ON SOME REGULARITY CONDITIONS OF BOREL MEASURES ON \mathbb{R}

F. BEN NASR

(Received 1 May 1996; revised 3 December 1996)

Communicated by P. G. Dodds

Abstract

The aim of this paper is to resolve Taylor's question concerning certain regularity conditions on a Borel measure. The proposed solution is given in the framework of Brown, Michon and Peyrière, and Olsen.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 28A60; secondary 60G57. Keywords and phrases: Hausdorff dimension, packing dimension.

Introduction

Let $\left\{\mathscr{F}_{n}\right\}_{n \geq 1}$ be a sequence of finite partitions of $[0,1[$ by intervals, semi-open to the right. These partitions need not be nested. If $x \in\left[0,1\left[, I_{n}(x)\right.\right.$ stands for the intervals of the family \mathscr{F}_{n} which contains x. The length of an interval J is denoted by $|J|$. We suppose that, for any $x \in\left[0,1\left[, \lim _{n \rightarrow \infty}\left|I_{n}(x)\right|=0\right.\right.$.

We consider two indices dim and Dim which are defined as Hausdorff and Tricot dimensions [7], but only considering coverings and packings by intervals in the family $\left\{\mathscr{F}_{n}\right\}_{n \geq 1}$.

A Borel probability measure μ is called regular uni-dimensional if

$$
\exists \alpha: \quad \lim _{n \rightarrow+\infty} \frac{\log \mu\left(I_{n}(x)\right)}{\log \left|I_{n}(x)\right|}=\alpha \quad \mu \text {-a. e. }
$$

For $q, t \in \mathbb{R}$, define

$$
\begin{aligned}
& H_{\mu}(q, t)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{j}^{\prime} \mu\left(I_{j}\right)^{q+1}\left|I_{j}\right|^{-t}:\left[0,1\left[=\cup I_{j}, I_{j} \in \cup_{n} \mathscr{F}_{n},\left|I_{j}\right|<\delta\right\},\right.\right. \\
& P_{\mu}(q, t)=\lim _{\delta \rightarrow 0} \sup \left\{\sum_{j}^{\prime} \mu\left(I_{j}\right)^{q+1}\left|I_{j}\right|^{-t}:\left(I_{j}\right)_{j} \text { disjoint, } I_{j} \in \cup_{n} \mathscr{F}_{n},\left|I_{j}\right|<\delta\right\}, \\
& b_{\mu}(q)=\sup \left\{t \in \mathbb{R}: H_{\mu}(q, t)=0\right\}, \quad B_{\mu}(q)=\sup \left\{t \in \mathbb{R}: P_{\mu}(q, t)=0\right\},
\end{aligned}
$$

where Σ^{\prime} is the sum over those j with $\mu\left(I_{j}\right) \neq 0$. The detailed properties of the functions b_{μ} can be found in [3,4,5], and detailed properties of the function B_{μ} can be found in [4].

For any function f, we consider the following Legendre transform of f :

$$
f^{*}(x)=\inf _{y \in \mathbb{R}}(x(y+1)-f(y)) .
$$

If we put

$$
\Delta_{s}=\left\{x \in \left[0,1\left[: \lim _{n \rightarrow+\infty} \frac{\log \mu\left(I_{n}(x)\right)}{\log \left|I_{n}(x)\right|}=s\right\},\right.\right.
$$

then the theorems in [4] imply that

$$
\operatorname{Dim} \Delta_{s} \leq B_{\mu}^{*}(s) \quad \text { for } \quad a_{1}=\sup _{q>-1} \frac{B_{\mu}(q)}{q+1} \leq s \leq a_{2}=\inf _{q<-1} \frac{B_{\mu}(q)}{q+1},
$$

and the theorems in $[3,4,5]$ imply that

$$
\operatorname{dim} \Delta_{s} \leq b_{\mu}^{*}(s) \quad \text { for } \quad c_{1}=\sup _{q>-1} \frac{b_{\mu}(q)}{q+1} \leq s \leq c_{2}=\inf _{q<-1} \frac{b_{\mu}(q)}{q+1} .
$$

