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Abstract

One of the useful features of spectral measures which happen to be equicontinuous is that their associated
integration maps are bicontinuous isomorphisms of the corresponding L1 -space onto their ranges. It
is shown here that equicontinuity is not necessary for this to be the case; a somewhat weaker property
suffices. This is of some interest in practice since there are many natural examples of spectral measures
which fail to be equicontinuous.

2000 Mathematics subject classification: primary 47B15,47B40,47D30.

Since its conception the notion of a normal operator T in a Hilbert space has been
intimately connected with its resolution of the identity. This is a (unique) spectral
measure P defined on the Borel subsets of C, with support the spectrum of T, such
that T is synthesized from the projections in the range of P via a suitable integral. In
the 1950's N. Dunford initiated the study of scalar-type spectral operators in a general
Banach space. These are the analogues of normal operators in Hilbert space. As in
the Hilbert space setting, the fundamental concept is again that of a spectral measure
from which the given operator is synthesized; see [5], for example.

In the 1960's the theory of scalar-type spectral operators was extended to the setting
of locally convex Hausdorff spaces (briefly, lcHs). But, new phenomena soon emerged
in the non-normable setting which are simply not present in Banach spaces. Something
as basic as the uniform boundedness of the range of a spectral measure, interpreted as
equicontinuity in a lcHs, fails to hold in general, [9]. Since the uniform boundedness
of a spectral measure in Banach spaces played such a crucial role in many of the
arguments, most of the initial developments in the lc-setting dealt almost exclusively
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[2] Integration maps and local equicontinuity 177

with spectral measures which were assumed to be equicontinuous, [1^,6,18-21].
As successful as the theory was for such spectral measures, it was also realized
that it excluded many natural examples. Further investigations [12-15] revealed that
in many arguments it is not so much the equicontinuity of the spectral measure P
which is relevant, but rather that its associated integration map IP : f H* faf dP,
defined on the space Jf\P) of all /'-integrable functions, should be a bicontinuous
isomorphism of ££X(P) onto its range. Of course, equicontinuous spectral measures
always have this property. Associated with P is also the family of X-valued vector
measures [Px : x e X], where Px is specified via evaluation of the projections
P(E) at x and X denotes the underlying lcHs. These vector measures in turn induce
the associated family of X-valued integration maps (one for each x e X) given by
hx '• 8 *-*• fagd(Px), defined on the space Jfl(Px) of all Px-integrable functions.
The importance of this family of maps [IPx : x e X} lies with the fact that, under
certain mild assumptions on the underlying lcHs X, their ranges can be identified
with the important class of cyclic subspaces of X generated by P. It turns out that
many features of the theory take on a simpler and more transparent form when these
integration maps [IPx : x € X} are bicontinuous isomorphisms onto their ranges in
X, a property which again is automatic if P is equicontinuous.

The aim of this note is to investigate the connection between equicontinuity of P,
the property of each integration map IPx, for x € X, being a bicontinuous iso-
morphism, and the property of the global integration map IP being a bicontinuous
isomorphism. It is shown that IPx (for a given x e X) is a bicontinuous isomorphism
precisely when the restriction of P to the cyclic space generated by x is equicontinu-
ous; we simply say that P is locally equicontinuous at x in this case. Moreover, it is
shown that if P is locally equicontinuous at every x e X, then also the global integra-
tion map //> is necessarily a bicontinuous isomorphism. An example is given which
shows that the converse of this statement is false in general. Examples of spectral
measures P for which IP fails to be a bicontinuous isomorphism have been known
for some time, [15]. Of course, such a P cannot be equicontinuous. We also exhibit a
no/i-equicontinuous spectral measure P which is both locally equicontinuous and for
which //> is a bicontinuous isomorphism.

1. Preliminaries

Let Y be a lcHs and Y' be its dual space, that is, the space of all C-valued continuous
linear functionals on Y. Given v € ^andy' e Y' we write y'(y) = (y,y')- Let^(K)
denote the family of all continuous seminorms on Y. The linear span of a subset W
in Y is denoted by sp(W) and the closed linear span of W in Y by sp( W). We denote
the range of a linear operator T
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Let E be a a -algebra of subsets of a non-empty set £2. The characteristic function
of each set E G E is denoted by xE • By - ^ ( E ) we denote the space of all C-valued,
E-measurable functions on £2. The linear subspace of j£?°(E) consisting of all E-
simple functions on Q. is denoted by sim(E). A a-additive set function m : E ->• Y
is called a vector measure. The Orlicz-Pettis lemma [7, Theorem 1.1.3] ensures that
m : E -*• Y is a -additive if and only if the set function (m, y') : E —• C given by
(m, y'){E) = (m(E), y') for every E e E is a-additive for each y 6 Y'.

