
P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

The Summer meeting of the Nutrition Society hosted by the Irish Section was held at Queen’s University, Belfast on 16–19 July 2012

Conference on ‘Translating nutrition: integrating research, practice and policy’
Symposium 2: Intervention study design and personalised nutrition

Inter-individual differences in response to dietary intervention:
integrating omics platforms towards personalised dietary

recommendations

Johanna W. Lampe1, Sandi L. Navarro1, Meredith A. J. Hullar1 and Ali Shojaie2
1Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

2Department of Biostatistics, University of Washington, Seattle, WA, USA

Technologic advances now make it possible to collect large amounts of genetic, epigenetic,
metabolomic and gut microbiome data. These data have the potential to transform approaches
towards nutrition counselling by allowing us to recognise and embrace the metabolic, physio-
logic and genetic differences among individuals. The ultimate goal is to be able to integrate
these multi-dimensional data so as to characterise the health status and disease risk of an
individual and to provide personalised recommendations to maximise health. To this end,
accurate and predictive systems-based measures of health are needed that incorporate mole-
cular signatures of genes, transcripts, proteins, metabolites and microbes. Although we are
making progress within each of these omics arenas, we have yet to integrate effectively mul-
tiple sources of biologic data so as to provide comprehensive phenotypic profiles. Observa-
tional studies have provided some insights into associative interactions between genetic or
phenotypic variation and diet and their impact on health; however, very few human experi-
mental studies have addressed these relationships. Dietary interventions that test prescribed
diets in well-characterised study populations and that monitor system-wide responses (ideally
using several omics platforms) are needed to make correlation–causation connections and to
characterise phenotypes under controlled conditions. Given the growth in our knowledge, there
is the potential to develop personalised dietary recommendations. However, developing these
recommendations assumes that an improved understanding of the phenotypic complexities of
individuals and their responses to the complexities of their diets will lead to a sustainable,
effective approach to promote health and prevent disease – therein lies our challenge.

Human feeding study: Metabolomics: Gut microbiome: Data integration

Technologic advances now make it possible to collect
large amounts of genetic, epigenetic, proteomic, metabo-
lomic and gut microbiome data. Many of the applications
of this multi-dimensional data have been in the areas of
disease detection, prognosis and treatment. However, such
approaches may also lend themselves towards characteris-
ing healthy phenotypes and more effectively informing
dietary recommendations for maintaining or improving the
health of individuals on a personal level. Omics data have
the potential to transform our approach towards nutrition

counselling by allowing us to recognise and embrace the
metabolic, physiologic and genetic differences among
individuals. The ultimate goal would be to integrate these
multi-dimensional data so as to characterise the health
status and disease risk of an individual and to provide
personalised dietary recommendations to maximise health.
To this end, accurate and predictive system-based mea-
sures of health are needed that incorporate molecular sig-
natures of genes, transcripts, proteins, metabolites and
microbes.
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Nutrition, as a science, has a long tradition of deter-
mining the nutrient requirements of heterogeneous popu-
lations eating a wide variety of diets and of providing
dietary recommendations for health. This has typically
involved simplifying the inherent complexity into man-
ageable recommendations in the form of dietary guidance
for the purpose of preventing disease in a population.
Despite the application of biostatistical approaches with
the goal to be as inclusive of the population as possible,
there are limitations due to assumptions that metabolic
organisational structure is uniform among individuals and
that direct cause–effect relationships exist. In reality, the
large number of functional redundancies and adaptive
mechanisms that provide for homoeostasis(1) make evalu-
ating the complexities and nuances challenging.
The concept of a ‘nutritional phenotype’, i.e. an inte-

grated set of genetic, proteomic, metabolomic, functional
and behavioural factors that, when measured, could pro-
vide the basis for assessment of human nutritional status,
was introduced several years ago by Ziesel et al.(2) It was
proposed as a way to integrate the effects of diet on dis-
ease/wellness and provide a quantitative indication of the
paths by which genes and environment exert their effects
on health(1). The concept provides a good base from which
to begin to establish approaches to personalised dietary
recommendations; however, several questions need to be
addressed. These include, but are not necessarily limited
to: What data will we need on an individual in order to
personalise dietary recommendations? How can we use
controlled feeding studies and other dietary interventions
to generate a nutritional phenotypic framework? How can
we most effectively integrate omics data so as to be able to
apply them towards personalised nutrition?

What data will we need on an individual in order
to personalise dietary recommendations?

