ON UNRAMIFIED A_{m}-EXTENSIONS OF QUADRATIC NUMBER FIELDS

by J. ELSTRODT, F. GRUNEWALD and J. MENNICKE
Dedicated to Professor Robert A. Rankin on his 70th birthday

1. Introduction. Number fields such as described in the title play a rôle in the study of Artin L-functions and automorphic forms for the groups SL_{2} over rings of integers in quadratic extensions of \mathbb{Q}. They are also of some interest on their own. We have not found many examples in the literature. Lang [4] mentions an unramified A_{5}-extension of a real quadratic number field which is due to E . Artin.

The purpose of the present paper is to provide an easy access to such fields. Our main result is the following theorem.

Theorem. Consider the polynomial

$$
f(x)=x^{m}+a_{m-2} x^{m-2}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x], \quad m>2 .
$$

Suppose:
(i) the polynomial discriminant Δf is square-free

$$
\Delta f= \pm p_{1} \ldots p_{n}
$$

(ii) $f(x)$ is irreducible over \mathbb{Q}, and has Galois group S_{m}.

Consider the quadratic field

$$
k=\mathbb{Q}(\sqrt{ }(\Delta f)),
$$

and the splitting field S of f. Then S / k is an unramified A_{m}-extension.
S_{m}, A_{m} denote the full symmetric and the alternating permutation group on m symbols, respectively. We prove our theorem in Section 2. In Section 3 we give some numerical results on the discriminants of polynomials of degree 5 . Our tables contain many cases where the assumptions of the theorem apply.

We acknowledge financial support by the Max-Planck-Institut für Mathematik, Bonn.
2. Proof of theorem. Let $\boldsymbol{\vartheta}_{1}, \vartheta_{2}, \ldots, \vartheta_{m}$ be the roots of $f(x)=0$, in some fixed order. Introduce the chain of fields

$$
\begin{gathered}
\mathbb{Q}=K_{0} \subset K_{1} \subset K_{2} \subset \ldots \subset K_{m-1}=S, \\
K_{i-1}=\mathbb{Q}\left(\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{j-1}\right) .
\end{gathered}
$$

Then

$$
K_{j}=K_{i-1}\left(\vartheta_{j}\right) .
$$

The extension K_{j} / K_{i-1} has the degree

$$
\left|K_{j}: K_{i-1}\right|=m-j+1, \quad 1 \leq j \leq m-1,
$$

Glasgow Math. J. 27 (1985) 31-37.
and the defining polynomial

$$
g_{j}(x)=\frac{f(x)}{\left(x-\vartheta_{1}\right)\left(x-\vartheta_{2}\right) \ldots\left(x-\vartheta_{i-1}\right)} \in K_{i-1}[x] .
$$

Put

$$
g_{1}(x)=f(x)
$$

Obviously we have

$$
g_{i}(x)=\frac{g_{j-1}(x)}{x-\vartheta_{j-1}}
$$

The polynomial $\mathrm{g}_{\mathrm{j}}(x)$ has the roots $\boldsymbol{\vartheta}_{\mathrm{j}}, \vartheta_{i+1}, \ldots, \vartheta_{m}$. Hence we have

$$
\Delta g_{j}=\left\{\left(\vartheta_{i}-\vartheta_{i+1}\right)\left(\vartheta_{i}-\vartheta_{i+2}\right) \ldots\left(\vartheta_{i}-\vartheta_{m}\right)\right\}^{2} \Delta g_{j+1}
$$

This can be written as

$$
\begin{equation*}
\Delta g_{i}=g_{i}^{\prime}\left(\vartheta_{i}\right)^{2} \Delta g_{j+1} . \tag{1}
\end{equation*}
$$