Let m : E —> Y be a vector measure. Let [Y]m denote the sequential closure
of sp(m(E)) in Y. It is always assumed that [Y]m has the relative topology from
Y. A function / e -S?°(E) is called m-integrable if it is (m, y')-integrable for each
y' € Y' and if, given any E e E, there is a unique vector fEf dm in Y satisfying
(fEf dm, y') = fEf d{m, y') for every y' e Y'. Clearly every E-simple function is
m-integrable. The vector space of all m-integrable functions is denoted by 5t
Let q e ^(Y). Define a seminorm q(m) on J2"(m) by

q(m)(f) = supq( [ fdmY fe^l(m).

Equip _£f' (m) with the locally convex topology r(m) defined by the family of semi-
norms {q(m) : q € &(Y)}. This topology is the same as that defined in [7, Chapter II]
and is called the mean convergence topology. The space sim(E) is sequentially r (m)-
dense in Jz?l(m). In fact, this has been shown in [8, Theorem 2.2 and Theorem 2.4]
with the additional assumption that Y is sequentially complete. But, we do not actually
need this assumption; see [10, Proposition 1.2].

A function / e Jjf'(m) is called m-null if fEf dm = 0 for every E e E. We
identify .if1 (m) with its quotient space with respect to the closed subspace of all
m-null functions. So, we can regard S£x (m) as a lcHs.

The vector measure m is called closed if the subset E(m) = [xE : E e E} of
JS?1 (m) is complete with respect to the topology induced by r(m), [7, page 71].
Whenever [ Y]m is sequentially complete, the vector measure m is closed if and only
if S£x(m) is r(m)-complete [16, Theorem 2].

The integration map associated with m is the map lm : S£x(ni) —>• Y defined by

1M)= f S dm, f eJSf'(m).

Clearly lm is linear and continuous. Moreover, 0f,{lm) C [Y]m; see [10, page 347].
Let X be a lcHs. The vector space of all continuous linear operators from X

into itself is denoted by L(X). The space L(X) equipped with the strong operator
topology (that is, the topology of pointwise convergence on X) is a lcHs and is denoted
by LS(X). The topology of LS(X) is generated by the family of seminorms

qx : T h+ q(Tx), T e L(X),
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for all x € X and q e
Let P : E —> LS(X) be a spectral measure. In other words, P is a-additive and

multiplicative (that is, P(E D F) = P(E)P(F) for all E, F e E), and P(fi) equals
the identity operator I on X. The space JSf'(P) is an algebra of functions (under
pointwise operations) such that

fgdP = P(E)IP(f)IP(g) = P(E)IP(g)IP(f), E 6 E,

for all f,g e -2"(P), [13, Corollary 2.1]. Therefore, the integration map IP :
.2"(P) -> Lj(X) is a continuous, algebra homomorphism onto its range 0?.{1P~),
which is contained in [/^(X)],.. Moreover, IP is always injective because each
/ e IP\{0}) satisfies fEf dP = P(E)IP(f) = 0 for every E e E, that is, / is
P-null.

Let x e X. Define a vector measure Px : E -»• X by Px(E) = P(E)x for every
£ e E. The integration map 7/>x : JSf'(Px) -> X is also always injective because the
multiplicativity of P implies that

(1) Ifd(Px) = P(E)IPx(f), f eJ?\Px), EeE.

Furthermore, Sf\P) c jSf'(PJc)and/£^rf(Px) = (JEgdP)x for every g € ̂
and £ € E. The closed subspace P(E)[x] = sp(Pjt(E)) of X is called the
cyclic subspace generated by x; it always has the relative topology from X. Then

) £ [X]Px c P(E)[;c]. Moreover, 8Z(lPx) is dense in P(E)|>] as it contains

2. Locally equicontinuous spectral measures

Throughout this section let X be a lcHs and P be an L,(X)-valued spectral
measure on a a-algebra E of subsets of a non-empty set £2.