Numerous factors contribute to variation in nutritional
requirements and responses to diet, including sex, stage of
life cycle, disease, physical activity level, genetic back-
ground, gut microbial community and environmental
exposures. Several of these are already considered in the
construction of personalised nutritional recommendations;
for example, sex, age, adiposity and activity level are
routinely used in determining nutrient requirements in
healthy individuals and understanding the contributions of
disease state to nutritional requirements is a hallmark of
therapeutic nutrition. To date, the more complex factors
such as genomics, host microbial community structure and
environmental exposures are often not included in the
equation.
Genetic polymorphisms are well-recognised sources of

variation in human response to some aspects of diet,
including taste preference, food tolerance, nutrient
absorption, transport and metabolism, and effects at target
tissues(3). Typically, in past studies, one particular genetic
variant has been considered in relation to intake of one
particular nutrient. For example, two polymorphisms in the
MTHFR gene (C677T and A1298C) are associated with
reduced methylenetetrahydrofolate reductase activity and

higher homocysteine concentrations(3). Carriers of these
polymorphisms are at higher risk of CVD; thus sufficient
intake of folate is particularly important. Other examples
include iron overload and haemochromatosis, copper
malabsorption and Menkes disease, and glucose-6-phos-
phate dehydrogenase and consumption of fava beans, high
in pro-oxidant glycosides (favism; reviewed in(3)). Further,
genomics may contribute to phenotypic differences in
health behaviour and modify response to interventions
designed to change health behaviours(4).

Several genome-wide association studies have evaluated
the association between multiple SNP and metabolomics
profiles. In a sample of 284 men, Gieger et al.(5) integrated
genome-wide association study data with serum metabo-
lomics-based quantitation of 363 metabolites. They repor-
ted associations of frequent SNP with differences in the
metabolic homoeostasis, explaining up to 12% of the
observed variance. Using ratios of certain metabolite con-
centrations as a proxy for enzymatic activity, up to 28% of
the variance can be explained (P-values 10 - 16–10 - 21).
Four variants in genes coding for enzymes (FADS1, LIPC,
SCAD and MCAD) were identified where a corresponding
metabolic phenotype (metabotype) clearly matched the
biochemical pathways in which these enzymes are active.

More recently, Suhre et al.(6) conducted an analysis of
genotype-dependent metabolic phenotypes using a gen-
ome-wide association study with non-targeted metabo-
lomics in a sample of 1768 individuals. They identified
thirty-seven genetic loci associated with blood metabolite
concentrations, of which twenty-five showed effect sizes
that accounted for 10–60% difference in metabolite levels
per allele copy. These results provided functional insights
into disease-related associations that have been reported in
previous studies, including those for cardiovascular and
renal disorders, type 2 diabetes, cancer, gout, venous
thromboembolism and Crohn’s disease.

The human gut microbial community also shapes host
exposure to dietary constituents by modulating absorption,
storage and energy harvest from the diet. It is a large,
complex ecosystem, with the number of different species
of bacteria estimated to range from 300 and 1000 and the
majority of the species diversity distributed between the
phyla Firmicutes and Bacteroidetes(7,8). There is high inter-
individual variation in the composition of communities,
mostly at the species level(9), whereas the distribution of
bacterial functional genes is less varied. This functional
redundancy is a hallmark of a stable symbiosis in which
many different species carry out the same functional role.

Recent studies suggest that individuals can be clustered
into distinct groups based on their gut microbiome com-
position and functional metabolism(10). The underlying
metabolism of the dominant bacteria that define these
groups is the degradation of plant polymers (e.g. dietary
fibre) via different metabolic pathways; long-term dietary
habits have been associated with these groupings(10).
Through the metabolism of dietary constituents, the gut
microbiome can influence the magnitude and flux of
metabolites to which the host is exposed and some of the
variations in what have been identified as genotype-
dependent metabolic phenotypes actually may be due to
the composition and activity of the gut microbiome(11,12).
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Indeed, of the genotype-dependent metabolic phenotypes
identified by Suhre et al.(6), an altered microbiome has
been associated with CVD(13), type 2 diabetes(14), some
cancers(15,16) and Crohn’s disease(17). However, the rela-
tionships between the gut microbiome, diet and metabolic
phenotypes need to be addressed in rigorous experimental
settings using approaches that integrate metabolomics, host
genomics and the gut microbiome.

How can we use controlled feeding studies and other
dietary interventions to develop phenotype profiles?

Controlled feeding studies in healthy human subjects have
been used for over a century to establish the quantitative
requirements and confirm essentiality of nutrients in
human subjects. Typically, these studies had small sample
sizes, were intensively controlled, and often focused on
restriction and re-feeding of specific nutrients or nutrient
sources. They were used to evaluate the acute effects of
food deprivation, show experimentally the effects of diet-
ary restrictions on development of deficiency diseases,
establish specific amino acid requirements and describe
vitamin metabolism(18). Consequently, they were crucial in
determining recommended daily dietary allowances. Con-
trolled interventions and defined background diets have
also been useful for testing response to varying doses of a
dietary constituent(19) and for testing and monitoring bio-
markers of disease susceptibility and dietary exposure(20).
More recently, dietary interventions have been used to test
the effects of particular dietary patterns(21) and to test
genotype–phenotype interactions(22).
Controlled feeding studies, particularly with randomised