The aim of this paper is to resolve the following open problem of Taylor [6]: Find a regular uni-dimensional μ such that $a_{1}<a_{2}, c_{1}<c_{2}$ but

$$
\operatorname{dim} \Delta_{s} \neq b_{\mu}^{*}(s), \quad \operatorname{Dim} \Delta_{s} \neq B_{\mu}^{*}(s), \quad \operatorname{dim} \Delta_{s}=\operatorname{Dim} \Delta_{s} \quad \text { for some } s
$$

Moreover the Borel measure μ which we propose satisfies the regularity condition suggested by Olsen [4]: $b_{\mu}(q)=B_{\mu}(q)$ for all q.

Example

Let \mathscr{A} be the set of finite words over the alphabet $\{0,1\}$. The concatenation, just denoted by juxtaposition, endows \mathscr{A} with the structure of a semigroup. The empty word, which is the unit, is denoted by ω. The set of words of length n is denoted by \mathscr{A}_{n}. For every $j \in \mathscr{A}$, we denote by $N_{k}(j)$ the number of times the letter k appears in the word j. Let $\mathscr{A} \cup \partial \mathscr{A}$ be the natural compactification of \mathscr{A} ($\partial \mathscr{A}$ is the set of infinite words). For any $j \in \mathscr{A}$, we define C_{j} to be the cylinder formed by the elements of $\partial \mathscr{A}$ starting with j.

Take $\alpha, \beta \in \mathbb{R}$ such that $1 / 3<\alpha<\beta<1 / 2$. A cylinder C_{j} of order $n\left(j \in \mathscr{A}_{n}\right)$ is called of α-type (respectively β-type) if we have:

$$
\left.\left|N_{0}(j) / n-\alpha\right|<1 / n \quad \text { (respectively }\left|N_{0}(j) / n-\beta\right|<1 / n\right)
$$

For any cylinder $C_{j}, j \in \mathscr{A}_{n}$, of α - or β-type, we define:

$$
\widetilde{C}_{j}=\left\{C_{l}: l \in \mathscr{A}_{n+6}, C_{l} \subset C_{j} \text { and } C_{l} \text { is of the same type as } C_{j}\right\}
$$

It is easy to check that

$$
\exists n_{0}: \quad \forall n \geq n_{0}, \quad \forall j \in \mathscr{A}_{n}, \quad \widetilde{C}_{j} \geq 2
$$

For each $k \in \mathbb{N}$ we select, in a random way, 2^{k+1} cylinders of order $n_{0}+6 k$. The selection is done in steps. In the first step, we select two cylinders of order $n_{0}, C_{j_{0}}$ and $C_{j_{0}^{\prime}}$ with $C_{j_{0}}$ of α-type and $C_{j_{0}^{\prime}}$ of β-type. From the nth step to the $(n+1)$ st step, we choose two elements of \widetilde{C}_{j} for every C_{j} of the nth step.

Let l_{0}, l_{1}, p_{0} and p_{1} be a real numbers such that

$$
\begin{gather*}
0<l_{1}<l_{0}, \quad 0<p_{0}<p_{1}, \quad l_{0}+l_{1}=1, \quad p_{0}+p_{1}=1 \tag{1}\\
\frac{\beta \log \left(p_{0} / p_{1}\right)+\log p_{1}}{\beta \log \left(l_{0} / l_{1}\right)+\log l_{1}}<1 .
\end{gather*}
$$

We construct a sequence $\left\{\mathscr{F}_{n}=\left\{I_{j}\right\}_{j \in \mathscr{A}_{n}}\right\}_{n \geq 0}$ of finite partitions of $[0,1[$ in semiopen intervals in the following way. The first partition contains the unique interval $I_{\omega}=[0,1[$. We obtain the $(n+1)$ st partition from the nth one by cutting each interval $I_{j}, j \in \mathscr{A}_{n}$, into two intervals $\left\{I_{j k}\right\}_{k=0,1}$ such that:

$$
\left|I_{j k}\right|= \begin{cases}l_{k}\left|I_{j}\right| & \text { if } C_{j} \text { contains a selected cylinder } \\ \left|I_{j}\right| / 2 & \text { otherwise }\end{cases}
$$

