexpansive operators. We characterise the weak infinitesimal generator.

PROPOSITION 4.6. If {U(t)|t> 0} is the semigroup of nonexpansive opera-
tors associated with solutions to (4.3) then the weak infinitesimal of {U(t) |t > 0} is
—(A+ B).

Proor: We first establish that for all z € X, w — lixn+ (—l/hfoh T(h -3)

h—0
Bu(s)ds) = —Bz where u(t) is the solution to (4.3). We set u(t) = fot T(t-3)

Bu(s, z)ds. Previous arguments guarantee that Bu( ,z) is Bochner integrable. The
weak variation of constants result of [1) implies if f € D(A*) then for a.e. ¢

(47) 3 to(t), £) = ~(olt), A" f) - (Bult, ), /)

where A* denotes the adjoint of A. Because the right Bu( ,z) is weakly continu-
ous the right-hand-side of (4.7) is continuous and we may observe that (v(t), f) is
continuously differentiable and that d/dit(v(0), f) = (—Bz, f). Thus d/dt(v(0), f) =
lim(~1/h S T(h — 8)Bu(s, z), f) = —(Bz, f). The domain of A* is densein X*, [13,
Theorem 5.29] and hence the limit must hold for all f € X*. To complete the proof we
observe that w — hlir(l)l+ 1/h(u(h)z — z) exists if and only if w — hlix(l)l+ 1/h(T(h)z —z)
exists. g

Our next result guarantees the surjectivity of the resolvent of A+ B is m-accretive.
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THEOREM 4.8. If A and B satisfy the criteria of Theorem 4.2 then A + B is
me-accretive.

PROOF: As previously observed, it is sufficient to establish this for the case A = 1.
Welet A = A+TI and for a € X welet B= B = a. The linear semigroup generated by
_ A will be denoted by {T'(t) | t > 0}. This previous theorem yields a unique solution
to

t
(4.9) ult, 2) = T(t)z ~ / T(t — 8)Bu(s, z)dz forz € X
0
which may be viewed as the weak limit of a subsequence of solutions to
—~ t o~ Py
un(t, z) = T(t)z - / F(t — 8)Buun(s, )ds.
0

Moreover, from [23, Proposition 3.15], we have

lun(t, 2) — unlt, )| < e lz — |-
Thus,
llu(t, 2) — u(t, y)|| < liminf [lua(t, 2) — ua(t, y)| < e7'llz — 9]l

Denoting the semigroup associated with solutions to (4.9) by {0(t) | t > 0} we see
that for fixed to > 0, T (to) is a strict contraction. Hence by the Banach Fixed Point
Theorem U(to) has a unique fixed point ﬁ(ta )zo = 89. To see that z, is a rest point for
the semigroup we observe that U (t)zo = T (t)T(ts)z0 = U (to)U(t)zo and hence U(t)zo
is a fixed point of U(ty). Consequently U(t)zo = zo. Thus u(t, zo) = U(t)zo = zo
is strongly differentiable and hence z, belongs to a weak infinitesimal generator of
{T/(t) | t > 0}. Moreover, z, satisfies the equation

t
Ty = f(t)zo —/ T(t — 8)Bzyds.
0

By virtue of the previous proposition we know that z¢ € D(}T) and we can compute
the limit as ¢ | 0 of the equation

%(zo - f(t):co) = —% /0‘ f(t — 8)Bzyds

and obtain
Zzo = —Ezo,

or zg + Azo + Bzo = a and we obtain our desired result.
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Because 4 + B is m-accretive we can use the Crandall-Liggett Representation

Theorem (5] for nonlinear semigroups to compute
: t -
(4.10) V(t)z = nh_.ngo (1 + ;(A + B)) z

and define a semigroup of nonexpansive operators {V(¢) | ¢ > 0}. We conclude by
showing that {V(t) |t > 0) is the semigroup associated with solutions to (4.3). 1]

ProrposiTION 4.11. If A, B satisfy the conditions of Theorem 4.2 and {U (t) |
t > 0} is the semigroup of nonexpansive operators associated with solutions to (4.3)
thenforallz € X,t20

Ut = lim (1 Fo(A+ B)) T

and the limit exists uniformly on intervals [0, T], T > 0.
ProOF: We follow (22, Proposition 3.18] and observe that

(1t m) "em (1 54)

& : —(n—i+1) ¢ —i
——Z<I+—A) B(I+—(A+B)) z.
n & n n
We define z,(t) by

en(t) = T(t)2 _i%T(t ~ t(i; 1))Bv<t(i; 1))3,

i=1

where V(t)z is the infinite product given by formula (4.10). We observe that z,(t)

converges weakly to

(1) = T(t)z — /0 T(t — 5)BV (s)zds

and we can argue that for any f € X*

n—0o0

lim ((I+24) "y, f) = (T(s)y, f)

uniformly for 0 € s <t < T < 0o on a weakly compact subset of X .
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If f € X* we observe that

-n

lim ( (1 + %(A + B)) (), f) = lim ((I + %A) z - T()z, f)

+ lim <ij %[(1 + %A) T (I +o(4+ B)) - Bv(i‘—“—l))z], f

n

G ia) - r (v ()

n
=1

and conclude that
w —lim(I + %(A +B)) z=V(t)e = 2(1)

= T(t)z — /0 “T(t— 5)BV(s)ads.