crossover designs where each person serves as their own
control, are a useful venue in which to test genotype–diet
interactions as well as genotype–phenotype associations. In
the latter case, the relationship between genotype and
phenotype can sometimes be better characterised on the
background of the same dietary exposures (i.e. a controlled
diet)(22). Participant screening protocols for recruitment
into controlled feeding studies also can be set up to enrich
a priori for particular genotypes or phenotypes so as to
provide more equal distributions of sample sizes in sub-
groups, particularly if the prevalence of a particular variant
is low, and to increase statistical power to compare these
subgroups.
Controlled feeding studies also provide a useful

approach in which to characterise host-gut microbial
interactions and to determine gut microbial community
response to diet. In the context of controlled dietary inter-
ventions, gut bacterial community composition has been
shown to differ significantly when participants consume
different diets(23,24), although the overall response of the
gut bacterial community is often unique for each indivi-
dual(24,25). Most studies have tested effects of fermentable
complex carbohydrates (e.g. dietary fibres, resistant starch;
Table 1). Network analysis of the gut microbial community
reveals niche specialisation based on a metabolic inter-
connection between different bacteria that are often spe-
cialised in one enzymatic transformation in the pathway of
dietary metabolism(10,26–28). The type of carbohydrate

ingested often influences the prevalence of certain groups
of gut bacteria and the subsequent composition of the
microbial metabolic end products to which the host is
exposed (e.g. SCFA; Table 1). Differences in gut microbial
metabolism of various phytochemicals also contribute to
gut bacterial metabolic phenotypes that influence dietary
exposures(29). Being able to test for the effects of these
phenotypes in the context of nutrition interventions is
important, since some subgroups may be more responsive
to the intervention than others. For example, Niculescu
et al.(30) reported differential lymphocyte gene expression
by bacterial metabolic phenotype in postmenopausal
women receiving an isoflavone supplement; a greater
increase in oestrogen-responsive genes was observed in
women who carried the bacteria capable of converting the
soya isoflavone daidzein to equol.

‘Omics’ – transcriptomics, proteomics and metabo-
lomics – approaches have been hypothesised to revolutio-
nise our understanding of the interactions of the various
systems that are often studied in isolation and have the
potential to revolutionise many aspects of our study of
nutrition and health promotion. Despite the excitement, at
this stage, the technologies still require rigorous evaluation
and validation. Controlled feeding studies are a useful
approach in which to validate and test the robustness of
these omics approaches with the goal of ultimately being
able to use them to evaluate the effects of totality of diet
on totality of response in human subjects. In addition, they
provide important details on the behaviour of proteins,
transcripts and metabolites under controlled conditions.

Several studies have used the construct of controlled
feeding interventions to test effects of diet on omics
measures (Table 2). The majority of these have utilised
metabolomics to characterise response to phytochemical-
containing foods (fruits, vegetables, tea, nuts) compared
with a control in healthy individuals. Many of the meta-
bolites identified typically correspond to dietary bio-
markers of the intervention foods consumed (e.g. proline
betaine after consumption of citrus fruits). Although many
studies also yield a handful of endogenous metabolites that
differ in abundance between the interventions, these com-
pounds are often generally reported as differences in
metabolite profiles owing to a lack of adequate pathway
analysis tools. Thus, it is often unclear whether differences
in metabolite profiles are indicative of perturbations in
specific pathways or molecular targets in response to the
dietary intervention, or are unrelated compounds identified
by chance. Some investigators have explored pathways
manually. For example, Solanky et al.(31) found that soya
consumption was associated with osmolyte fluctuations
and differences in energy metabolism. Work in our
laboratory (DH May, SL Navarro, I Ruczinski et al., un-
published results) suggests potential differences in energy
utilisation from glucose to fat between a diet devoid of
fruits and vegetables compared with a diet high in cruci-
fers, citrus and soya. These examples provide provocative
views of other mechanisms through which plant foods may
promote health; however, even with manual analyses, the
interpretation is still broad, speculative and incomplete.

Other investigations have employed alternative omics
technologies to study response to diet and have evaluated
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Table 1. Summary of human dietary randomised crossover intervention studies of response of the gut microbiome to diet

Dietary

intervention,

reference

and year

Sample

size/population Dietary intervention/dose of food agent Treatment duration Platform/biological sample/key outcomes

Dietary intervention in normal weight individuals

Hooda

et al.(56)
n 20 M; healthy

adults

Randomised controlled crossover, no fibre, polydextrose

(21 g/d); soluble maize fibre (21 g/d)

21 d Pyrosequencing of V4 region of 16S rRNA gene/faeces.

PCA showed gut microbial community shifts with fibre

interventions

Ross

et al.(57)
n 17; 11 F, 6 M Randomised controlled crossover, WG(150/d) v. refined

grain

2-week Bacterial enumeration using FISH; C. leptum group

increased in WG diet along with stool frequency

Costabile

et al.(58)
n 31; 16 F, 15 M Randomised controlled crossover, 48 g/d breakfast cereal

of either 100% WG (11.8 g DF/100 g; chosen after a

pre-screening for bifidogenicity) or WB (27 g DF/100 g)

ad-lib diet; energy composition was not the same; WG

contained higher content of non-sugar carbohydrate

two 3-week periods Bacterial group enumeration using FISH showed changes in

several groups with both WG and WB diets and

differences between diets. No change in faecal SCFA.

