Understanding Computation

‘ ‘ T HAT is computation? How is computation different from calcula-
tion? What kinds of tasks can computers perform? To provide
a foundation for what makes quantum computing special and to
ground our policy analysis, this chapter visits the history of comput-
ing, starting with the ancients and their concepts of mathematical
concepts, and proceeds to discuss modern classical computing.
Humans have been using numbers since at least ancient Sumer
and Babylonia, five thousand years ago. The Babylonians were fas-
cinated with the number 60; they thought that the number 60 was
mystical, since it could be divided into two, three four, five, six, 10, 15,
20 or 30 pieces. But for the majority of human history, manipulating
numbers was something done by people, not machines, sometimes
with tools such as the abacus, but more capacity was needed.
When machines took over the task of manipulating numbers, it
was often because of war or military efforts. Designing and build-
ing these machines took government funding, often supplemented
with support from private companies and brainpower from academia.
These facts are stressed here because just as early analog comput-
ers were electromechanical engineering marvels, building quantum
computers requires state-of-the-science engineering at particle-level
scales, with experts from several disciplines, and the funding to
match. Also emphasized is how computers can be miniaturized, be
reproduced for a fraction of their initial costs, and find their way into
everything, including even doorknobs. Computing can enjoy a virtu-

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

ous cycle where simple devices can reveal efficient design for even
larger, faster computers. This insight will be key for the trajectory
of quantum computers.

This chapter also introduces complexity theory to explain the
kinds of problems that are hard for computers to solve. This lays the
groundwork for understanding the different capabilities and poten-
tial advantages of quantum computers. This background is crucial
to understanding quantum computers for two reasons. First, it dis-
pels the common notion that quantum computers would be a kind
of magical device that can ponder all possible solutions to a problem.
Instead, quantum computers, like any other kind of tool, are good for
some tasks but no better than ordinary computers for others. Second,
complexity theory helps illuminate what is truly exciting about quan-
tum computers (hint: it is not whether encryption can be cracked).
Instead, if quantum computers can solve problems out of reach for
classical ones, quantum computers will help solve some of the diffi-
cult, costly challenges in life. Complexity theory helps elucidate the
kinds of efficiencies that could come about, from finding ways to op-
timize energy-intensive processes to finding valuable information in
enormous datasets.

This chapter should be read by those who need to make invest-
ment decisions or otherwise understand the underlying technology
and assumptions. This chapter lays the groundwork for understand-
ing what quantum technologies are likely to do and, conversely, helps
identify the specious claims so often made about the capabilities of
quantum computers.

3.1 Mechanical Calculation

Machines are systems that use multiple parts and some kind of power
for performing some kind of task. “Shovels are tools; bulldozers are
machines,” we are informed by Merriam-Webster.! Machines are dif-
ferent from tools in their complexity and their power. The earliest
known calculating machine is the Antikythera Mechanism, a device
with more than 30 interlocking bronze gears that was found in a
shipwreck off the small island of Antikythera, Greece. Although the
user’s manual for the mechanism did not survive, this 2000-year-old
mechanism has now been thoroughly reverse-engineered and is be-

'Merriam-Webster Incorporated, “‘“Machine.”” (2020).

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.1. MECHANICAL CALCULATION

lieved to be a means to predict the movements of the planets and
the occurrences of eclipses.? You can even download a simulator.3

The Antikythera Mechanism used differently sized wheels with
teeth to account for the differing speeds of the planets; a peg that
cycles back and forth in a slot accurately represents elliptical motion
of the Moon, which is attributed to the Greek astronomer Hipparchus
of Nicaea (c. 190—c. 120 BCE). The mechanism thus implements a
kind of multiplication, but the ratios were set and unchangeable, like
the motions of the planets themselves.

It took another 1700 years before the basic building blocks of flex-
ible mechanical calculation were put into place. In the early 1600s,
the Scottish mathematician John Napier invented two approaches
for multiplying and dividing numbers using addition and subtrac-
tion. The first, called “Napier’s bones,” embedded numeric tables
on wooden rods. The second and more powerful approach used loga-
rithms, which Napier also invented. Napier published the first book
of logarithms in 1614. Sixty years later, the German mathematician
Gottfried Wilhelm Leibniz (1646-1716) started working on a mechan-
ical calculator that could add, subtract, multiply and divide when
the user set dials to various positions and turned a crank. Critical
to this invention was what is now called the Leibniz wheel, which
causes the dial that shows the tens’ place to advance from “0” to
“1” when the dial showing ones advances from “9” to “0.” In 1820,
the French inventor Charles Xavier Thomas de Colmar (1785-1870)
introduced the Arithmometer, the first commercially produced me-
chanical calculator: his factory built a thousand of them before his
death in 1870. Meanwhile in England, Charles Babbage (1791-1871)
designed the world’s first automatic calculator in 1822 for the pur-
pose of calculating and printing tables of logarithms, trigonometric
functions, and artillery tables. Babbage called his invention the “dif-
ference engine,” and obtained funding from the British government
to build it in 1832.

Although all of these devices proved to be helpful aids to humans
performing tasks involving numbers, none of them could compute in
the modern sense. That’s because they all lacked the ability to alter
their computations based on the results of a specific calculation. This
is what distinguishes a machine that calculates from one that com-

2Spinellis, “The Antikythera Mechanism: A Computer Science Perspective”
(2008).
3Goucher, “Antikythera Mechanism” (2012).

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

putes. Babbage realized that the difference engine was limited, and
designed an improved system he called the analytical engine. Alas,
Babbage never built his invention, although a group of enthusiasts
in England called Plan28 are now working to do so. You can follow
their efforts at plan28.org

3.2 The Birth of Machine Computation

Babbage may have seen the future, but there is no clear evolutionary
descent from his machines to the computers of today. Instead, the
first computers of the 1940s descended from the invention of punch
cards and card-sorting machines that were developed for the 1890 US
Census. The invention of teleprinters and punched paper tape was a
way of making more efficient use of telegraph lines, and to manage
the growing demands of science, engineering, and various militaries
to perform increasingly complex numerical calculations.

World War II saw two significant efforts aimed at using auto-
mated calculation for the war effort. There were two radically dif-
ferent applications for automated calculators, with the United King-
dom leading the development of machines to solve combinatorial
problems, and the Americans largely developing machines to solve
numerical ones.

3.2.1 Combinatorial Problems
In the United Kingdom, a project headquartered at Bletchley Park

developed a series of hard-wired special purpose devices for cracking
the German military codes. Cracking those codes is a “combinato-
rial” problem because the encrypted text was created with a “key”
represented by the complex (for its time) initial settings of German
encryption devices. The goal of the project was to determine which
combination of those settings produced the encrypted text sent by
the Germans. This is the project on which Alan Turing worked, and
which is featured in the somewhat factual Hollywood film The Im-
itation Game. Initially this project used electromechanical devices
called “The Bombe” to search the possible settings for the Germans’
Enigma encryption device. In the movie there is a single Bombe,
but in reality there were hundreds of them, each one working on a
different part of the problem, or a different encrypted message.

4While there are many histories of computing, we recommend the eminently en-
tertaining coffee table book by Garfinkel and Grunspan, The Computer Book
(2018), as well as the more scholarly book by Dasgupta, It Began with Babbage:
The Genesis of Computer Science (2014).

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://plan28.org
https://doi.org/10.1017/9781108883719.007

3.2. THE BIRTH OF MACHINE COMPUTATION

As Copeland explained it:

“The Bombe was a ‘computing machine’ — a term
for any machine able to do work that could be done by
a human computer — but one with a very narrow and
specialized purpose, namely searching through the wheel-
positions of the Enigma machine, at super-human speed,
in order to find the positions at which a German message
had been encrypted. The Bombe produced likely candi-
dates, which were tested by hand on an Enigma machine
(or a replica of one) — if German emerged (even a few
words followed by nonsense), the candidate settings were
the right ones.”®

The second code-breaking project at Bletchley Park — one that
was shrouded in considerably more security — used vacuum tubes
to crack the military codes used by the German High Command.
Tubes can switch electrical circuits 500 times faster than relays. This
complexity was essential, as the encryption machine developed by C.
Lorenz AG had 12 encryption wheels, compared with the three or
four used by the Enigma. The system was called Colossus, and the
UK only built ten of them. The engineering on these systems was
fantastic. For example, input data was on punched paper tape, and
the computers were so fast that the paper tape had to move at 35
miles per hour. The Colossus computers did their job so effectively
that all were destroyed or dismantled at the end of the war in order to
protect the secret of the UK’s code-breaking capabilities — a secret
that it kept until 1974, when F. W. Winterbotham published his
book The Ultra Secret® A similar code-breaking effort in the US
called Magic was under the direction of William F. Friedman, at
the US Army’s Signal Intelligence Service, the precursor to the US
National Security Agency. The US story of how early punch card
tabulators from International Business Machines were modified to
perform cryptanalysis has also been told,” but it is not as well known
as the story of Bletchley Park.