The spectral measure P is called equicontinuous if its range P(E) is an equicontin-
uous subset of L(X). If X is quasi-barrelled, in particular, if X is metrizable, then P is
necessarily equicontinuous [12, Proposition 2.5]. As noted in the introduction one of
the most important features of equicontinuous spectral measures is the following one.

LEMMA 1. Suppose that the spectral measure P is equicontinuous.

(i) For every x e X, the integration map IPx : jSf l(Px) —>• X is a bicontinuous
isomorphism onto its range.

(ii) The integration map IP : JSf' (P) -*• LS(X) is a bicontinuous algebra isomor-
phism onto its range.
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PROOF, (i) The first part of the proof of Proposition 2.1 in [4] is still valid in our
setting and establishes (i).

(ii) See [14, Lemma 1.11]. •

In this section we introduce the notion of locally equicontinuous spectral measures;
they always satisfy (i) and (ii) of Lemma 1. Equicontinuous spectral measures are al-
ways locally equicontinuous, but the converse is not valid in general; a counterexample
is given (see Example 8).

Let x € X. Fix E e £ . The subspaces 3Z(lPx) and P(S)[x] of X are invariant
for the operator P(E). The restriction P{E)\a(h ) of P(E) to @(lPx) belongs to
L(3?\lPx)). Similarly, the restriction P(£) | p ( E ) W of P(E) to P(E)[JC] is an operator
belonging to L(P(E)[x]). Clearly the set functions P&(hx) : E h+ P(E)\a(h , and
PpcDix) '• E H* P(E)\p are spectral measures with values in Ls{0f\lPxy) and
Ls(P(E)[x]) respectively.

The following result characterizes (for a fixed x e X) the property (i) of Lemma 1
in terms of equicontinuity of the restriction of P to certain invariant subspaces.

PROPOSITION 2. Let P be a spectral measure and x e X. The following statements
are equivalent:

(i) The spectral measure PP(z)[x) '• £ -*• Ls(P(E)[x]) is equicontinuous.
(ii) The spectral measure P&wPx) : £ —• Ls(0f.{IPx)) is equicontinuous.
(iii) The integration map lPx : Jf\Px) -*• X is a bicontinuous isomorphism onto

its range.
(iv) For each seminorm q e £?(X) there is a seminorm r e &(X) such that

(2) qAP)(f) < rAhf), f € S

PROOF, (i) implies (iii). Given q 6 3*(X) there is r e &(X) such that
q(P(E)y) < r(y) for each E e S and y e P(T,)[x]. We have used here the
fact that every continuous seminorm on a subspace of X is the restriction of some
element (not necessarily unique) from &(X), whenever this subspace has the relative
topology. From (1) and the inclusion 0Z(lPx) c P(E)[x], we have

sapq( [ f d{Px)) = supq(P(E)IPxf) < r(IPJ)
EeZ \JE / EeZ

for every / e Jifl(Px). This implies that the continuous linear injection IPx has a
continuous inverse on its range 3&(lPx).

(ii) implies (iii). This was established in the proof that (i) implies (iii).
(iii) implies (i). Given E € E define a linear operator SE : S£l(Px) -> 3fl(Px)

by SE(f) = xEf f°r every / € J^\Px). From the definition of the topology
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r(Px) on J£\Px) it follows that {SE : E e E} is an equicontinuous subset of
L{&\Px)). Again from (1) we see that P{E) = IPxSE{lPx)~

l on @.{lPx), for every
£ e E. So, the family {P(£) : E e E) restricted to 3f,(lPx) is an equicontinuous
subset of L(2?,{lPx)). Since ^(//»x) is dense in P(E)[x] it follows that PPm[xiCZ) is
equicontinuous in L(P(E)[x]).

(iii) implies (ii). This was established in the proof that (iii) implies (i).
(iii) implies (iv). Given q G ̂ (X) there is r € ^(X) such that

(3) q(Px)(g) < r(IPxg), g € 2X (Px).

Iff € i f ' (P ) c S£\Px), then it is routine to verify (by (1) again) that

(4) q(Px)(f)=qx(P)(f) and r(IPxf) = rx(IPf).