Increase in fasting plasma ferulic acid with WB

Finley

et al.(59)
n 40 pre-

metabolic

syndrome; n 40

controls; 20 F,

20 M

1/2 cup (130 g) of pinto bean puree v. chicken–noodle soup 4-week equilibration

and 12-week

intervention

Faecal bacterial species enumeration using FISH. Breath

methane measured. No effect of bean consumption,

except E. limosum levels decreased by 50%

Smith

et al.(60)
n 18 M Single-blind randomised crossover, self-managed with

addition of seven experimental foods (bread, muffin,

brownie, choc milk drink, muesli, pasta, mashed potatoes)

with or without LKF; LKF diet provided 17–30g additional

fibre/d; mean fibre intake was 23g/d on control and 45 g/d

on LKF; LKF diet was sig. lower in starch

28-d ;3-d pooled faecal

collection at end of

each period

FISH of 16S rRNA genes/faeces with probes for total

bacteria and specific groups. No difference in total

bacteria, but changes in certain groups in response to

treatment

Johnson

et al.(61)
n 38 M Single-blind crossover, same as Smith et al.(60) afore-

mentioned

28-d; 3-d pooled faecal

collection at end of

each period

SCFA and bacterial enzyme activity in faeces. LKF altered

bowel function parameters and decreased faecal pH.

Faecal SCFA increased and b-glucuronidase activity

decreased. No difference in faecal ammonia concentration

Tuohy

et al.(25)
n 31; 17F, 14M 20g FOS + 10 g PHGG/d v. placebo crossover, 3-week

feeding periods; two

consecutive d stool

sample mix

FISH of 16S rRNA genes. Increase in Bifidobacterium spp.,

but no difference in total bacteria between diets or other

spp. enumerated. No change in faecal pH

Hylla

et al.(62)
n 12; 5 F, 7 M Randomised controlled crossover, high v. low resistant

starch: amylomaize starch in bread, pasta, cake and

biscuits (Hylon VII, Natl Starch)

4-week Changes in breath hydrogen and several faecal parameters

associated with bacterial activity (e.g. pH, certain SCFA,

b-glucosidase, secondary bile acids)

Dietary intervention in overweight/obese individuals

Weickert

et al.(63)
n 69; 43 F, 26 M Randomised controlled crossover, high cereal fibre 43g/d,

moderately high cereal/fibre/protein diets, 23% energy

as protein, cereal fibre 26g/d

18 weeks FISH/Flow cytometry of faecal bacteria. No effect of diet on

bacterial groups

Russell

et al.(23)
n17 M; obese Randomised controlled crossover. Maintenance diet (85 g

protein, 116 g fat and 360 g carbohydrate/d) HPMC (139 g

protein, 82 g fat and 181 g carbohydrate/d) HPLC (137 g

protein, 143 g fat and 22 g carbohydrate/d)

7 d maintenance

followed by 14-d

intervention

FISH of 16S rRNA genes/GC-MS analysis of faecal water

content/faeces. HPMC and HPLC diets resulted in

increased proportions of branched-chain fatty acids and

concentrations of phenylacetic acid and N-nitroso

compounds. HPLC diet decreased proportion of butyrate

in faecal SCFA concentrations, concomitant with reduction

in Roseburia/Eubacterium rectale bacteria, and reduced

fibre-derived, antioxidant phenolic acids
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other endpoints beyond differences in metabolite profiles.
Brauer et al.(32), interrogated the proteome in response
to 2 weeks of a diet high in cruciferous vegetables,
and assessed whether response differed by glutathione
S-transferase (GST)M1 genotype. GST enzymes metabolise
a variety of exogenous compounds, including iso-
thiocyanates from cruciferous vegetables, and the GSTM1
variants resulting in a complete lack of gene product are
common(22). Twenty-four distinct peaks were associated
with cruciferous vegetable consumption compared with a
fruit- and vegetable-free diet, two of which were identified
that changed in a GSTM1-genotype-dependent manner.
Another study provides an example of a novel use of omics
to link metabolic phenotypes with dietary preferences.
Taking a targeted approach, Rezzi et al.(33) used lipidomics
to determine metabolites associated with chocolate ‘desir-
ing’ or chocolate ‘indifferent’ preferences among indivi-
duals consuming 50 g/d chocolate or bread as a placebo.
Heinzmann et al.(34) used metabolomics to study the sta-
bility of phenotypic response to diet through sequential
dietary challenges. They found that inter-individual differ-
ences were often greater than differences within an indi-
vidual in response to dietary modulation, providing
evidence that individuals each have a unique metabolic
phenotype. Moreover, intra-individual differences between
consecutive dietary challenges were linked to differences
in excretion of microbial co-metabolites suggesting flex-
ibility in gut microbiome function in response to dietary
modulation. As the authors point out, these differences
illustrate the importance of assessing response to diet in the
context of a crossover rather than parallel study design in
order to move towards personalised nutrition. As a whole,
these controlled feeding studies illustrate the potential for
omics technology in characterising individual nutritional
phenotypes, but make evident the challenges (i.e. com-
pound identification, pathway analysis) that still exist.