Because U(t)z is the unique solution to (4.3) we have U(t)z = V(t)=. 0
REFERENCES

[1] J.M. Ball, ‘Strongly continuous semigroups, weak solutions and the variation of constants
formula’, Proc. Amer. Math. Soc. 83 (1977), 370-373.

[2] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces (Marcel Decker,
New York, 1980).

[3] S.N. Chow and J. Shuur, ‘An existence theorem for ordinary differential equations in
Banach Spaces’, Bull. Amer. Math. Soc. 77 (1971), 1018-1020.

[4] E. Cramer, V. Lakshmikantham and A. Mitchell, ‘On the existence of weak solutions of
differential equations in nonreflexive spaces’, Nonlinear Anal. 2 (1976), 169-177.

(6] M. Crandall and T. Liggett, ‘Generation of semigroups of nonlinear transformations on
general Banach Spaces’, Amer. J. Math. 93 (1971), p. 265.

[6] F. DeBlasi, ‘On the property of the unit sphere in a Banach Space’, R.S. Roumaine, Bul.
Matk. Soc. Sci. 21 (1977), 259-262.

[7] G.D. Faulkner, ‘On the nonexistence of weak solutions to abstract differential equations
in nonreflexive spaces’, Nonlinear Anal. 2 (1978), 505-508.

[8] W.E. Fitzgibbon, ‘Nonlinear perturbation of m-accretive operator’, Proc. Amer. Math.
Soc. 44 (1974), 359-364.

[9] W.E. Fitzgibbon, ‘Weakly continuous nonlinear accretive operators in reflexive Banach
spaces’, Proc. Amer. Math. Soc. 41 (1973), 229-235.

[10] E. Hille and R.S. Phillips, Functional Analysis and Semigroups (Amer. Math. Soc., Prov-
idence R.I., 1957).

https://doi.org/10.1017/50004972700017998 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017998

(15]

[11)
[12]
[13]
[14]
[15]
[16]
[17]
18]
[19]
20}
[21]

(22]

Accretive operators in Banach spaces 199

T. Kato, ‘Accretive operators and nonlinear evolution equations’, Proc. Symp. Pure Math.
Vol 18, Part I (1970).

T. Kato, ‘Nonlinear semigroups and evolution equation’, J. Math. Soc. Japan 19 (1967),
508-520.

T. Kato, Perturbation theory for Linear Operators (Springer-Verlag, New York, Berlin,
Heidelberg, 1966).

W. Knight, ‘Solutions of differential equations in Banach Spaces’, Duke Math. J. 41
(1974), 437-442.

R.H. Martin, ‘A global existence theorem for autonomous differential equations in a Ba-
nach Space’, Proc. Amer. Math. Soc. 26 (1970), 307-314.

S. Oharu, ‘Note on the representation of semigroups of nonlinear operators’, Proc. Japan
Acad. 42 (1966), 1149-1154.

N. Papageorgiou, ‘Kneser’s Theorem for differential equations in Banach Spaces’, Bull.
Austral. Math. Soc. 33 (1986), 419-434.

N. Papageorgiou, ‘Weak solutions of differential equations in Banach Space’, Bull. Austral.
Math. Soc. 33 (1986), 407-418.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equa-
tions (Springer-Verlag, New York, Berlin Heidelberg, 1983).

A. Szep, ‘Existence theorem for weak solutions of ordinary differential equations in re-
flexive Banach Spaces’, Studia Sci. Math. Hungar. 8 (1971), 197-203.

S. Szufla, ‘On the existence of solutions of differential equations in Banach Spaces’, Bull.
Acad. Polan. Sci. Ser. Sci. Math. 30 (1982), 507-512.

G.F. Webb, ‘Continuous nonlinear perturbations of linear accretive operators in Banach
Space’, J. Junct. Anal. 10 (1972), 191-203.

Department of Mathematics
University of Houston
Houston, Texas 77004
United States of America

https://doi.org/10.1017/50004972700017998 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017998