The quantity

$$
\begin{equation*}
g_{i}^{\prime}\left(\vartheta_{j}\right)=\delta_{\kappa_{i} / \kappa_{i}-1}\left(\vartheta_{j}\right) \tag{2}
\end{equation*}
$$

is the relative different of $\boldsymbol{\vartheta}_{j}$. We have

$$
\begin{equation*}
N_{\mathbf{K}_{i} / \mathbf{K}_{\mathbf{i}-1}} \mathrm{~g}_{\mathrm{j}}^{\prime}\left(\mathfrak{\vartheta}_{\mathbf{j}}\right)=\Delta \mathrm{g}_{\mathrm{j}} \tag{3}
\end{equation*}
$$

Let $\nsim h_{i}^{(j)}, q_{i}^{(i)}$ denote ideals in K_{j}. Suppose, inductively,

$$
\begin{equation*}
\Delta g_{j}=q_{1}^{(i-1)} \ldots q_{n}^{(j-1)} \quad \text { in } \quad K_{i-1} \tag{4}
\end{equation*}
$$

where $g_{i}^{(i-1)}$ is square-free, i.e. it is a product of different prime ideals, and

$$
\begin{equation*}
N_{K_{i-1} / K_{0} q_{i}^{(j-1)}}=p_{i}^{(m-2)(m-3) \ldots(m-i)}, \quad i=1, \ldots, n \tag{5}
\end{equation*}
$$

For $j=1$, we have $g_{1}=f$. Hence (4) holds by assumption (i). The exponent on the right hand side of (5) is understood to be 1 for $j=1$. Hence the induction hypothesis holds true for $j=1$.

We show that (4), (5) hold for $j+1$. Since $\Delta g_{i} \in K_{j-1}$, we have

$$
N_{K_{i} / K_{i-1}}\left(\Delta g_{j}\right)=\left(\Delta g_{j}\right)^{m-i+1}
$$

Conclude from (1) and (3):

$$
\begin{equation*}
N_{K_{i} / K_{j-1}}\left(\Delta g_{j+1}\right)=\left(\Delta g_{j}\right)^{m-i-1}=\left(q_{1}^{(j-1)} \ldots q_{n}^{(j-1)}\right)^{m-j-1} . \tag{6}
\end{equation*}
$$

The ideal $\left(\Delta g_{j}\right)$ is square-free in K_{j-1}, by induction hypothesis. By assumption (i), it does not contain any inessential divisors. Hence it coincides with the relative discriminant:

$$
\begin{equation*}
\left(\Delta \mathrm{g}_{\mathrm{j}}\right)=\left(d_{\mathrm{K}_{\mathrm{i}} / K_{\mathrm{i}-1}}\right) \tag{7}
\end{equation*}
$$

Hence all prime factors of $q_{i}^{(i-1)}$ ramify in K_{i}. Since the ramification is tame, by assumption (i), and since ($d_{K_{i} / K_{i-1}}$) is square-free, the ramification must be of the form

$$
\begin{gather*}
q_{i}^{(i-1)}=\left(\chi_{i}^{(i)}\right)^{2} q_{i}^{(i)}, \tag{8}\\
N_{K_{i} / K_{i-1}} h_{i}^{(j)}=q_{i}^{(i-1)}, \quad N_{K_{i} / K_{i-1}} q_{i}^{(i)}=\left(q_{i}^{(i-1)}\right)^{m-j-1} . \tag{9}
\end{gather*}
$$

 discriminant $g_{j}^{\prime}\left(\vartheta_{j}\right)$:

$$
\begin{equation*}
g_{j}^{\prime}\left(\vartheta_{i}\right)=h_{1}^{(i)} \cdots \mathfrak{k}_{n}^{(j)} \cdot r . \tag{10}
\end{equation*}
$$

Inserting this equation in (1), we obtain

$$
\begin{equation*}
q_{1}^{(i)} \ldots q_{n}^{(i)}=r^{2} \Delta g_{j+1} . \tag{11}
\end{equation*}
$$

Taking norms on both sides of (11), we conclude from (6) and (9):