How can we most effectively integrate omics data so
as to be able to apply them towards personalised

nutrition?

Given that cellular functions are carried out via orche-
strated activities of multiplex components of biological
systems, data from different omics platforms can shed light
on cellular activities at different levels. Methods that inte-
grate omics data from different molecular profiling studies,
e.g. data from transcriptomics, proteomics or metabo-
lomics studies, have the potential to provide new insight
into how different components of biological systems
interact with each other and form the basis of an indivi-
dual’s health. Here, we provide an overview of available
methods of data integration from multiple omics platforms,
provide examples of each of different approaches, and
discuss their advantages and limitations.

Current methods for integrative analysis of omics data
from multiple data platforms can be broadly grouped into
three categories. The first class of models, which we refer
to as concordance analysis methods, studies concordance/
correlation between two omics datasets, e.g. comparing the
gene expression levels and proteomics datasets on the sameT
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Table 2. Summary of human dietary intervention studies using metabolomic and proteomic platforms

Dietary intervention, reference and year Sample size/population Dietary intervention/dose of food agent

Treatment

duration Platform/biological sample/key outcomes

Fruits and vegetables

May D, Navarro SL, Ruczinski I et al.

(unpublished results) Metabolomic profiling

of urine in response to a randomised,

controlled feeding study of select fruits and

vegetables and application to an

observational study

n 10; 5 F, 5 M; healthy

adults

Randomised controlled crossover, mixture of

cruciferous vegetables, citrus fruits and soya

(F&V) compared to fruit and vegetable-free diet

(basal); 5 g/kg BW

2 weeks Metabolomics/8 h fasting urine; more abundant in

the F&V: markers of dietary intervention (e.g.

crucifers, citrus and soya metabolites), fatty

acids and niacin; more abundant in basal:

riboflavin, several acylcarnitines and amino

acid metabolites; differences in energy

utilisation between diet treatments

Van Dorsten et al.(66) n 58 (29 in each

treatment arm); 25 F,

33 M hypertensive

adults

Randomised double-blind placebo-controlled

double-crossover, capsules containing a

polyphenol rich mix of either red wine and red

grape juice extracts (800mg) or only red grape

extract (800mg), and placebo

4 weeks Metabolomics/urine; 18 phenolic acids elevated

after either polyphenol treatment including

syringic acid, 3- and 4-hydroxyhippuric acid

and 4-hydrohippuric acid and 4-

hydroxymandelic acid

Brauer et al.(32) n 36; 17 F, 19 M; n 42;

17 F, 25 M; healthy

adults recruited based

on GSTM1 genotype

(present or null)

2 separate randomised controlled crossover trials

of mixed vegetables: (1) 436 g cruciferous; 90 g

allium; and 270g apiaceous; (2) 7 g/kg BW

cruciferous; 14 g/kg BW cruciferous; 7 g/kg BW

cruciferous + 4 g/kg BW apiaceous; both

compared to fruit and vegetable-free diet

(basal)

6 d; 2 weeks Proteomics/8 h fasting serum; 24 distinct peaks

associated with cruciferous vegetables;

20 associated with GSTM1 genotype; joint

study analysis showed 6 peaks changed in

genotype-dependent manner; two identified as

TTR and ZAG

Heinzmann et al.(67) n 8; 7 F, 1 M healthy

adults

Standardised mixed fruit meal (apple, orange,

grapes and grapefruit; no dosage provided)

3 d Metabolomics/urine; excretion of proline betaine,

tartaric acid, hippuric acid and benzoic acid

was increased compared to baseline

Walsh et al.(68) n 21; 12 F, 9 M healthy

adults

Non-controlled crossover, 2 d habitual diet; 2 d

low phytochemical diet and 2 d high

phytochemical diet (100ml · 4 apple, carrot

and strawberry drinks)

2 d Metabolomics/fasting urine; higher excretion of

hippurate and lower excretion of creatinine and

methylhistidine discriminated the high

phytochemical and habitual diets from the low

phytochemical diet

Other plant foods

Tulipani et al.(69) n 42; adults with

metabolic syndrome

Randomised parallel intervention, mixed nuts,

30 gd and control

12 weeks Metabolomics/urine; 20 potential markers of nut

intake including fatty acid, phase II, microbially-

derived phenolic, and serotonin metabolites

Llorach et al.(70) n 24; healthy adults Randomised blind placebo-controlled,

encapsulated almond skin extract, 3.5 g

Single dose

of ten

capsules

Metabolomics/urine; 34 metabolites of almond

skin including flavonoids,

hydroxyphenylvalerolactone, 4-hydroxy-5-

(pheny;)-valeric acid, hydroxyphenylpropionic

acid, hydroxyphenylacetic acid and other

phenolic acid conjugates

van Dorsten et al.(71) n 17 M; healthy adults Randomised crossover, black tea (6 g/d),

green tea (6 g/d) or caffeine (control)