5B. J. Copeland, Alan Turing’s Automatic Computing Engine (2005).
SWinterbotham, The Ultra Secret (1974).

"Rowlett, The Story of Magic: Memoirs of an American Cryptologic Pioneer
(1999).

81
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

3.2.2 Numerical Analysis

Digital computers were also under development by the US military,
but on the western side of the Atlantic the generals wanted to solve
numerical problems, rather than combinatorial ones. Specifically, the
military was seeking solutions to differential equations.

The military’s interest in calculus was a direct result of improve-
ments in firepower.® In 1800 the range of a big gun on a naval vessel
was only 20 to 50 yards, making artillery pretty much a load, point
and shoot affair. By 1900 naval guns could reach 10000 yards: scor-
ing a hit on an enemy ship, or a target on land, required accounting
for the speed of the firing platform; the speed, direction, and tempera-
ture of the wind; the weight of the shot and the amount of propellant;
and even the rifling of the gun’s barrel. Spotters looked for splashes
with precision optics, measuring (to the best of their ability) the dis-
tance and direction of the misses. All of these factors were used to
calculate the azimuth, elevation, and amount of propellant used in
the next shot. Artillery had become highly mathematical.

In 1927, an MIT professor named Vannevar Bush began work
on a mechanical device that could evaluate calculus integrals and
other kinds of mathematical function using a combination of spin-
ning rods, gears, wheels, and several metal spheres. Bush, who be-
came MIT’s Vice President and Dean of the School of Engineering
in 1932, knew that the machine had both scientific and military
applications. Specifically, the machine could be used to simulate
many slight variations of the trajectory of an artillery shell, mak-
ing it possible to produce numeric tables that could be used at sea
(or in the field) by gunners to target their artillery faster and with
more deadly precision. Bush originally called the machine a contin-

8Clymer, “The Mechanical Analog Computers of Hannibal Ford and William
Newell” (1993).
9Vannevar Bush went on to become president of the Carnegie Institution of Wash-
ington, a philanthropic research funding organization in 1938. He soon became
chairman of two US government agencies: the National Advisory Committee for
Aeronautics and the National Defense Research Committee, effectively making
him the US government’s chief scientist. Bush initiated the Manhattan Project
and convinced President Harry S. Truman to create the National Science Founda-
tion (NSF), which was signed into law in 1950. Today he is frequently celebrated
for his 1945 essay in The Atlantic, “As We May Think,” which forecast the devel-
opment of machines that could help people access vast amounts of information,
and his July 1945 report “Science The Endless Frontier,” which provided the
intellectual justification for creating the NSF.

82
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.3. NUMERIC CODING

uous intergraph,'® renaming it the differential analyzer later that
year.'! Within a few years versions of the machine had been built
and impressed into service in both the US and England. For exam-
ple, differential analyzers were constructed at the Ballistic Research
Laboratory in Maryland and in the basement of the Moore School of
Electrical Engineering at the University of Pennsylvania, where the
machines were used to compute artillery tables.!?

3.3 Numeric Coding

Analog mechanical calculating devices like the differential analyzer
(and like slide rules) take a fundamentally different approach to solv-
ing numeric equations than the digital calculators, desktop comput-
ers, laptops and cell phones with which readers of this book proba-
bly grew up. Analog machines use physical quantities like distance,
speed, and the accumulation of electronic charge to directly represent
numeric quantities. This approach is simplistic and straightforward,
but it has many disadvantages.

For example, you can use a ruler, a pencil, and a piece of paper
to add together the numbers 2 and 3: just draw a line on the paper
that is 2 cm long, draw a second, connecting line that is 3 cm long,
and measure the length of the resulting line:

This is the basic principle behind the slide rule, except the rules
on a slide rule are drawn using a logarithmic scale, so that adding
the distances results in multiplication and subtracting them results
in division (Figure 3.1).

The fundamental problem with analog mechanical calculating de-
vices is that they are limited in precision, the ability to distinguish
two numbers; accuracy, the difference between the true number and
the one obtained by the calculation; and repeatability, whether the

10Bush, Gage, and Stewart, “A Continuous Integraph” (1927).

Bush, “The Differential Analyzer. A New Machine for Solving Differential Equa-
tions” (1931).

2Bunch, The History of Science and Technology: A Browser’s Guide to The Great
Discoveries, Inventions, and The People Who Made Them, From The Dawn of
Time to Today (2004), p. 535.

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

Figure 3.1. Using a slide rule to compute 2Xx3 = 6. The value of 2 is specified because
the 1 on the C scale lines up with the 2 on the D scale. The cursor is then moved so
that its center hairline is aligned with the 3 on the C scale, and the value of 6 on the D
scale is the product of 2 and 3. Notice that the slide rule is simultaneously displaying
that 2 x4 =8, 2 x5 = 10, and many other values. it is you, the observer, who is
actually doing the computation. (Slide rule simulation from www_sliderules.org/.)

same answer is obtained when following the same sequence of opera-
tions. These concepts are described in the sidebar “Precision, Accu-
racy, and Repeatability” on page 34.

Digital calculating systems use specific symbols — digits — to rep-
resent numbers and then perform math symbolically using these sym-
bols. The mechanical computers developed by Charles Babbage in
the nineteenth century used the position of wheels, rods and levers
to represent decimal digits; modern computers use electric charge on
a wire. Digital systems overcome many of the repeatability problems
that plague analog systems by forcing intermediate physical mea-
surements to a specific digit and then re-generating the signal. As
a result, small variations in computations that result from wear or
manufacturing defects can be detected and eliminated.

For example, an electronic circuit might store 5 volts (5V) in an
electronic storage device called a capacitor to represent a 1, and
0V to represent a 0. A short while later the circuit might try to
read the value: if it reads a 5V, that’s a 1. But if a large amount
of time has passed and some of the electricity has leaked out, the
circuit may only read 4V or even 3V. As long as more than 2.5V
is read, the circuit still treats the value read as a 1 . As part of the
reading operation, the circuit can then “top off” the electricity in the
capacitor back to 5V. On the other hand, if the circuit read 0.5V, it
would treat that as a 0 and not top it off—instead, it would drain
the capacitor down to 0O'V.

This forced choice between two values is called digital discipline,
and it is the basis of how dynamic memory inside a modern computer
works: a typical dynamic memory chip in 2020 might have 2 billion to

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://www.sliderules.org/
https://doi.org/10.1017/9781108883719.007

3.3. NUMERIC CODING

64 billion individual bits,'? each one read and refreshed many times
every second.

Like the differential analyzer, the first digital computing devices
in the US were created to solve equations for scientific and military
applications. The first was the Atanasoff Berry Computer (ABC),
built at Iowa State University by physics professor Dr. John Vincent
Atanasoff and his graduate student Clifford Berry. Designed to solve
systems of linear equations,'® the ABC stored data on a pair of
drums that rotated once a second. Each drum could store 32 sets
of 50-bit binary numbers in 1600 capacitors: using binary numbers
made the arithmetic circuits easy to design and construct. Although
the basic system was functional, the input and output systems were
not completed before Atanasoff was assigned by the War Department
to the Naval Ordnance Laboratory in Washington, DC in September
1942. The ABC was eventually disassembled.