Hence we have

$$
N_{K_{i} / K_{i-1}} i^{2}=1, \text { and hence } r=1 .
$$

$$
\begin{align*}
g_{j}^{\prime}\left(\vartheta_{i}\right) & =h_{1}^{(i)} \cdots \nsim h_{n}^{(i)}, \tag{12}\\
\Delta g_{j+1} & =q_{1}^{(\mathrm{i})} \ldots q_{n}^{(i)} . \tag{13}
\end{align*}
$$

This proves (4) for $j+1$. Use (9) to conclude

$$
\begin{aligned}
N_{K_{i} / K_{0}} q_{i}^{(j)} & =N_{K_{i-1} / K_{0}} N_{K_{i} / K_{i-1}-1} q_{i}^{(i)}=N_{K_{i-1} / K_{0}}\left(q_{i}^{(i-1)}\right)^{m-i-1} \\
& =p_{i}^{(m-2)(m-3) \ldots(m-j)(m-j-1)} .
\end{aligned}
$$

This proves (5) for $j+1$. Hence (4), (5) hold for all j such that $1 \leq j \leq m-1$.
Let $L_{i}=K_{\mathrm{i}} k$. Hence L_{i} / K_{j} is the relative quadratic extension obtained by adjoining $\sqrt{ }(\Delta f)$. The extension is of degree 2 , by assumption (ii). We use the decomposition laws in quadratic extensions, see Hecke [2, p. 148]. We have, by (8):

$$
\begin{equation*}
\left(p_{1} \ldots p_{n}\right)=(\Delta f)=\left(\mu_{1}^{(1)} \cdots h_{n}^{(1)} \mu_{1}^{(2)} \cdots \mu_{n}^{(2)} \cdots \mu_{1}^{(j)} \cdots \mu_{n}^{(i)}\right)^{2} q_{1}^{(j)} \cdots q_{n}^{(i)} . \tag{14}
\end{equation*}
$$

Hence, in L_{i} / K_{i}, all prime factors of $q_{i}^{(i)}$ ramify:

$$
\begin{equation*}
q_{i}^{(i)}=\left(\mathscr{Q}_{i}^{(i)}\right)^{2}, \quad N_{L_{i} / K_{i}} \mathscr{Q}_{i}^{(i)}=q_{i}^{(i)} . \tag{15}
\end{equation*}
$$

The prime 2 does not ramify in K_{i}, by assumption (i). Let ℓ be a prime divisor of 2 in K_{i} :

$$
(2)=\ell . \ell_{1}, \quad\left(\ell, \ell_{1}\right)=1 .
$$

We have to study the congruence

$$
\begin{equation*}
\Delta f=\xi^{2} \bmod \ell^{2} \tag{16}
\end{equation*}
$$

The assumption (i) implies that Δf is a field discriminant, of the field K_{1}. Use Stickelberger's theorem to conclude

$$
\Delta f \equiv 1 \bmod 4
$$

Hence the congruence (16) is solvable in K_{i}, and hence ℓ does not ramify in L_{i}. Hence we obtain for the relative different:

$$
\mathscr{D}_{L_{i} / K_{i}}=\mathscr{Q}_{1}^{(i)} \ldots \mathscr{Q}_{n}^{(j)}
$$

The different of L_{i} is

$$
\mathscr{D}_{L_{i}}=\mathscr{Q}_{1}^{(j)} \ldots \mathscr{Q}_{n}^{(j)} \ldots \mathscr{D}_{K_{i}}
$$

Taking norms, we obtain

$$
N_{L_{i} / K_{i}} \mathscr{D}_{\mathbf{L}_{i}}=q_{1}^{(i)} \ldots q_{n}^{(j)} \ldots \mathscr{D}_{K_{i}}^{2} .
$$

Deduce from (14):

Hence we obtain

$$
\begin{gather*}
N_{L_{/} / K_{1}} \mathscr{D}_{L_{i}}=\left(p_{1} \ldots p_{n}\right), \\
N_{L_{i} / K_{0}} \mathscr{D}_{L_{i}}=\left(p_{1} \ldots p_{n}\right)^{m(m-1) \ldots(m-j+1)} . \tag{17}
\end{gather*}
$$