2 d Metabolomics/urine; green and black tea

increased urinary excretion of hippuric acid and

1,3-dihydroxyphenyl-2-O-sulfate; greater

increase in several citric acid cycle

intermediates with green tea

Solanky et al.(31) n 9 F; pre-menopausal Controlled, miso (50 g/d; n 6) or soya protein

(60 g/d; n 3)

4 weeks Metabolomics/urine; increased TMAO,

methylamine, dimethyl amine, choline,

creatine, glutamine (soya only) and glutamate

(soya only), and decreased creatinine,

hippurate, benzoate, citrate (miso only) and

lactate (miso only)
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Table 2 (Continued)

Dietary intervention, reference and year Sample size/population Dietary intervention/dose of food agent

Treatment

duration Platform/biological sample/key outcomes

Miscellaneous

Rasmussen et al.(72) n 77; 44 F, 33 M;

overweight , adults

Randomised, high (23–28% of energy; n 42) or

low (10–15% of energy; n 35) protein diet

6 months Metabolomics/urinary; creatine increased with a

high protein diet; citric acid increased with the

low protein diet

Moazzami et al.(73) n 17 M; prostate cancer

patients

Randomised controlled crossover, whole grain

rye, rye bran and refined white wheat product,

control (485 g/d)

6 weeks Metabolomics/fasting plasma; metabolites

increased after rye bran included 3-

hydroxybutyric acid, acetone, betaine, N,N-

dimethylglycine and dimethyl sulfone

Heinzmann et al.(34) n 7; 6 F, 1 M healthy

adults

Controlled, various dietary challenges including

mixed fruit (apple, orange, grapes and

grapefruit), fish, wine and grapes, beef and fish

7d Metabolomics/urine; inter-individual metabolic

differences were greater than effects of any

single dietary challenge; differences to dietary

challenges differed between individuals

Zivkovic et al.(74) n 3; 1 F, 2 M; healthy

adults

Standardised test beverages, 40% kcal needs;

230 g lactose-free milk, 227 g low-fat yogurt,

30 g 100% whey protein powder, 118 g banana

and 22 g flax seed oil

Three

single test

beverages

Targeted lipidomics/plasma; serum fatty acid

differences were greater among individuals

than within; three metabolites discriminated

individuals in ApoB fraction: TAG16 : n7,

TAG18 : 2n6 and phosphatidylcholine18 : 3n3

Llorach et al.(75) n 10; 5 F, 5 M; Healthy

adults

Randomised crossover, 40 g cocoa powder with

water or 250ml milk or 250ml milk alone

Single test

beverages

Metabolomics/urine; 27 cocoa-phytochemical

metabolites identified after both cocoa-

containing beverages

Bertram et al.(76) n 28; 8-year-old boys Randomised, 53 g/d protein from low-fat milk or

low-fat meat

7 d Metabolomics/urine and serum; urinary hippurate

excretion was decreased with milk; urinary

creatinine, histidine and urea was increased

with meat

Rezzi et al.(33) n 75 M; healthy adults Controlled crossover, chocolate (50 g) or bread

(placebo)

Single

feedings

Lipidomics/urine and plasma; metabolic

phenotypes associated with chocolate desiring

or chocolate indifferent preferences

Stella et al.(77) n 12 M; healthy adults Randomised crossover, vegetarian (420 g/d), low-

meat (60 g/d) or high-meat (420 g/d)

15 d Metabolomics/urine; urinary excretion of

carnitine, creatinine, taurine, TMAO,

methyhistidine was increased with high-meat;

p-hydroxyphenylacetate increased after

vegetarian diet

BW, body weight; F, female; GSTM1, glutathione S-transferase M1; M, male; SMCSO, S-methyl-L-cysteine sulfoxide; TMAO, trimethylamine-N-oxide; TTR, transthyretin; ZAG, zinc a-2-glycoprotein.
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set of subjects. The objective of such an approach is to
identify genes/proteins/metabolites with an orchestrated
activity in a given biological setting. To this end, methods
of multivariate analysis, including different variations of
principal component analysis, partial least squares,
self-organising maps, as well as methods of network
visualisation and analysis, have been used to assess the
associations among multiple datasets. For instance, Hirai
et al.(35) applied principal component analysis as well as
self-organising maps to discover relationships between
transcriptome and metabolome in Arabidopsis. In another
study, Hirai et al.(36) analysed the network of gene-to-gene
and gene-to-metabolite associations. More recently, Cao
et al.(37) proposed a sparse partial least squares procedure
for comparative analysis of data from two omics platforms
and applied their method to data from cDNA and Affy-
metrix chips in NCI60 cancer cell lines.
Concordance analysis methods provide interesting