Now define a measure μ in the following way. For $j \in \mathscr{A}$ and $k \in\{0,1\}$ let

$$
\mu\left(I_{j k}\right)= \begin{cases}p_{k} \mu\left(I_{j}\right) & \text { if } I_{j} \text { contains a selected interval } \\ \mu\left(I_{j}\right) / 2 & \text { otherwise }\end{cases}
$$

(I_{j} is selected if C_{j} is selected).
Then clearly μ is regular uni-dimensional of index 1:

$$
\lim _{n \rightarrow \infty} \frac{\log \mu\left(I_{n}(x)\right)}{\log \left|I_{n}(x)\right|}=1 \quad \mu \text {-a. e. }
$$

Note that the measure μ is not quasi-Bernoulli, that is, there is no positive number M such that, for any j and k in \mathscr{A}, we have

$$
M^{-1} \mu\left(I_{j}\right) \mu\left(I_{k}\right) \leq \mu\left(I_{j k}\right) \leq M \mu\left(I_{j}\right) \mu\left(I_{k}\right) .
$$

Consider the following quantities.

$$
\begin{gathered}
C_{n}(q, t)=\frac{1}{n} \log \sum_{j \in \mathcal{A}_{n}} \mu\left(I_{j}\right)^{q+1}\left|I_{j}\right|^{-t}, \\
C(q, t)=\lim _{n \rightarrow \infty} \sup C_{n}(q, t) \quad \text { and } \quad \varphi(q)=\sup \{t ; C(q, t)<0\} .
\end{gathered}
$$

It is easy to check that φ is finite, strictly increasing on \mathbb{R} and

$$
\begin{equation*}
\varphi(0)=0, \quad \varphi(q) \leq q \quad \text { for all } q \in \mathbb{R} . \tag{2}
\end{equation*}
$$

Since C is a convex finite function, the function φ is defined by the equality $C(x, \varphi(x))$ $=0$. We prove that

$$
\begin{equation*}
b_{\mu}=B_{\mu}=\varphi . \tag{3}
\end{equation*}
$$

Property (3) results immediately from the following proposition.
Proposition. For $q \in \mathbb{R}$,
(1) $\lim _{n \rightarrow \infty} C_{n}(q, \varphi(q))=0$ and $\lim _{n \rightarrow \infty} \inf n C_{n}(q, \varphi(q))>-\infty$.
(2) $b_{\mu}(q) \leq \varphi(q)$.

Proof. We introduce the following notation: for positive functions u and $v, u \approx v$ means that there exists a positive constant K such that $K^{-1} u \leq v \leq K u$.

Fix $q \in \mathbb{R}$ and put

$$
\begin{aligned}
A_{\alpha} & =\alpha\left((q+1) \log \frac{p_{0}}{p_{1}}-\varphi(q) \log \frac{l_{0}}{l_{1}}\right)+(q+1) \log p_{1}-\varphi(q) \log l_{1}, \\
A_{\beta} & =\beta\left((q+1) \log \frac{p_{0}}{p_{1}}-\varphi(q) \log \frac{l_{0}}{l_{1}}\right)+(q+1) \log p_{1}-\varphi(q) \log l_{1}, \\
\lambda & =2^{6(\varphi(q)-q)}, \quad \lambda_{\alpha}=2 e^{6 A_{\alpha}}, \quad \lambda_{\beta}=2 e^{6 A_{\beta}} .
\end{aligned}
$$