For the different $q=(\sqrt{ }(\Delta f))$ of k, we have

$$
N_{L_{l} / K_{0} q}=\left(p_{1} \ldots p_{n}\right)^{m(m-1) \ldots(m-j+1)}
$$

Consider

$$
\mathscr{D}_{L_{i}}=\mathscr{D}_{L_{i} / k} \cdot q .
$$

Take absolute norms on both sides, and observe (17), (18), obtaining

$$
N_{L_{i} / K_{0}} \mathscr{D}_{L_{i} / \mathrm{k}}=1,
$$

and hence

$$
\mathscr{D}_{L_{l} / \mathrm{k}}=1 .
$$

Hence L_{j} / k is unramified for $1 \leq j \leq m-1$. For $j=m-1$, this proves the theorem.
Remark. Invoking class field theory, we find that our result implies congruence relations for certain class numbers. Whenever $k<k_{1}<k_{2}<S$ is a chain of subfields such that k_{2} / k_{1} is normal with abelian Galois group, the class number $h_{k_{1}}$ of k_{1} is divisible by the degree $\left|k_{2}: k_{1}\right|$.
3. Numerical examples. In this section we give some numerical examples where the assumptions of our theorem are satisfied. To do this it is necessary to have an explicit formula for the discriminant Δf of a polynomial f. We report here on the case $m=5$.

Proposition 1. Let

$$
f(x)=x^{5}+a x^{3}+b x^{2}+c x+d
$$

be a polynomial with rational coefficients. Then its discriminant is

$$
\begin{aligned}
\Delta f= & 5^{5} d^{4}-2 \cdot 3 \cdot 5^{4} \cdot d^{3} b a+2^{4} \cdot 5^{3} \cdot d^{2} c^{2} a+2 \cdot 3^{2} \cdot 5^{3} \cdot d^{2} c b^{2} \\
& -2^{2} \cdot 3^{2} \cdot 5^{2} \cdot d^{2} c a^{3}+3 \cdot 5^{2} \cdot 11 \cdot d^{2} b^{2} a^{2}+2^{2} \cdot 3^{3} \cdot d^{2} a^{5}-2^{6} \cdot 5^{2} \cdot d c^{3} b \\
& +2^{4} \cdot 5 \cdot 7 \cdot d c^{2} b a^{2}-2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot d c b^{3} a-2^{3} \cdot 3^{2} \cdot d c b a^{4} \\
& +2^{2} \cdot 3^{3} \cdot d b^{5}+2^{4} \cdot d b^{3} a^{3}+2^{8} \cdot c^{5}-2^{7} \cdot c^{4} a^{2}+2^{4} \cdot 3^{2} \cdot c^{3} b^{2} a \\
& +2^{4} \cdot c^{3} a^{4}-3^{3} \cdot c^{2} b^{4}-2^{2} \cdot c^{2} b^{2} a^{3} .
\end{aligned}
$$

The occurrence of the prime factors 7 and 11 is somewhat mysterious. The formula is slightly more complicated than the well-known formulae for polynomials of degrees 2,3 , 4. It is, however, still useful for computations for small values of a, b, c, d. After we had finished our computation, we discovered the formula of Proposition 1 in Cayley's work [1].