information about components of biological systems that
interact with each other in a given setting. Moreover, such
analyses can lend themselves to better classificatory mod-
els based on a combination of biomarkers from different
platforms. However, these approaches often provide lim-
ited new insight into the underlying biological mechanisms
as omics data from different platforms often show low
levels of correlation due to complex mappings of genes to
proteins and metabolites, and various post-transcriptional
events(38). Further, the underlying assumption in the
majority of these methods is that omics measurements are
obtained on the same set of individuals, or more formally,
share a common dimension. Van Deun et al.(39) reviewed
these different approaches for analysis of multiple omics
data, in the setting where the datasets share a common set
of features.
The second class of integrative models, which we refer

to as sequential integration, includes methods that incor-
porate multiple sets of omics data in order to discover new
biomarkers or delineate biological mechanisms of complex
phenotypes. It uses multiple omics datasets, in a sequential
manner, to further narrow down, or expand, the set of
biomarkers. Sequential integration methods can exploit
different methods of data analysis, from simple differential
expression analysis to gene-set enrichment analysis or
analysis of networks. In examples of such an approach,
Putluri et al.(40) first identified the set of differentially
active metabolites, and then used meta genomic data to
identify pathways associated with prostate cancer progres-
sion. In another study, Putluri et al.(41) coupled this
approach with a concordance analysis based on metabo-
lomics flux measurements to delineate pathways and bio-
markers associated with bladder cancer. More recently,
Imielinski et al.(42) used gene-set enrichment analysis
coupled with the knowledge of biological networks and
compared two sequential approaches, called ‘gene-centric’
and ‘protein-centric,’ in a study of molecular bases of
breast cancer. In each of these approaches, the authors first
evaluated the enrichment of biological pathways based on
one source of data (transcriptomic or proteomic) and then
filtered the set of identified pathways based on the second
source of data. The authors also compared the results of
these methods with a concordance-based approach, where

the pathways were identified based on gene and protein
pairs that demonstrated orchestrated levels of activity.

Sequential integration methods offer an opportunity to
gain new insight based on multiple sources of omics data.
Moreover, these methods do not require the omics mea-
surements to be necessarily observed for the same set of
individuals. Finally, unlike methods of concordance ana-
lysis, which cannot be directly extended to analysis of
more than two sets of omics data, sequential integration
methods offer the flexibility of analysing multiple omics
datasets. However, the power of these methods is clearly
limited by the ability of the omics data chosen for the first
stage of analysis to capture important biological mechan-
isms. As the study by Imielinski et al.(42) indicates, the
results of the analysis can vary depending on the omics
platform used for the first stage of analysis. This sensitivity
to the order of analysis can potentially hinder the applica-
tions of sequential integration methods, and additional
studies are needed to determine whether data-driven cri-
teria can be developed to assess the optimal order of ana-
lysis in these methods.

The final group of omics integration techniques, which
we refer to as concurrent integration methods, includes
emerging approaches that attempt to address some of the
shortcomings of the afore-mentioned two sets of approa-
ches. Similar to sequential integration methods, concurrent
integration methods try to exploit the information content
of multiple sets of omics data. However, these methods
often include measures of activity of biological pathways,
or their components, based on multiple omics data. This is
often achieved by defining a combined score for the
activity of each pathway based on activities of its members
measured by different omics datasets. Poisson et al.(43)

compared the performance a number of methods for com-
bining data from multiple omics platforms, by considering
different summary measures defined based on individual
test statistics, with methods based on a single omics data
source and show that the integrative approaches can
improve the power of the analysis. In a recent study,
Jauhiainen et al.(44) proposed a multivariate approach,
using a mixed linear model, to assess the association of
transcriptomics and metabolomics measurements with
cancer progression. The proposed model requires mea-
surements to be observed on the same set of samples, but
offers the potential for discovering novel biological
mechanisms, as well as biomarker identification. On the
other hand, Shojaie et al. (A Shojaie, K Panzitt, N Putluri
et al., unpublished results) propose a network-based
method, based on the NetGSA method(45), for integrating
multiple sources of omics data, which can be applied to
data from different samples. This procedure does not lend
itself directly to selection of biomarkers, and follow-up
analyses are needed to determine which components of the
selected pathways should be used as biomarkers.