The second digital computing system in the US was built at the
University of Pennsylvania’s Moore School of Engineering by John
Mauchly and J. Presper Eckert. Mauchly met Atanasoff at a sci-
entific meeting in December 1940 where Mauchly was demonstrat-
ing an analog computer. Mauchly became interested in the promise
of digital computation, and ended up traveling to Iowa and stay-
ing with Atanasoff for four days. In August 1942, Mauchly wrote a
memo entitled “The Use of High-Speed Vacuum Tube Devices for
Calculating,” which proposed creating a fully electronic computing
machine that could perform an estimated 1000 multiplications per
second. The following year Mauchley was hired by Eckert, a profes-

B The word bit is short for “binary digit.” Bits are the small unit of information. In
normal usage we say that a bit can be either a 0 or a 1, but they could just
as well be a black or a white, or an empty or a filled. Claude E. Shannon (1916—
2001), the “father” of information theory, provided a mathematical definition
for the bit in 1948, and attributed the coinage of the word to the American
mathematician John Tukey (1915-2000), although the word was in use before
that time. See Garfinkel and Grunspan, The Computer Book (2018). They’re sort
of like the Greek conception of atoms, but for information. The only problem with
this analogy is that in the twentieth century we learned how to split atoms; bits,
in contrast, cannot be split.

14Using the nomenclature adopted in this chapter, the ABC is not a computer
because it is not Turing Complete, a concept that we explain later in this chapter.

15 A system of linear questions describes one or more lines in two-dimensional space,
planes in three-dimensional space, or hyperplanes in multi-dimensional space.
Solving the set of equations finds the place where the lines or planes intersect.
Rate/time problems from first-year algebra are examples of such problems.

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

sor at the University of Pennsylvania, and construction started on
the Electronic Numerical Integrator and Computer (ENIAC) in se-
cret during the summer of 1943. The project was funded by the US
Army’s Ordnance Corps for the purpose of creating a computer that
could create artillery tables, which at the time were being created
nearby in Philadelphia by a group of female “computers.” Several of
these women, Kay McNulty, Betty Jennings, Betty Snyder, Marlyn
Meltzer, Fran Bilas, and Ruth Lichterman, became ENIAC’s first
programmers.

Two other early computer systems are worth mentioning. At Har-
vard University, Professor Howard Aiken conceived of a computer
powered by relays that could perform computations and print nu-
meric tables. Aiken partnered with IBM to design and build the
computer; it was delivered to Harvard in February 1944 and started
operations that summer. Called the Mark I, the machine was mas-
sive: 51 feet long, 8 feet high, and 2 feet deep. It had 500 miles of wire,
3500 relays, and 1464 10-position switches for entering numbers. Like
the ENTAC the Mark I operated on decimal numbers, but because
it computed with mechanical relays, rather than electronic tubes, it
required 3 seconds to perform an addition and 6 for a multiplication
— a thousand times slower than the machine in Philadelphia. The
Mark I was built for the US Navy.

In Germany, Konrad Zuse built a series of computers: the Z1
(1936-1938), Z2 (1940), Z3 (1941), and Z4 (1945). Like the UK'’s
Bombe and Harvard’s Mark I, these computers were all built using
relays. Unlike the others, none of them received significant funding
from the host country’s military. Zuse had to borrow money from his
family and friends to construct the Z1, and he built the machine in his
parents’ living room! It wasn’t until 1940 that Zuse received funding
from the German government, and that was only partial funding.
By failing to recognize the military applications of computing, the
Germans squandered the significant lead in both computer theory
and engineering that they had over the Allies.

3.3.1 FEncoding Digital Information

Today many people tend to confuse the words digital and binary, but
they are different. What makes digital computers digital is the use
of specific, discrete values to represent information. We call these
discrete values digits. Binary systems are digital, but they use just

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.3. NUMERIC CODING

two mutually exclusive binary digits, typically 0 and 1. The word
“bit” is actually a contraction of the words “binary” and “digit.”

One of the first binary systems was the Jacquard Loom (1801),
which used holes punched into wooden slats to control the pattern
woven into the fabric. Each hole determined whether an individual
weft would pass over or under a wrap on each pass of the shuttle
through the shed. The Jacquard Loom is frequently taken as the
first use of punch cards to control a piece of machinery.

It is also possible to have digital systems that use more than two
values: the early ENIAC at the University of Pennsylvania (1943)
used a voltage moving down 1 of 10 wires to represent the digits 0
through 9, while today’s multi-level cell (MLC) flash memory uses
four discrete voltage levels within each flash cell, allowing them to
store two bits per cell.!® Not surprisingly, MLC flash costs less than
single-level cell (SLC) flash memory, but it is more prone to errors.'”

Digital computers need a way to store information and to read
back the information that they have stored. The Jacquard Loom
wasn’t a computer because it had no way of writing to its punch
cards: the same was true of the card sorters and tabulators that
Herman Hollerith created for the 1890 US Census. Without such
memory, these devices lacked the ability to alter computations based
on an earlier calculation, thus failing the definition for computing. In
contrast, the flash memory (1980) in a modern cell phone can be both
read and written.

Computers can store all kinds of information beyond simple bi-
nary bits: even in the 1940s, computers were computing on integers,

6High-dimension storage and communication are active research areas in quan-
tum technology. Some are investigating qutrits, quantum bits that have three
states. Separately, one group has demonstrated that it can use modulators and
mirrors to encode information in photons along seven dimensions, exploiting the
photon’s “orbital angular momentum” and “angular position” instead of polar-
ization, which is the typical approach. See Mirhosseini et al., “High-Dimensional
Quantum Cryptography with Twisted Light” (2015).

17 Analog computers, in contrast, might use a specific voltage to represent the value
of 1, half that voltage to represent the value of 0.5, twice that voltage to represent
the value of 2, and so on. Although you might think that this approach provides
for more flexibility, the problem is that there is no good way for such computers
to distinguish values that are close together, like 1.001 and 1.002. As a result,
analog computers tend to lack both accuracy and repeatability, as discussed in
the sidebar “Precision, Accuracy, and Repeatability” on page 34. This is also the
fundamental problem of proposals to use analog computers as an alternative to
quantum computers.

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

floating point numbers, and text. Today’s computers can store vir-
tually any kind of information that can be contemplated, including
pictures, sound, and movies.'® Fundamentally, all of these things
are ultimately transformed into a series of bits and recorded in the
computer’s memory, and then reconstructed on output.

Representation is a word that computer scientists use to describe
how information is broken down and stored. One of the simplest
representations uses different combinations of binary digits to repre-
sent different integers. For example, if you have three binary digits,
you can represent eight different values, typically taken to be the
numbers 0 through 7:

Bits Value

A B C

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5)
1 1 0 6
1 1 1 7

In modern computers, data is arranged in groups of eight bits
called bytes. A byte can represent 2x2x2x2x2x2x2x2 =28 =256
different values. This is typically scaled from 0 to 255, but it can
also be scaled from —128 to 127. The first case is sometimes called
an unsigned 8-bit integer, the second a signed 8-bit integer.

It is common to group four bytes together to form a 32-bit word
that can represent numbers from —2 147483 648 to 2 147483 647. Ra-
tional numbers can be represented with two numbers, one for the
numerator, one for the denominator. Alternatively, there are float-
ing point representations; the IEEE single-precision floating point
format uses 32 bits to represent floating point numbers: 1 bit for
the number’s sign, 8 bits for the exponent, and 23 bits as a binary

8Some things that modern computers can’t store are complex physical objects,
thoughts, space, time, or entanglement states.

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.3. NUMERIC CODING

fraction.!® However, today most computations are done with 64-bit
IEEE double-precision floating point numbers, since the additional
four bytes of storage is typically inconsequential while the increase
in precision is dramatic.

Computers also use combinations of bits to represent individual
letters, like the letters typed into a computer that eventually became
the sentence you are reading. Using combinations of bits to represent
letters dates back to 1874, when the French inventor Emile Baudot
devised a more effective way to send text down a telegraph line.
Instead of using the dots and dashes of Morse code, Baudot designed
a device with five keys and a rotating “distributor” that electronically
connected a switch at the end of each key, in rapid succession, to the
line. The device sent down the telegraph line a rapid succession of
electric pulses corresponding to whether each key was up or down.
Today this approach is called time-division multiplexing. Five bits
allowed the operator to send one of 32 possible combinations down
the line with each rotation of the distributor. Baudot used 27 of these
codes for letters (E and E were represented with different codes) and
another two for the space character and a marker for the end of the
message. A device at the other end recorded the marks on paper: it
didn’t take long to invent devices that actually printed letters that
corresponded to the codes that the operator was sending. And thus
was born the printing telegraph, soon to be known as the teletype.