Table 1. $f=x^{5}+a x^{3}+b x^{2}+c x+d$

no	a	b	c	d	Δf	$h_{\text {k }}$
1	-1	-1	-1	1	$-7031=-79.89$	$108=2^{2} \cdot 3^{3}$
2	0	-1	-2	1	$-22583=-11.2053$	$90=2.3^{2} .5$
3	-1	0	-2	1	$-17151=-3.5717$	$110=2.5 .11$
4	0	-2	-1	1	-13219	31
5	-1	-2	0	1	$-4511=-13.347$	$84=2^{2} .3 .7$
6	-1	-3	1	1	$-24447=-3.29 .281$	$92=2^{2} .23$
7	-3	-1	-1	1	$-71943=-3.23981$	$130=2.5 .13$
8	-2	-1	-1	2	$-72579=-3.13 .1861$	$72=2^{3} \cdot 3^{2}$
9	-2	0	-2	1	$-49163=-211.233$	$50=2.5^{2}$
10	-2	1	-2	1	$-19015=-5.3803$	$106=2.53$
11	-2	-1	-2	1	$-77063=-7.101 .109$	$276=2^{2} \cdot 3.23$
12	1	-2	-2	1	$-54967=-11.19 .263$	$104=2^{3} \cdot 13$
13	-1	-2	-2	1	-60023 $=-193.311$	$252=2^{2} \cdot 3^{2} \cdot 7$
14	-2	-2	-2	1	-91363 $=-211.433$	$56=2^{3} .7$
15	0	0	-3	1	-59083	37
16	-1	0	-3	1	-90691 $=-89.1019$	$76=2^{2} .19$
17	-3	0	-1	1	-56123	43
18	0	-3	0	1	$-23119=-61.379$	$124=2^{2} .31$
19	1	-1	-3	1	$-105887=-19.5573$	$256=2^{8}$
20	-1	-3	-1	1	$-40711=-11.3701$	$148=2^{2} .37$
21	-3	1	-1	1	-28927	$65=5.13$
22	-3	-1	1	1	-5519	97
23	0	-2	-3	1	-179827	$51=3.17$
24	2	0	-3	1	-46411	$49=7^{2}$
25	-2	0	-3	1	-168523	61
26	-2	-3	0	1	-15919	$51=3.17$
27	0	-3	-1	2	-95531	$123=3.41$
28	0	-3	-2	1	$-118959=-3.39653$	$236=2^{2} .59$
29	-3	0	-2	1	$-132711=-3.31 .1427$	$380=2^{2} \cdot 5 \cdot 19$
30	-3	-1	-1	2	$-268183=-233.1151$	$204=2^{2} \cdot 3 \cdot 17$
31	-1	-2	-2	3	$-249119=-13.19163$	$820=2^{2} .5 .41$
32	-2	-1	-2	3	$-345559=-17.20327$	$226=2.113$
33	-2	-2	-1	3	$-253163=-383.661$	$108=2^{2} \cdot 3^{3}$
34	-2	1	-3	2	$-124763=-17.41 .179$	$68=2^{2} .17$
35	-2	-3	1	2	$-46259=-167.277$	$94=2.47$
36	2	-3	-2	1	$-170319=-3.56773$	$308=2^{2} \cdot 7 \cdot 11$
37	2	-2	-3	1	$-249707=-71.3517$	$148=2^{2} .37$
38	-2	2	-3	1	$-33131=-7.4733$	$92=2^{2} .23$
39	-2	-3	-2	1	-96263	$301=7.43$
40	3	-2	-2	1	$-44503=-191.233$	$74=2.37$
41	-3	2	-2	1	-25679	239
42	-3	-2	2	1	-8647	31
43	-3	-2	-2	1	$-188695=-5.13 .2903$	$164=2^{2} .41$
44	-3	0	-3	1	$-340531=-503.677$	$98=2.7^{2}$
45	-1	-3	-1	3	$-240871=-79.3049$	$258=2.3 .43$
46	-3	-1	1	3	$-32519=-31.1049$	$178=2.89$
47	-3	-3	1	1	$-14631=-3.4877$	$58=2.29$
48	-3	-1	-1	3	-545911	$321=3.107$
49	-3	-3	-1	1	$-41591=-11.19 .199$	$256=2^{8}$
50	3	-1	-3	1	$-147463=-239.617$	$142=2.71$
51	1	-3	-3	1	$-369223=-17.37 .587$	$292=2^{2} .73$

Table (contd.)