Let Y_{n} denote the following mapping from $[0,1[$ to \mathbb{R} :

$$
Y_{n}(x)=\mu\left(I_{n}(x)\right)^{q}\left|I_{n}(x)\right|^{-\varphi(q)}
$$

Obviously, we have

$$
\int Y_{n} d \mu=e^{n C_{n}(q \cdot \varphi(q))}
$$

For $k \in \mathbb{N}$, write $Z_{k}=Y_{n_{0}+6 k}$, and if $j \in \mathscr{A}$, define

$$
\begin{array}{r}
E_{k}^{p}(j)=\bigcup\left\{I_{i}: i \in \mathscr{A}_{n_{0}+6 k}, I_{i} \subset I_{j} \text { and } n_{0}+6 p\right. \text { is the largest order } \\
\text { of a selected interval containing } \left.I_{i}\right\} .
\end{array}
$$

Note that $E_{k}^{p}(j)$ could be reduced to the empty set.

Proof of Assertion 1

In order to establish the first assertion, we only need to prove

$$
\begin{equation*}
\int Z_{k} d \mu \approx k \quad \text { or } \quad \int Z_{k} d \mu \approx 1 \tag{4}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int Z_{k} d \mu=\int_{I_{j_{0}}} Z_{k} d \mu+\int_{I_{j_{0}^{\prime}}} Z_{k} d \mu+\int_{\bar{I}_{j_{0} \cap \bar{I}}^{\bar{J}_{0}^{\prime}}} Z_{k} d \mu \tag{5}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\int_{\bar{I}_{j_{0} \cap \bar{I}_{j_{0}^{\prime}}^{\prime}}} Z_{k} d \mu \approx \lambda^{k} \tag{6}
\end{equation*}
$$

On the other hand,

$$
\forall p \in \mathbb{N}, \quad 0 \leq p \leq k, \quad \int_{E_{k}^{p}\left(j_{0}\right)} Z_{k} d \mu \approx \lambda^{k-p} \lambda_{\alpha}^{p}
$$

Since $\left\{E_{k}^{p}\left(j_{0}\right)\right\}_{0 \leq p \leq k}$ is a family covering $I_{j_{0}}$ whose elements are mutually disjoint, it follows that

$$
\begin{equation*}
\int_{I_{j_{0}}} Z_{k} d \mu \approx \sum_{p=0}^{k} \lambda^{k-p} \lambda_{\alpha}^{p} \tag{7}
\end{equation*}
$$

In a similar way, we can show that

$$
\begin{equation*}
\int_{I_{j_{0}}^{\prime}} Z_{k} d \mu \approx \sum_{p=0}^{k} \lambda^{k-p} \lambda_{\beta}^{p} \tag{8}
\end{equation*}
$$

Since $C(q, \varphi(q))=0$, the relations (5), (6), (7) and (8) imply (4).

Proof of Assertion 2

Let us define a family of functions from $\left[0,1\left[\right.\right.$ to \mathbb{R}_{+}in the following way:

$$
g_{t}=\sum_{k=0}^{\infty} e^{-6 k t} Z_{k}
$$

This allows us to define the family

$$
P_{t}=\frac{g_{t}}{\int g_{t} d \mu} \mu \quad(t>0)
$$

of probability measures on $[0,1[$.
Let $j \in \mathscr{A}_{n_{0}+6 n}$; then we have

$$
\begin{equation*}
P_{t}\left(I_{j}\right)=\frac{1}{\int g_{t} d \mu}\left[\sum_{k=0}^{n-1} e^{-6 k t} \int_{I_{j}} Z_{k} d \mu+\sum_{k=n}^{\infty} e^{-6 k t} \int_{I_{j}} Z_{k} d \mu\right] \tag{9}
\end{equation*}
$$

For a fixed $k \geq n$, in order to evaluate the integral $\int_{l_{j}} Z_{k} d \mu$, we need to distinguish three cases.