Just as the way that numbers are stored inside computers has
been standardized, so too has the way that letters are stored. In the
1960s much of the industry adopted the American Standard Code
for Information Interchange — ASCII — which dictates that letter “A”
will have the binary code 0100001 , the letter “B” will be 0100010 ,
“C” will be 0100011 , and so on. Lower case letters start with “a” at
0110001 . These numbers correspond to the values 65, 66, 67 and 97
in decimal (base 10). In the 1990s ASCII was expanded to include the
complex glyphs of Japanese, Chinese, Korean and all of the world’s
other languages. The new system is called UNICODE and has since
been expanded to include dead languages like Cuneiform and even
made-up languages like Klingon.

¥Because numbers like 0.1 cannot be perfectly represented as a binary fraction,
when floating point numbers like 0.1 are repeatedly added together, the result
might end up as 0.9999999999999999 instead of 1.0. This is called roundoff error.

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

3.3.2 Digital Computation

Computers need to have a way to change their behavior based on
the information that they read — that is, they need a way to compute.
Computer engineers use the term logic to describe both the internal
rules that a computer follows and the mechanism that implements
those rules. Once again, logic can be built from many different tech-
nologies: from the point of view of a computer scientist the details of
how the logic is actually implemented doesn’t matter much.?’ In an
electronic computer, the logic is assembled from fundamental build-
ing blocks called gates.

Gates can have 1 or more inputs and 1 or more outputs. These
inputs and outputs are typically wires, but in a diagram you will
see them drawn as lines that carry digital information. The simplest
gates replicate the basic logic operations of Boolean algebra:

o The AND gate (Figure 3.2) combines its inputs and produces
a 1 if both of its inputs are 1, otherwise its output is 0.

o The NOT gate (Figure 3.3) has an output that is the reverse
of its input.

Any logic circuit can be created using combinations of just these
two gates and the appropriate connecting wires.

For example, you can make an AND gate that has three inputs (A,
B, and C) by taking the output of a single AND gate that computes
(A AND B) and connecting it along with C to the input of a second
AND gate, creating a circuit that computes ((A AND B) AND C).
More generally, it is possible to use AND and NOT gates to build
complex circuits that add, subtract, multiply, or divide numbers. For
example, Figure 3.4 shows how such circuits are put together to
" while Figure 3.5 shows how four full-
adders can be combined to form a four-bit adder.

It is also possible to create circuits that interface with memory
units to load and store information. It is even possible to use a com-
bination of AND and NOT gates to create memory units — such
memory is called static memory and is much faster than other kinds

create a one-bit “full-adder,’

20Tn the 1970s, Danny Hillis and Mitch Kapor (who later went on to found the Lotus
Development Corporation) created a computer out of Tinkertoy that played Tic
Tac Toe. The computer is now part of the permanent collection at The Computer
History Museum. See D. Hillis and Silverman, “Original Tinkertoy Computer”
(1978).

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.4. COMPUTING, COMPUTABILITY AND TURING
COMPLETE

inputs outputs
A B | T (A AND B)
A False False False
B T False True False
True False False
True True True

Figure 3.2. A simple AND gate and its “truth-table.”

input | output
A B
A B False | True
True | False

Figure 3.3. A simple NOT gate and its truth table.

of memory used inside a computer. In fact, any digital circuit can be
built if you can combine sufficient numbers of AND and NOT gates
with the correct wiring pattern. For this reason, the combination of
these gates is said to be universal.

But one can do even better: the AND and the NOT gate can be
combined into a single universal gate called the NAND — not AND
— gate, from which every digital circuit can be built.

In practice, digital designers use all kinds of gates, safe in the
knowledge that their designs can always be transformed in a series
of universal NAND gates if needed. In fact, the process for doing
this is so straightforward and automatic that such transformations
can happen when a design is turned into silicon without the designer
even knowing it.

3.4 Computing, Computability and Turing Complete

There are many questions to ask in comparing these computers and
trying to assess the role that they played in World War II. What
sort of monetary and human resources were required to build each
machine? How hard was it to find skilled scientists to work on these
projects? How much original research had to be done? Did these
devices actually contribute to the war effort, as the machines at
Bletchley Park clearly did, or were they merely fascinating historical
footnotes, like the Zuse machines? One might consider their contri-
bution to military efforts after the war: ENTAC’s first official calcu-

91
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

1-bit Adder
B A 1 I'\ v
—\J—H_@ .4 l@" Sum
7
B
=
AND
.mi'n-'ﬁ—\l— m = Carry
out
AND

Figure 3.4. Circuit diagram of a "“full adder.” The inputs are A, B, and C (carry). The
outputs is S (the sum) and Cout (carry out). S is true if either A, B, or C are true.
If two of them are true then Cout is true and S is false. If all three inputs are true,
then both S and Cout are true. Multiple full adders can be chained together to add
any number of binary bits.

AAAA +BBBB,=5S5S.S

3210 3727170 3727170
oA, o A o A N S
B 1-bit 3% B, 1-bit 2= B 1-bit = B 1-bit [—om
C adder = C adder C adder 0 adder 0
T —
—carry bit 0
«—carry bit 1
«carry bit 2

Figure 3.5. Four one-bit full-adders can be combined to form a four-bit adder. Each
bit adds the input bits A, and B, and the carry bit C, ;. (Note: This four-bit adder
ignores the carry bit C3. As a result, adding 1111 and 0001 will produce 0000 ,
a condition known as an overflow.) This circuit is “clock-free,” meaning that it
runs without reference to an external clock, although it may take a few hundred
picoseconds for the transistors that make up the gates to stabilize when the logic
inputs change. Compare this with Figure 6.3, a 4-bit quantum adder.

92
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.4. COMPUTING, COMPUTABILITY AND TURING
COMPLETE

lations were not for artillery tables, but for the development of the
hydrogen bomb, and the team went on to create the Universal Auto-
matic Computer (UNIVAC), while the UK’s obsession with secrecy
and its persecution of Alan Turing were major setbacks for the early
UK computer industry.

Computer scientists evaluating these early machines tend to focus
on two questions: how fast could the machines calculate and were
they Turing Complete?

Speed. For the pioneers of the 1940s, faster calculations were the
only reason that justified spending the time and money that it
took to create calculating machines. It was clear that mechani-
cal calculation had a much higher initial cost than human com-
puters but a much lower incremental cost. Within the world of
mechanical computation, electromechanical systems built with
relays had a lower initial cost than electronic systems built
with tubes, as the technology was better understood and more
readily available. It was also a thousand times slower.

Turing Complete. Modern computers are said to be general pur-
pose machines, in that they can be programmed to perform
any calculation or any programmable function. This is some-
times called Turing Completeness, meaning that the computer
implements the computational model described by Alan Tur-
ing.?! Being Turing Complete is what differentiates a machine
that calculates from one that computes. The easiest way to
make a machine that is Turing Complete is to have it store
the program in some kind of memory and for there to be some
way to change the program’s order of execution, either a mech-
anism that allows the program to modify itself, or to have the
program’s execution determined by a computed data value.

21 Turing developed his model to solve a challenge posed by the mathematicians
David Hilbert and Wilhelm Ackermann in 1928 called the Entscheidungsproblem
(German for “decision problem”). The problem was to develop a procedure or algo-
rithm for evaluating any mathematical statement to determine if it is true or false.
Turing developed his model of computation to show that this was not possible;
the American mathematician Alonzo Church also showed the impossibility of the
Entscheidungsproblem, although using a completely different approach. Church
published his solution (Church, “An Unsolvable Problem of Elementary Number
Theory” (1936)) a few months before Turing (Turing, “On Computable Num-
bers, with an Application to The Entscheidungsproblem” (1936)); today these
solutions are called the Church—Turing thesis or the Church—Turing hypothesis.