Table 1. (contd.)

no	a	b	c	d	Δf	h_{k}
52	-1	-3	-3	1	-259783	$315=3^{2} \cdot 5 \cdot 7$
53	0	-3	-2	3	-322247	461
54	-1	-2	-3	3	$-666507=-3.29 .47 .163$	$120=2^{3} \cdot 3.5$
55	-3	0	-2	3	$-673463=-7.23 .47 .89$	$776=2^{3} \cdot 97$
56	-3	-2	-1	3	$-707419=-599.1181$	$198=2.3^{2} \cdot 11$
57	-3	1	-3	2	$-447871=-227.1973$	$350=2.5^{2} \cdot 7$
58	-3	2	-3	1	$-101923=-227.449$	$60=2^{2} \cdot 3 \cdot 5$
59	-3	-2	-3	1	-480427	$123=3 \cdot 41$
60	-2	-3	2	3	-11551	$57=3.19$
61	-3	-2	2	3	$-18463=-37.499$	$54=2 \cdot 3^{3}$
62	-3	-2	-2	3	-1338863	$555=3 \cdot 5 \cdot 37$
63	2	-3	-3	2	-517243	$121=11^{2}$
64	-3	-3	1	3	$-125951=-7.19 .947$	$408=2^{3} \cdot 3 \cdot 17$
65	3	-3	-3	1	$-636991=-47.13553$	$608=2^{5} \cdot 19$
66	-3	3	-3	1	$-27007=-113.239$	$68=2^{2} \cdot 17$
67	-3	-3	3	1	$-144079=-13.11083$	$310=2.5 \cdot 31$
68	-3	-3	-3	1	-453823	353
69	-3	-3	-3	2	-1264063	$407=11.37$

We have produced, in Table 1, all extensions of imaginary quadratic fields such as described in the title in the range $-3 \leq a, b, c, d \leq 3$. In Table 2, we have listed a few examples of unramified A_{5}-extensions of real quadratic number fields, including Artin's example which is the first in our table.

Using the formula of Proposition 1, it is a trivial matter to write a computer program which computes $\Delta(f)$ for small values of a, b, c, d. We have carried out the computations for a, b, c, d of absolute value ≤ 3. We list the results in the subsequent tables. The column headed by h_{k} contains the class number of k.

Table 2. $f=x^{5}+a x^{3}+b x^{2}+c x+d$

no	a	b	c	d	Δf
1	0	0	-1	1	$2863=19.151$
2	0	1	0	1	$3017=7.431$
3	0	-1	0	1	$3233=53.61$
4	1	1	1	1	13033
5	1	1	-1	1	$4897=59.83$
6	1	-1	1	1	2297
7	-1	1	1	1	1609
8	-1	1	-1	1	$3857=7.19 .29$
9	-1	-1	1	1	8329
10	0	0	2	1	11317
11	1	0	-2	1	$2665=5.13 .41$
12	-1	0	2	1	3089
13	0	1	1	2	$56245=5.7 .1607$
14	0	-1	1	2	62213
15	0	-1	-1	2	$37301=11.3391$

Proposition 2. In Table 1, we have listed all polynomials $f=x^{5}+a x^{3}+b x^{2}+c x+d \in$ $\mathbb{Z}[x]$ with $-3 \leq a, b, c, d \leq 3$ satisfying the conditions (i), (ii) of Theorem 1 for $m=5$ and satisfying $\Delta f<0$.

In Table 2 we have listed a few examples, including Artin's example.

REFERENCES

1. A. Cayley, On a new auxiliary equation in the theory of equations of the fifth order, Philos. Trans. Roy. Soc. London, CLI, (1861), 263-276.
2. H. Hasse, Zahlentheorie (Akademie, 1949).
3. E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen (Akademische Verlagsgesellschaft, 1954).
4. S. Lang, Algebraic Number Theory (Addison-Wesley, 1970).
5. B. L. van der Waerden, Moderne Algebra (Springer, 1950).