1st case (I_{j} is not selected).

$$
\begin{equation*}
\int_{I_{j}} Z_{k} d \mu=\lambda^{k-n} \mu\left(I_{j}\right)^{q+1}\left|I_{j}\right|^{-\varphi(q)} \tag{10}
\end{equation*}
$$

2nd case (I_{j} selected, $I_{j} \subset I_{j_{0}}$). We have

$$
\forall p \in \mathbb{N}, n \leq p \leq k, \int_{E_{k}^{p}(j)} Z_{k} d \mu \approx \lambda^{k-p} \lambda_{\alpha}^{p-n} \mu\left(I_{j}\right)^{q+1}\left|I_{j}\right|^{-\varphi(q)}
$$

Since $I_{j}=\cup_{p=n}^{k} E_{k}^{p}(j)$ we get

$$
\begin{equation*}
\int_{I_{j}} Z_{k} d \mu \approx\left[\sum_{p=n}^{k} \lambda^{k-p} \lambda_{\alpha}^{p-n}\right] \mu\left(I_{j}\right)^{q+1}\left|I_{j}\right|^{-\varphi(q)} \tag{11}
\end{equation*}
$$

3rd case (I_{j} selected, $I_{j} \subset I_{j_{0}^{\prime}}$).

$$
\begin{equation*}
\int_{I_{j}} Z_{k} d \mu \approx\left[\sum_{p=n}^{k} \lambda^{k-p} \lambda_{\beta}^{p-n}\right] \mu\left(I_{j}\right)^{q+1}\left|I_{j}\right|^{-\varphi(q)} \tag{12}
\end{equation*}
$$

When t goes to $0, P_{t}$ has at least a weak limit ν. By using the first assertion and the relations (4), (9), (10), (11) and (12), this weak limit v satisfies

$$
\nu\left(I_{j}\right) \leq K \mu\left(I_{j}\right)^{q+1}\left|I_{j}\right|^{-\varphi(q)}
$$

where K is a constant which does not depend on I_{j}. Since the intervals of order $n_{0}+6 k, k \in \mathbb{N}$, allow us to construct b_{μ}, we conclude that $b_{\mu}(q) \leq \varphi(q)$.

This concludes the proof.

$$
\text { Put } \quad s=\frac{\beta \log \left(p_{0} / p_{1}\right)+\log p_{1}}{\beta \log \left(l_{0} / l_{1}\right)+\log l_{1}}
$$

and observe that $\Delta_{s} \neq \phi, \Delta_{s} \subset I_{j_{0}^{\prime}}$. Then (1) and (2) imply that $a_{1}=c_{1}<a_{2}=$ c_{2}. On the other hand, due to the theorem in [1], it follows from (1) and (2) that $\operatorname{Dim} \Delta_{s}<B_{\mu}^{*}(s)$.

Now, let us consider the Borel probability measure w on $\left[0,1\left[\right.\right.$ such that $w\left(I_{j}\right)=2^{-k}$ for each selected interval I_{j} of order $n_{0}+6 k, I_{j} \subset I_{j_{0}^{\prime}}$. Then w is concentrated on Δ_{s}. By using Billingsley's theorem [2] for dim and the associated result [6] for Dim, we obtain $\operatorname{Dim} \Delta_{s}=\operatorname{dim} \Delta_{s}$.

References

[1] F. Ben Nasr, 'Calcul de dimensions de packing', Colloq. Math. 71 (1996), 137-148.
[2] P. Billingsley, Ergodic theory and information (Wiley, New York, 1965).
[3] G. Brown, G. Michon and J. Peyriere, 'On the multifractal analysis of measures', J. Statist. Phys. 66 (1992), 775-790.
[4] L. Olsen, 'A multifractal formalism', Adv. Math. 116 (1996), 82-196.
[5] J. Peyriere, 'Multifractal measures', in: NATO Adv. Study Inst. Ser. C 372 (Nijhoff, Dordrecht, 1992) pp. 175-186.
[6] S. J. Taylor, 'The fractal analysis of Borel measures in \mathbb{R}^{d}, J. Fourier Anal. Appl., to appear.
[7] C. Tricot, 'Two definitions of fractional dimension', Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74.

Faculté des Sciences de Monastir

Département de Mathématiques
5000 Monastir
Tunisie