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

Surprisingly by today’s standards, the pioneers were not con-
cerned with storage the way we are today. Modern computers have
storage systems that can both store data and load it back: such
storage is used for both programs and data. But storage that could
support such “load and store” operations on the early computers
was minuscule. Code-breaking the ENIGMA required rapidly iter-
ating through many possible encryption keys, but the intermediate
results did not have to be archived. Cracking each Lorenz cipher re-
quired a lot of input data, which was provided on paper tape, but
there was very little in the way of output. Creating artillery tables
required a computer-controlled teleprinter, but such devices were
write-once, read-never. Moreover, such printers were widely available
in the 1940s, as they had been developed for printing telegraphs in
the early 1900s.22

After the war, the pioneers turned their attention to building
machines that could be easily reprogrammed to different tasks. This
created the need for some sort of system that could be used to store
the programs. Three main technologies emerged: first, acoustic delay
lines, in which bits were stored as pulses of sound traveling down a
tube of mercury (although Alan Turing suggested using gin instead);
second, drum memory, in which bits were stored by changing the
magnetization of a small region of a rotating magnetic drum; third,
core memory, in which bits were stored by changing the magneti-
zation of a tiny iron torus. Of these three, magnetic core became
the dominant form of memory until the emergence of semiconductor
memory in the late 1960s, and was widely used until the late 1970s.

3.4.1 Introducing The Halting Problem

In 1936, Alan Turing invented a modern concept of computers when
he proved that it is impossible to examine a computer program and
determine if the program will halt or will run forever. Here we present
Turing’s idea by showing that such a program-analyzing program
must sometimes be wrong. This is called a proof by contradiction.

22The Morkrum Company, established in 1906 by Charles Krum and the Morton
family, developed the M10 printer in 1908. It was adopted by the Associated Press
in 1915. The company merged with the Kleinschmidt Companies in 1925, and in
1929 the combined company changed its name to Teletype after the name of its
most successful product. See D. R. House, “A Synopsis of Teletype Corporation
History” (2001).

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.4. COMPUTING, COMPUTABILITY AND TURING
COMPLETE

There are some programs that obviously halt:

PROGRAM A:
1: PRINT "Hello World."
2: HALT

Thus, HALT_CHECK (PROGRAM A) = HALTS.
Likewise, there are programs that obviously do not halt:

PROGRAM B:
1: PRINT "Hello World."
2: GOTO 1

Thus, HALT_CHECK (PROGRAM B) = DOES NOT HALT.

Here we use functional notation to denote a computer program
called HALT_CHECK that examines a second computer program (var-
iously PROGRAM A and PROGRAM B) and returns HALTS or DOES NOT
HALT.

If only a program like HALT_CHECK could exist! With it, we could
answer any mathematical question! For example, we could use it to
determine the correctness of Fermat’s Last Theorem, which holds
that there is no solution to equation A" + B" = C" for A >0, B > 0,
C > 0 and n > 2. We would just code up a new program called

FERMAT:
PROGRAM FERMAT:
1: A « 1
2: B « 1
3: C « 1
4. N « 1
5: IF AY +BY = CY THEN
PRINT "FERMAT'S LAST THEOREM DISPROVED!"
PRINT A,B,C,D
HALT
N« N+ 1
6: IF N < C THEN GOTO 5
C« C+ 1
7: IF C < B THEN GOTO 4
B« B+1
8: IF B < A THEN GOTO 3
9: A« A+ 1
GOTO 2

10: THIS LINE WILL NEVER BE REACHED

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

We would then compute HALT_CHECK (FERMAT). If the result was DOES
NOT HALT, we know that FERMAT never halts, and thus Fermat’s Last
Theorem is true!

3.4.2 The Halting Problem Cannot Be Solved

Sadly, the Halting Problem cannot be solved. Computer scientists

say that the function HALT_CHECK is undecidable or uncomputable.
To see why we cannot create a HALT_CHECK program that works

reliably, in all cases, we simply construct a second program, which

we will call H2:

PROGRAM H2:

1: IF HALT_CHECK(H2) = HALTS, GOTO 1
2: PRINT "H2 HALTS!"

3: HALT

Program H2 asks HALT_CHECK if H2 itself halts. If HALT_CHECK re-
ports that H2 halts, then H2 runs forever. But if HALT_CHECK reports
that H2 runs forever, then it must not halt, so HALT_CHECK (H2)=False.
But then H2 halts! Clearly, HALT_CHECK cannot correctly report if
H2 halts or runs forever.

Program H2 is the logical equivalent of what’s called the Liars
Paradox. The paradox is that when a person says “I am lying,” they
are speaking a contradiction. If the person is telling the truth, then
they are lying. But if they are lying, then they are telling the truth.
So HALT_CHECK can’t exist, and finding out if Fermat’s Last Theorem
is true or not requires years of mathematical research, rather than
simply coding up the question and giving it to a computer.?3

The theory of computation is a lot of fun intellectually, and it
is closely related to Godel’s theorem of incompleteness, which holds
that in any system of mathematics there are statements — an infinite
number, in fact — that are true but unprovable. In fact, it is possible
to use the theory of computation to prove Gédel’s theorem. But the
core ideas of Turing’s theory give us more than a simple parlor game
that lets us show that some functions are not computable: it gives
us a theory that allows us to prove that the only difference between

23The British mathematician Sir Andrew Wiles published two papers proving Fer-
mat’s Last Theorem in 1995; combined, the papers totaled 129 pages and required
more than seven years of research. Wiles was knighted as a result of his accom-
plishment and received the Abel Prize, which is generally regarded as the Nobel
Prize of mathematics.

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.4. COMPUTING, COMPUTABILITY AND TURING
COMPLETE

different computers is the size of a problem that they can process,
and the speed with which they can arrive at a correct answer. That
is, computability concerns whether a computer can perform some
task, and not how long that task will take or how much memory
and storage is necessary. Unfortunately, we are limited by time and
memory. The time and other practical limits on computation are
the domain of “complexity theory,” which we discuss in Section 3.5

(p. 98).

3.4.3 Using The Halting Problem

To recap, the theory of computation tells us that even given a com-
puter that is infinitely powerful, has an infinite amount of storage,
and an unlimited amount of time, there are still problems that cannot
be solved. The Halting Problem is one such problem.

One of the best uses that you can make of the Halting Problem
is as a kind of snake oil detector. For example, upon close examina-
tion, many disreputable computer security companies are effectively
claiming to have solved the Halting Problem.

Consider a (hypothetical) company that claims to have an anti-
virus program called WIPE_CHECK that can determine with perfect
accuracy if a cell phone app can wipe your cell phone. If such a
program existed, we could use it to solve Fermat’s Last Theorem!
All we would have to do is write a new program and test it with

WIPE_CHECK:
PROGRAM FERMAT-WIPER:
1: A « 1
2 B« 1
S C « 1
4. N « 1
5: IF (AY) + (BY) = CN THEN
PRINT "FERMAT'S LAST THEOREM DISPROVED!"
PRINT A,B,C,D
PRINT "NOW WIPING YOUR PHONE"
WIPE_CELL_PHONE
N« N+ 1
6: IF N < C THEN GOTO 5
C« C+1
7 IF C < B THEN GOTO 4
B« B+ 1
8: IF B < A THEN GOTO 3

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

9: A« A+ 1
GOTO 2
10: THIS LINE WILL NEVER BE REACHED

Something here must be wrong! If a program called WIPE_CHECK
could really examine any program and always, reliably, determine
if that program could wipe your phone, then the program-analyzing
program would need to be at least as powerful as HALT_CHECK, be-
cause we could use it to solve the same problems.

As with HALT_CHECK, we can prove that WIPE_CHECK cannot exist
by using contradiction:

PROGRAM W2:
1: IF WIPE_CHECK(W2) = WILL_WIPE_PHONE THEN GOTO 1
2: WIPE_CELL_PHONE

WIPE_CHECK (W2) cannot return the correct answer, for the same rea-
son that HALT_CHECK(H2) cannot: if W2 wipes your phone, then it
doesn’t, but if it doesn’t wipe your phone, then it does. Clearly, a
perfectly accurate WIPE_CHECK program cannot exist.