Thus (3) and (4) applied t o / yield (2).
(iv) implies (iii). Fix q e &(X) and let r e ^ ( Z ) be as in (iv). We only need to

verify that {IPx)~
l is continuous on 3&{lPx). Let | e 3f\lPx) and take g e j£"(P;t)

such that £ = //>*#. Choose a sequence {g,,}^! ^ sim(E) such that gn —*• g in
.£?'(P^) as « -» oo. Then /p^gn -^ IPxg in Z as n -*• oo. Since (4) holds for each
E -simple function / , we have

q(Px)(g) = lim q(Px)(gn) = Jim qx(P)(gn)
n*oo n>oon—*-oo

< lim rx{IPgn) = lim r(IPxgn) = r(IPxg).
n-voo n-»oo

That is, g(Px)((//>i)~'t) < r(f). Since ^ e @(lPx) is arbitrary this establishes
continuity of (//>,)"' on its range. •

The spectral measure P is said to be locally equicontinuous if the restricted spectral
measure Pp^w '• E -» Lj(P(E)[x]) is equicontinuous for every x € X. In par-
ticular, equicontinuous spectral measures are locally equicontinuous. The following
result follows immediately from Proposition 2.

THEOREM 3. The spectral measure P : E -> LS(X) is locally equicontinuous if
and only if for each x € X the integration map IPx : _£?' (PJC) —>• X is a bicontinuous
isomorphism onto its range.

Recall that a vector x e X is called a cyc//c vector for P if X = P(E)[x] or,
equivalently, if X =

COROLLARY 4. Suppose that there is a cyclic vector x e X for the spectral mea-
sure P. Then P is equicontinuous if and only if the integration map IPx is a bicontin-
uous isomorphism onto its range.
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The following result makes the connection between local equicontinuity of P and
continuity properties of the global integration map IP : Jf \P) —*• LS(X).

THEOREM 5. If the spectral measure P is locally equicontinuous, then the integra-
tion map IP : JCl(P) —> LS(X) is necessarily a bicontinuous linear and algebra
isomorphism onto its range.

PROOF. Fix* e X and q G £?{X), which specify a typical seminorm qx generating
the topology in LS(X). By Proposition 2(iv) there is r e £*(X) such that (2) is
satisfied. Since rx is a continuous seminorm on LS(X) and 3P\lp) has the relative
topology from LS(X), this shows that the continuous injection IP has a continuous
inverse on &(//>). •

REMARK. The seminorm r given in the above proof may vary with x. Indeed, it is
precisely this possible dependence of r on x (and q, of course) which allows for the
possibility of (Ip)~l to be continuous without P being equicontinuous; see Example 8.

In view of Proposition 2 there arises the question of whether the inclusion 3?,{lPx) c
P(L)[x] can be strict. Certainly if X is metrizable, then 3?.(lpx) is closed in X and
hence R(IPx) = P(E)[x] for every x € X. To see this, let {/B} î, c <£x(Px) be a
sequence such that IPx(fn) -> z as n -*• oo, for some z € X. Then for each E € E
it follows from (1) and the continuity of P(E) that Ipx(xEfn) -*• P(E)z as « -> oo.
Accordingly, IPx is "E-converging in the sense of [ 11, page 516] and so Proposition 1.6
and Proposition 2.6 of [11] imply that M(lPx) is closed in the metrizable space X.
However, the inclusion 3?,(IPx) c P(E)[x] may be strict in the non-metrizable setting.

EXAMPLE 6. Let X = C'011 be equipped with the product topology. Let £ be the a-
algebra of all Borel subsets of £2 = [0, 1] and P : E —>• LS(X) be the equicontinuous
spectral measure defined by P(E)x = xc

x f°r every E e E and x e X. For x the
constant function one on £2 it is routine to check that 0£(lPx) = J£?O(E) ^ X =

Since £(/>) = {x£ : E g E) is always a closed set in Jf\P) it follows that if /,.
is a bicontinuous isomorphism onto its range, then P(E) must be a closed subset in
&(Ip) £ LS(X). In particular, if there exists/ e Jf1(P)\T,(P) and a net {£„} c E
such that P(Ea) -+• fQf dP for the strong operator topology, then IP cannot be
an isomorphism onto its range. For instance, let X\ = L2([0, 1]) be equipped with
its weak topology, in which case X\ is a quasicomplete lcHs. Let Q = [0, 1] and
E be the cr-algebra of all Borel subsets of Q. Then P, : E -* L^XO defined by
Pi(E) : / i->- xe/> f°r each/ € X] and £ e E, is a (closed) spectral measure. It
is shown in [17, pages 369-370] that there exists a sequence {En}™=1 c E such that
Px(En) -*• (1/2)1 in ^(7/,,). Accordingly, (7,.,)"1 is not continuous.
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The following example shows that the converse of Theorem 5 is not valid in general,
that is, IP can be a bicontinuous isomorphism onto its range without being locally
equicontinuous.