Concurrent integrative methods have also been proposed
for gaining insight into biological mechanisms in the cell.
An example of such an approach includes the proposal
of Shojaie et al. (A Shojaie, A Jauhiainen, M Kallitsis and
G Michailidis, unpublished results) to integrate perturba-
tion screens and steady-state gene expression profiles for
discovering causal genetic regulatory mechanisms. In this
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study, the authors compare their proposed integrative
approach with state-of-the-art methods based on a single
source of omics data, and show superior estimates of reg-
ulatory networks can be obtained that by combining mul-
tiple omics data. Table 3 summarises the different classes
of integration methods.
Novel biomedical technologies continue to improve the

quality of the omics data, as well as to reduce the cost
of obtaining such data. In nutrition studies, biological
experiments now generate multiple sources of omics data
including transcriptomic, proteomic, metabolomic and gut
microbial community measurements. The main challenge
is now integrating such measurements in a systematic way,
in order to provide a holistic view of biological systems.
As more and more measurements become available,
the complexity of the analysis, i.e. the number of variables
in statistical models, increases. This poses additional
challenges for design of trials, and necessitates the use of
advanced statistical models appropriate for analysis of
high-dimensional problems. A potential solution for this
challenge is to incorporate available biological knowledge,
including information on biological pathways and genetic,
protein interaction and metabolic networks. Incorporating
biological information can both reduce the dimensionality
of the problem, and also improve the power and reprodu-
cibility of analysis methods.

A way forward to personalised nutrition

There is still a lot of effort needed to establish a robust
health phenotype framework on which to develop
personalised dietary recommendations. The improving
omic technologies and the ability to integrate various

omics platforms in a systematic fashion will facilitate
providing a holistic view of cellular functions related to
healthy phenotypes; however, the characterisation of the
contribution of diet to the biochemical and metabolic
parameters associated with healthy phenotypes would
benefit from systematic evaluation under controlled con-
ditions in well-described groups of individuals. Controlled
human feeding studies are a useful experimental setting in
which to conduct this work. Nonetheless, these types of
studies are expensive and funding multiple, new large-
scale dietary interventions that capture a variety of dietary
patterns and intakes is likely to be prohibitive.

An efficient and effective way to develop some of the
necessary omics databases under experimental conditions
may be to take a collaborative approach, leveraging exist-
ing samples from previously conducted human interven-
tions. Stored samples from controlled feeding studies are
stashed away in freezers around the globe and in many
cases are well characterised and ideal for further omic
analysis. Statistical techniques for integrating multiple
omics data from a common platform but different study
populations, i.e. meta-analysis techniques, already exist;
they improve statistical power by integrating samples from
multiple related studies(46–54) and also allow for testing of
reproducibility of results across studies. Looking towards
future studies, the adoption of standardised sample and
metadata collection protocols would allow for easier
pooling of data across studies.

Overall, the careful collection and integration of
omics data from controlled dietary interventions may pro-
vide us with the data necessary to successfully move
towards a goal of more personalised dietary recommenda-
tions. Nonetheless, even with the generation of expansive,
integrated datasets that allow for in-depth characterisation

Table 3. Summary of methods for integrative analysis of multiple omics datasets

Integration approach Reference Methodology/tools Omics data

(1) Concordance analysis

Hirai et al.(35) PCA, SOM Transcriptome and metabolome in Arabidopsis

Hirai et al.(36) Network analysis Transcriptome and metabolome in Arabidopsis

Le Cao et al.(37) Sparse PLS cDNA and mRNA in NCI60 cancer cell lines

Van Deun et al.(39) Multiple methods Comparative analysis of integration methods

assuming data on the same subjects

(2) Sequential integration

Putluri et al.(40) DE, OCM Metabolomics, meta-genomics in prostate

cancer

Putluri et al.(41) DE, OCM, CA, PLS Metabolomics abundance and flux data,

meta-genomics in bladder cancer

Imielinski et al.(42) GSEA, network analysis Transcriptomics, proteomics in breast cancer

(3) Concurrent integration

Poisson et al.(43) DE, P-value weighting, GSEA Transcriptomics, metabolomics

Jauhiainen et al.(44) Sparse mixed linear model Transcriptomics and metabolomics in cancer

Shojaie A, Panzitt K, Putluri N

et al. (unpublished results)

A network-based Integrative

approach to study the role of

metabolic pathways in

prostate cancer progression

NetGSA, GSEA, rank-based

integration

Transcriptomics and metabolomics in

prostate cancer

DE, differential analysis; GSEA, gene-set enrichment analysis; CA, correlation analysis; PCA, principal component analysis; SOM, self-organising maps;
PLS, partial least squares; OCM, Oncomine concept mapping; NetGSA, network-based gene-set analysis.
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of health phenotypes, several factors need to be considered
if personalised nutrition is to move towards being a part of
routine health practice. Adherence to dietary recommen-
dations for chronic disease prevention at the population
level, such as those of national and international associa-
tions (e.g. US Department of Agriculture, World Cancer
Research Fund, American Heart Association) is associated
with lower risk of chronic disease; for example, greater
adherence to the 2005 US Dietary Guidelines was inver-
sely associated with risk of CHD, stroke, diabetes and total
cancer.(55) In theory, tailored recommendations may be
an improvement over general, population-based dietary
recommendations; however, whether more extensive phe-
notyping, beyond current approaches, is cost-effective in
promoting health and preventing disease will need to be
determined. Further, in practice, finding individualised
approaches that facilitate and maintain desired dietary
behaviour on the heels of a personalised diet prescription
for health will likely remain an ongoing challenge for
nutrition practitioners.
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