3.5 Moore’s Law, Exponential Growth, and Complexity
Theory

Computing’s pioneers realized that computers would get faster and

that storage capacities would increase with every coming year — in

principle, they realized, there is no limit to how fast computers could

get or how much they could store.

For example, in his seminal 1951 article “Computing Machinery
and Intelligence,” Alan Turing wrote that in 50 years’ time comput-
ers would have a storage capacity of 1x 10° (1000000000) binary
digits. As it turned out, he was right: Apple’s PowerBook G4, a lap-
top introduced on January 9, 2001, came with 128 MiB of memory
(1073741 824 bits), expandable to 1GiB (8589934 592 bits).

In his article, Turing hypothesized that a person chatting (by
text!) simultaneously with such a computer and a second person
would be unable to distinguish between the computer and the sec-
ond person roughly 70 percent of the time. This challenge is the
infamous “Turing Test.” Yet here Turing over-estimated the powers
of his fellow humans: communications from Joseph Weizenbaum’s
ELIZA program were regularly mistaken for those of a human just
a few months after it was operational in 1964, and many so-called
“chatterbot” programs have passed versions of the Turing Test since

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

the 1990s. Today the Internet is awash with programs that not only
imitate humans, but attempt to get them to take actions in the phys-
ical world, all without revealing that they are bots. And even when
users know they are interacting with software, some treat them as
people, fall in love with these computer personalities, and take major
life decisions based on interactions with them.2?

Turing’s predictive powers were pretty amazing when you con-
sider that the computer Turing built in 1950 — the Pilot ACE (Au-
tomatic Computing Engine) — had a main memory of just 4096 bits
(arranged as 128 32-bit words). Turing was predicting that the stor-
age capacity of computers would increase by a factor of a 250000 in
50 years. He pretty much nailed it.

Other engineered systems have not enjoyed similar continued
growth in speedup. Consider the passenger airplane:

e In 1903 the Wright Flyer reached an airspeed of 31 mph. It
carried one person.

e In 1957 the Boeing 707-020 jet aircraft had a cruising speed of
600 mph;?° it carried 140 passengers.

e Between 1976 and 2003, the Concorde supersonic jet ferried
well-heeled passengers across the Atlantic at 1340 mph. The
Concorde carried 92 to 128 passengers.

e The Boeing 787 Dreamliner made its debut 2011, with a max-
imum operating speed of 600 mph and a cruising speed of
560 mph. The Dreamliner carries 242 passengers.

Planes have certainly improved over the past 100 years. They
can carry more passengers and do so more safely. But no technical
metric over the past 100 years, from fuel efficiency to safety to cost,
compares to the performance improvements that computers have
experienced in just 50. Computers have experienced eye-popping in-
creases in speed of computation, storage — and in the efficiency of
their algorithms.

In part, planes are limited by the physics of sound: the speed
of sound where jets fly is roughly 660 knots, and planes experience

24Qlson, “My Girlfriend Is a Chatbot” (2020).
25Repantis, “Why Hasn’t Commercial Air Travel Gotten Any Faster Since The
1960s?” (2014).

https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

significant turbulence as they approach it, thus creating a real “bar-
rier” that planes must be engineered to overcome. No similar barrier
exists in the world of computing. Planes must overcome the physics
of moving large objects: computers need move only electrons.

Turing’s Pilot ACE computed with 800 vacuum tubes, but within
a few years computers were being constructed with semiconductor
transistors. In 1965 Gordon Moore, who at the time was director
of research and development at Fairchild Semiconductor, wrote an
article exploring the technology trends that the semiconductor in-
dustry was facing. Unlike aircraft, semiconductors are not made one
at a time: they are made in batches on round disks of silicon called
wafers and then cut up into individual chips and put into packages
that we think of as integrated circuits:

At present, packaging costs so far exceed the cost of
the semiconductor structure itself that there is no incen-
tive to improve yields, but they can be raised as high as
is economically justified. No barrier exists comparable to
the thermodynamic equilibrium considerations that often
limit yields in chemical reactions; it is not even necessary
to do any fundamental research or to replace present pro-
cesses. Only the engineering effort is needed.?

What this meant, Moore wrote, is that the number of components
on semiconductors was likely to rise exponentially over time “at a
rate of roughly a factor of two per year.” He added: “certainly over the
short term this rate can be expected to continue, if not to increase.”
Eventually this prediction was named Moore’s Law and the rate was
scaled back to a doubling every 18 months.?”

The increase in computing over the past 50 years has truly been
incredible. In the 1940s the ENTAC could perform 350 multiplica-
tions per second; today one can purchase a high-end graphical co-
processing card for under $6000 that can perform “100 teraflops,”
or 10" floating point operations per second, an increase of roughly
3% 10'".28 Towa State’s ABC stored 3200 bits in the size of an actual

26Moore, “Cramming More Components Onto Integrated Circuits” (1965).

2TMoore, “Progress in Digital Integrated Electronics [Technical Literature, Copy-
right 1975 IEEE. Reprinted, with Permission. Technical Digest. International
Electron Devices Meeting, IEEE, 1975, pp. 11-13.]” (2006).

28The “floating point” operations referred to in the measure “flops” are typically
addition, subtraction, multiplication, or a multiplication paired with an addition.

100
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

desktop; today you can purchase a desktop disk array with six 16 TB
drives for under $6000 that stores roughly 8 x 10'* bits, an increase
of roughly 2 x 10!,

Danny Hillis (b. 1956) is a beloved, accomplished, insightful com-
puter scientist and innovator. He earned his Ph.D. at MIT (advised
by Marvin Minksy and Claude Shannon), founded the supercom-
puter company Thinking Machines in the 1980s, and went on to be
a Fellow at the Walt Disney Company. Hillis once gave a talk at the
New York City Hilton in which he predicted that one day computers
would be so inexpensive that they would be everywhere — in numbers
exceeding the world’s population. “What are you going to do with
all of them?” a heckler in the audience shouted. “It’s not as if you
want one in every doorknob.”

In the 1990s, Hillis returned to the hotel and noticed that each
door had been equipped with an electronic lock. “You know what?”
he told the audience at the tenth anniversary of the MIT Media Lab.
“There is a computer in every doorknob!”2?

Moore’s Law held until roughly 2016, when the market leader in
chip production, Intel, signaled that developments in chip-shrinking
would slow.?" In part, this was a reflection of economic realities: for
many years Intel and other companies had moderated their tech-
nology investments to match the prediction of Moore’s Law, bring-
ing a breath of predictability to the topsy-turvy world of high-tech.
But starting in the 2000s, other factors such as power consumption
came to dominate semiconductor design requirements: no reasonable
amount of technology investment could keep Intel on the technology
curve that had been forecast in the 1960s. This slowdown was also
a result of quantum effects — as gate sizes shrink, there’s a greater
chance for electrons to “tunnel” from one semiconductor tract to
another, causing an error.

Moore’s Law isn’t really a law: it’s really a prediction about the
likely progress in semiconductors, given continued investment of dol-
lars in research, engineering and production.

But it is not a precise measurement, because any given processor typically takes
a different amount of time for each of these operations, and the amount of time
that it takes can also depend on the input data. The ENTAC did not support
floating point operations, but most of its contemporary systems did.
29Garfinkel, “1985-1995: Digital Decade. MIT’s Computing Think Tank Chronicles
The Electronic Age” (1995).
39Simonite, “Intel Puts The Brakes on Moore’s Law” (2016).

101
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

3.5.1 Software Speedups

Computers operate from the interplay of hardware and software. In
the last section we recounted the dramatic improvements in storage
capacity and speed that hardware has experienced over the past 50
years. There have also been improvements in software, but those
improvements are of a fundamentally different nature and harder to
quantify. This is relevant for our exploration of quantum computing,
as the performance that quantum promises is paradoxically much
closer to performance improvements of the kind that software has
experienced.

Software performance improvements are primarily the result of
improvements in algorithms and data structures. An algorithm is a
method, typically described by a sequence of steps, that performs
some kind of computation. Data structures refer to the stylized ways
that information is stored inside a computer’s memory.