EXAMPLE 7. Let Pi : E —> Ls(Xj) be as in the previous paragraph. Let X2 =
L2([0, 1]) be equipped with its usual norm u : f i->- (/„' \f {t)\2 dt)1'2. Define an
equicontinuous spectral measure P2 : E -> LS{X2) by P2(£) : g H> x£g> f°r e a c n

g e X2 and £ e E . Let X denote the direct sum Xt © X2, equipped with the topology
generated by the family of seminorms {p^ : -ft e L2([0, 1])} where

Then X is a quasicomplete lcHs. Define a (closed) spectral measure P : E —>• LS(X)
by P(£)(/i ®/2) = P,(£)/i © P2(£)/2, for each £ e E and/, ® / 2 e X. Then
jSf'(P) = L°°([0, 1]) as vector spaces. Indeed, if <p € L°°([0, 1]), then

/" ( f \ ( f \
/ ipdP : / , ©/2 h^ x£^/i ®XE<Pf2 = / ^o^Pi / i © / <P̂ P2 I/2

J£ \JE / \J£ /

forevery E e Eand/ ,©/ 2 e X, which shows that L°°([0, 1]) c y\P). Conversely,
if <p € J£\P), then (p € J£\Px) for each x € X. By considering elements of the
form* = 0 ®/ 2 , with/2 € X2, and noting that P(E)x = 0 © P2(E)f2 is an element
of the closed P-invariant subspace {0} © X2 ~ X2, for each £ e E, it follows that
<p 6 J S ? W 2 ) for each/2 € X2. But, if1 (P,/,) = {̂  € _Sf°(E) : gf2 e L2([0, 1])}
with fEgd(P2f2) — xEgf2 for each £ e E. Choosing £ = [0, 1] we see that
<pf2 e L2([0,1]) for all/2 e L2([0, 1]) which implies that <p e L°°([0,1]).

The seminorms generating the topology r (P2) in S£' (P2) are of the form

sup it (U<pdP2\ f V «o x([0, 1]) = .
£eE W £ / /

for f € L2([0, 1]). The seminorms generating r(P,) are of the form

1^.((Pi) '• <P l~~> S U P
£€

for arbitrary i]/, | € £2([0, 1]). By the Cauchy-Schwarz inequality it follows that

(5) q+*(Pi)(<p) < uW) • ut(P2)(<p), <p e L°°([0,1]),

for all f,ti €L2([0, 1]).
Let {<pa} c L°°([0, 1]) be a net such that IP(<pa) -*• 0 in ^ ( / P ) . To show

is continuous we need to verify that <pa -*• 0 in JSf1 (P). By considering the elements
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x = 0©g € X, where g e X2, it follows from IP(<pa) - • Oin&(IP) that IP2(<pa) -*• 0
in &(Ip2) c LS(X2). A typical seminorm generating r(P) is of the form (for

<sup

(j>*)il9b(PH<p) = SUpp̂  UjcpdPA f, © (J <pdP2] %2 J

+ sup u((f (pdPAt-A

for some r̂ € L2([0, 1]) and ^ © £2 € X. Then (5) implies that

Since P2 is equicontinuous it follows that (Ip2)~
l is continuous (see Lemma 1).

But, Ip2(<pa) ->• 0 in ^(//>2) c L,(X2) and so <pa - • 0 in -2"(P2). In particular,
MPzKw,) - • 0 and Hfc(P2)(*>«) - • 0 for each %u%2 e L2([0, 1]), and we see
from (6) that (/tty)$,efc(P)(^a) ->• 0. This shows that <pa ->• 0 in Jif1 (P) and hence,
(//>)"' is continuous. Accordingly, //> is a bicontinuous isomorphism of Jf1 (P) onto
its range.

To see that P is not locally equicontinuous we argue as follows. As noted earlier
(//>,)"' is not continuous on @{IPl) c Ls(Xi) and so by Theorem 5 there must exist
/ e X , such that (//»,/)"' is not continuous from^(7/.,/) C X, onto ̂ f1 (Pi /) . Then
x = / ©0 € X has the property that (Ipx)~

l is not continuous from^j?(//.x) c X onto
^f '(P^), where we have used the easily verified facts that j£? '(PJC) ~ if1 (P, /) and

It may be of interest to note that Jifl(P) is actually r(P)-complete. Indeed, from
the various definitions and inequalities above we see easily that

us{P2)(<p) = ( /vWP)(«>), <P e L°°([0, 1]),

for each | € L2([0, 1]) and V e L2([0, 1]). Since .2"(P) = L°°([0, 1]) = JSf'(P2)
as vector spaces, the previous equality and (6) show that JS?'(P) and JCl(P2) are
isomorphic as lcHs. But, Jfl(P2) is complete [14, Proposition 3.16], as P2 is aclosed
measure [14, Proposition 3.9]) and [Ls{X2)]p2 is sequentially complete. We know
that [Ls(X2)]p2 is sequentially complete because the space LS(X2) is quasicomplete.
Consequently, also JCl(P) is complete. Since IP is a bicontinuous isomorphism of
jSf'(P) onto its range it follows that St(Ip) is a complete subspace of LS(X).

We conclude with an example of a spectral measure P which is not equicontinuous,
but which is locally equicontinuous. In particular, IP is then also a bicontinuous
isomorphism onto its range (see Theorem 5).
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EXAMPLE 8. Let £2 be an infinite set and let X denote the space coo(£2) of all C-
valued functions x on £2 such that x vanishes outside a finite subset of £2. Let Y denote
the space ^(Q) of all C-valued functions y on £2 satisfying Easily (&>)\ < oo. Equip
X with the weakest topology o(X, Y) making each functional y e Y continuous on
X, where (JC, y) = l̂ w6n^(<«)>'(<w) for each x e X. Let £°°(£2) denote the space of
all bounded C-valued functions on £2.

Let / be a C-valued function on £2. Define a linear operator Mf : X —>• X by
Mf : x h+ xf for every * e X. Then (M/x,y) = Z]a,e$i*(<w)()'/)(*w) f°r every
x € X and y € F. Hence, M/ is continuous if and only if yf e Y for every y e Y,
that is, if and only if/ € £°°(£2).

Let E be a non-trivial a-algebra of subsets of £2 (that is, E contains infinitely many
elements). Define a set function P : E - • LS(X) by P(E) = M^£ for each E e E.
It is routine to verify that P is a spectral measure, that <£\P) = -£?°(E) n l°°(Q)
and that fEf dP = P(E)Mf for every/ 6 i f l(P) and £ e E.

Fix x € X and let x"'((C\{0}) = [a)U--- , con). A typical seminorm q generating
the topology of X is of the form q{z) — \{z,y)\,z € X, for some y € Y. Define
r e ^ ( X ) by

Then it is easily verified that

qx(P)(f) = sup < r, ( / , / ) ,

for every / e Jif' (P). Proposition 2 shows that the integration map IPx is a bicontin-
uous isomorphism onto its range. Since x € X is arbitrary it follows from Theorem 3
that P is locally equicontinuous. Then Theorem 5 ensures that IP is a bicontinuous
isomorphism of JS?1 (P) onto its range.

Finally, to see that P fails to be equicontinuous we refer to Example l(iv) and
Proposition 3 of [9].

It may be in interest to note that j£?' (P) is typically not complete for this example.
Indeed, suppose that £2 is uncountable, that E contains all singleton sets {a>}, for
o) € Q, but E 9̂  2". Then there exists an infinite subset F c Q which is not
an element of E. Let & denote the family of all finite subsets of F directed by
inclusion. Then {P(E)}Ee& c <%{lp) is a net which converges to MXf in LS(X).
Since xF & -£"(/*) we see that {P(E))Ee& is a Cauchy net in 3ft{IP~) having no limit
in 3?(IP). But, IP is a bicontinuous isomorphism of ^(P) onto its range and so
Jifl(P) cannot be complete.

REMARK. Example 7 and Example 8 both provide spectral measures P which are
not equicontinuous, but such that IP is a bicontinuous isomorphism of Jfl(P) onto
its range. This answers a question posed in [14, page 13].
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