It is difficult to quantify changes to an algorithm or a data struc-
ture that can change the performance of a system, because perfor-
mance depends on a dizzying number of specifics.

For example, consider a simple database of the first 17 US presi-
dents (Table 3.1). Each president’s information is stored in a record,
and each record is put in a row, which are numbered 0-16. The
records are sorted by the president’s date of birth (normalized to
the Gregorian calendar). This database is a data structure. Let’s say
that the computer’s memory in which this data structure is stored
allows random access — that is, it can immediately access any record
by simply knowing the row number.

Now, let’s say that we need two algorithms. The first is called
BIRTHDATE_TO_PRESIDENT; given a president’s birthdate, it returns
the president’s name. A simple algorithm would be:

ALGORITHM BIRTHDATE_TO_PRESIDENT (DATE) :
BEGIN VARIABLES

N: O

ROW: DATABASE Table 3.1

BEGIN CODE
1: IF ROW[N].birthday = DATE:
PRINT ROWI[N]
HALT
2: N « N + 1
3: IF N < ROW.length:

102
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

GOTO 1
4: PRINT "NO PRESIDENT WITH BIRTHDAY", DATE
5: HALT

Here we have introduced some notation. N is a variable that can
hold any number. N is initialized to zero when the program is loaded.
ROW is an array of records drawn from Table 3.1. ROW[0] is the first
row in the database, and ROW.length is the total number of rows,
in this case the number 17. The program starts by checking to see
if the row referenced in the database has a date_of_birth equal
to the DATE that is provided when the program starts running. If it
does, the program prints the entire record and stops. If the record
at ROW[N] does not have the requested birthdate, line 3 increments
the value of N by 1. Line 3 causes the algorithm to jump back to
line 1 if the N is less than the number of rows (17). If N is 17 then
line 4 runs: the program prints that there is no president with that
birthdate and stops.

The amount of time this program takes to run®' depends on many
factors, such as:

1. The amount of time it takes to load the program into memory
and start execution.

2. The amount of time it takes to set variable N to zero.

3. The amount of time it takes to fetch the contents of ROWIN].
4. The amount of time it takes to compare two dates.

5. The amount of time it takes to increment N.

6. The amount of time it takes to compare N to the number 17.
7. The amount of time it takes to jump from line 3 to line 1.

8. Whether DATE is in the database or not.

Times 1 and 2 are constant for any database. Times 3 through
7 are the amount of time that it takes to check any given record. If

31'When examining algorithms like this, it is common for computer scientists to con-
sider both average and worst-case performance. In this example we only consider
worst-case performance.

103
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

Table 3.1. The first 17 US presidents, sorted by date of birth.

oW Birthday President # Tenure
[0] 1732-02-22 George Washington 1 Apr 30, 1789 — Mar 4, 1797
1] 1735-10-30 John Adams 2 Mar 4, 1797 — Mar 4, 1801
[2] 1743-04-13 Thomas Jefferson 3 Mar 4, 1801 — Mar 4, 1809
[3] 1751-03-16 James Madison 4 Mar 4, 1809 — Mar 4, 1817
[4] 1758-04-28 James Monroe 5 Mar 4, 1817 — Mar 4, 1825
[5] 1767-03-15 Andrew Jackson 7 Mar 4, 1829 — Mar 4, 1837
[6) 1767-07-11 John Quincy Adams 6 Mar 4, 1825 — Mar 4, 1829
[7] 1773-02-09 William Harrison 9 Mar 4, 1841 — Apr 4, 1841
[8] 1782-12-05 Martin Van Buren 8 Mar 4, 1837 — Mar 4, 1841
[9] 1784-11-24 Zachary Taylor 12 Mar 4, 1849 — Jul 9, 1850
[10] 1790-03-29 John Tyler 10 Apr 4, 1841 — Mar 4, 1845
[11] 1791-04-23 James Buchanan 15 Mar 4, 1857 — Mar 4, 1861
[12] 1795-11-02 James K. Polk 11 Mar 4, 1845 — Mar 4, 1849
[13] 1800-01-07 Millard Fillmore 13 Jul 9, 1850 — Mar 4, 1853
[14] 1804-11-23 Franklin Pierce 14 Mar 4, 1853 — Mar 4, 1857
[15] 1808-12-29 Andrew Johnson 17 Apr 15, 1865 — Mar 4, 1869
[16] 1809-02-12 Abraham Lincoln 16 Mar 4, 1861 — Apr 15, 1865

DATE is not in the database, then the total amount of time will be
proportional to the sum of times 3 through 7.

Because the birthdates are sorted, we could try to improve the
algorithm by having it stop when DATE is larger than the date of
birth of the president in ROW[N]:

ALGORITHM BIRTHDATE_TO_PRESIDENT2(DATE) :
BEGIN VARIABLES

N: O

ROW: DATABASE Table 3.1

BEGIN CODE
1: IF ROW[N].birthday = DATE:
PRINT ROWI[N]

HALT
2: N« N + 1
3: IF (N < ROW.length) AND (ROW[N].birthday <= DATE):
GOTO 1
4: PRINT "NO PRESIDENT WITH BIRTHDAY", DATE
5: HALT

Unfortunately, it isn’t immediately clear if this change actually
improves the performance of the algorithm. If the date being re-

104
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

quested is somewhere before the end of the list, the algorithm will
stop early, but if the date requested is after February 12, 1809, the
algorithm will still need to scan the entire database. And as an added
penalty, there are now two comparisons on line 1 each time the com-
parison each time through the loop.

A better approach is to use what’s known as a binary search:

ALGORITHM BIRTHDATE_TO_PRESIDENT_BINARY_ SEARCH(DATE) :
BEGIN VARIABLES

GUESS: 0
MIN: O
MAX: 16

ROW: DATABASE Table 3.1

BEGIN CODE
1: IF MAX < MIN:
PRINT "DATE NOT FOUND"
HALT
2: GUESS « INTEGER ((MIN + MAX) / 2)
3: IF ROW[GUESS].birthday is DATE:
PRINT ROW[GUESS]
HALT
4: IF ROW[GUESS].birthday < DATE:
MIN <« GUESS + 1

GOTO 2
5: MAX « GUESS - 1
6: GOTO 2

This program is more complicated than the first, but in the worst
case it only needs to check 5 of the rows, not 17. Mathematically, we
can say that its typical performance is going to be proportional to
the base-2 logarithm of the size of the table, rather than the length
of the table.

Computer scientists have a notation for describing this perfor-
mance concept succinctly called Big-O notation. Using this notation,
we can describe the runtime of the first two algorithms as O(n) be-
cause the runtime is proportional to the length of the table (n), while
the third algorithm has a runtime of O(log n) because its runtime is
proportional to the natural log.

As a final thought, all of the examples in this section assume that
the records in the database were stored in sorted order. If they aren’t

105
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

stored in some knowable order, then the only search that works is a
sequential search from the beginning to the end. In a real application
we would want to be able to search by not just birthdate, but by the
other fields as well. A modern database management system would
handle this by having additional tables called index tables, one sorted
by name, one sorted by birthdate, and so on. These tables would
consist of just the item being indexed and the row number.

3.5.2 Polynomial Complexity (P)

Programs to sort and search through databases were among the first
to be written by computing’s pioneers. John von Neumann’s first
computer program for the Electronic Discrete Variable Automatic
Computer (EDVAC, the successor to the ENTAC) was a program to
sort numbers, and von Neumann concluded that the EDVAC would
be “definitely faster” at sorting than special purpose hardware that
IBM had created for sorting punch cards, which could sort about
400 cards/minute.?? Then von Neumann realized that he could im-
prove the speed of his program by a factor of 80 simply by making
changes to the EDVAC’s hardware and corresponding changes to the
program.

Early computer systems were extremely limited in their main
memory, so sorting programs had to perform complex sequences in
which data was read from one tape and written to others. A sur-
viving article by Remington Rand describes how to sort data on its
UNIVAC computer with six tape drives, and notes that it is possible
to sort 12000 10-word items (a full tape) in just 28 minutes.33:34

If all of the numbers to be sorted can fit into a computer’s mem-
ory, the most obvious way to sort is something called an exchange
sort or bubble sort. The algorithm is simple: start at the beginning
of the list and see if the first two numbers are out of order. Now
consider the second and third numbers, swapping them if they are
out of order. Continue to the end of the list, then start again at
the beginning. Repeat until the list is sorted. This approach never
fails to produce a sorted list, but it requires n passes through the list
to assure completion, where n is the number of elements in the list.

32Knuth, “Von Neumann’s First Computer Program” (1970).

33Remington Rand, Sorting Methods for UNIVAC Systems (1954).

34The UNIVAC had a word size of 72 bits. For comparison, a 3GHz Intel Core i5
microprocessor can sort on array of 12000 floating point values, each of which
requires 192 bits, in 4.5 milliseconds.

106
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

Since each pass through also requires n— 1 comparison and swap op-
erations, the algorithm requires at most (n)(n— 1) = n*> —n operations.
As n gets large the value n*> dominates the value (-n), so we say that
bubble sort requires “order n squared” time to solve, which is written
O(n?). It is said that bubble sort “requires polynomial time” or that
it has “polynomial complexity.” Here, the polynomial is n?.

There are a few obvious ways to improve on the bubble sort
algorithm presented above, but it is hard to improve it by more
than a factor of two. Then in 1959, Donald Shell came up with
a fundamentally new sort algorithm that is now called Shell Sort.
Although Shell Sort still has O(n?) performance in the worst case, it
typically runs much faster. Two years later, Tony Hoare invented one
of the best sorting algorithms we have today, known as Quicksort. It
also has O(n?) worst-case performance, but its average performance
is O(n log n).

All of these sort algorithms have performance in P, because they
all take an amount of time to sort the array that is proportional
to a geometric function of the function of the array’s length. But in
real world situations, some of these algorithms are faster than others.
When sorting large datasets, such performance improvements can be
dramatic.

3.5.3 Nondeterminism

Sorting turned out to be one of the easier problems for the pioneers
to conquer: a harder one was scheduling, such as the classic traveling
salesperson problem (T'SP). Here we provide a simple variation of the
problem:

A sales representative needs to visit 20 cities by car and
can only drive 350 miles on a single tank of gas: is it
possible to reach all 20 cities in a single day without
refueling?

If any two of the cities are more than 350 miles apart, then the
answer is obviously no. But if the cities are scattered throughout
Pennsylvania (which is 285 miles across), and some of the cities are
directly connected by roads while others aren’t, the answer to the
question isn’t obvious. If all of the cities are within a mile of the main
branch of the Pennsylvania Turnpike, then the answer is clearly yes.
But what if some of the cities are close to the Turnpike’s Northeast

107
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

Extension? What if one of the cities is State College (not quite a city,
but home of Penn State University), and far from both the Turnpike
and the Northeast Extension?

With 20 cities there are actually 20 x 19 x 18...2 x 1 = 20! =
2.43 x 10'® different ways of driving between them in theory, which
is way too many to consider with even a modern computer.?®

Complexity Theory, which is a part of Theoretical Computer Sci-
ence, is the branch of computer science that is devoted to understand-
ing the differences between problems like sorting and the TSP.?% Op-
erations research is the academic discipline that has taken on solving
problems like this. Operations research emerged as a field during the
Second World War for solving problems such as shipping supplies,
deciding how much armor to put on aircraft, and searching for sub-
marines. Problems like TSP arise on a daily basis for organizations
that are trying to make optimal use of their fuel and vehicles. To-
day airlines and delivery companies solve versions of these problems
when trying to decide where they should buy fuel and the routes
that their vehicles should travel.

This version of TSP is called a decision problem: the answer is
either yes or no, and it is the job of the algorithm to come up with the
correct answer. The curious thing about the TSP decision problem
is that, while it might be very hard to find a solution, it is easy to
discover if the solution is correct: just add up the distance between
the cities in the given order. If the distance is less than 350 miles,
then you have a solution. Such a solution is called a certificate.

(We've seen decision problems before: the Halting Problem is
also a decision problem. Specifically, it is a decision problem that is
provably unsolvable.)

A more complex version of TSP is known as an optimization
problem: find the best possible solution. If you have an efficient way
to solve a decision problem, you can efficiently solve the optimization
problem by increasing the time that it takes by another factor of
log(n) by using binary search. Here, we could start by solving the
decision problem for 300 miles. If the answer is yes, we try to solve
the decision problem for 150 miles, if the answer is no, we try to
solve the decision problem for 600 miles, and so on. Eventually we
will find the optimal decision. (There are much more efficient ways

351f you could consider a billion (10°) combinations every second, it would take 2.43
billion (2.43 x 10°) seconds to find the answer. That’s 77 years.
36 Aaronson, Quantum Computing since Democritus (2013).

108
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

to solve the TSP optimization problem, but they are beyond what
is needed here.)

In 1959 computer scientists Michael Rabin and Dana Scott pro-
posed a model for a theoretical computer that made it easy to write
algorithms for solving problems like TSP. They called it a nondeter-
ministic machine;3” today we call these creations-of-the-mind non-
deterministic Turing machines (NTM).?® The idea is that such a
machine can explore all possible solutions simultaneously: when the
right solution is found, the NTM recognizes that solution as the cor-
rect one.

Another way to conceptualize the NTM’s theoretical module is to
imagine that an NTM is just an ordinary computer that is equipped
with a special module called CORRECT_GUESS that always guesses
correctly.

In their paper, Rabin and Scott show that NTMs are no more
powerful than conventional, deterministic Turing machines, but for
many problems, the description of how to solve it is shorter when
the write-up uses a NTM than the equivalent TM. That is, the two
models are mathematically identical in the kinds of problems that
they can and cannot solve.

To understand why TMs and NTMs are mathematically equiva-
lent, but why it is easier to write up the program for a NTM, consider
a program that factors a number N into two factors P and Q. The
program on an NTM is simple:

ALGORITHM NTM_FACTOR(N) :
7Z* « SET OF POSITIVE INTEGERS
FOR ALL POSSIBLE P € Z*, Q € Z*:
(P,Q) « CORRECT_GUESS(P,Q, GIVEN (P x Q = N))
RETURN (P, Q)

That is, the program tells the computer to correctly guess P and
QO given that Px Q = N and that P and Q are integers.

If this looks like cheating, well ... it is! Nondeterminism is all
about cheating. The breakthrough insight of the 1959 paper is that
one is allowed to cheat and not design algorithms if one does not
care how long those algorithms take to complete.

3"Rabin and D. Scott, “Finite Automata and Their Decision Problems” (1959).

38Rabin and Scott’s article variously refers to the machine that they created as
nondeterministic machines and nondeterministic automata, but for our purposes,
we can take the article as describing NTMs as well.

109
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

There are a lot of ways to find two factors of a number N. Here
is one that is both naive and inefficient:

PROGRAM NAIVE_FACTOR(N) :

10 P « 2

20 Q « INTEGER(N + P)

30 IF P X Q = N:

RETURN (P, Q)

40 P « P + 1

50 IF P > N =+ 2:

ABORT

60 GOTO 20

This program uses an approach called trial division. It tries to
divide N by every number from 2 up to % If it finds a number
which evenly divides N, it returns that number and N divided by
that number. If it doesn’t find that number, it aborts.

Another way to describe this program is to say that it takes a
brute force approach to the problem of factoring: it just tries every
possible solution and stops when it finds one that works. This is the
reason why TMs and NTMs are mathematically equivalent.

A common misconception about quantum computers is that they
cheat in this way. They do not: quantum computers are not NTMs.
Indeed, for a long time Scott Aaronson’s blog had the tagline, “If you
take just one piece of information from this blog: Quantum comput-
ers would not solve hard search problems instantaneously simply by
trying all the possible solutions at once.” Quantum computers can
perform some functions dramatically faster than classical computers
because of the algorithms discovered for certain problems. In some
cases, these algorithms are just somewhat faster than classical coun-
terparts. And yet in others, quantum computers will offer no real
advantage over fast classical computers.

3.5.4 NP-Complete and NP-Hard
In 1971 Stephen Cook, a professor at the University of Toronto, pre-
sented a paper at the Third Annual ACM Symposium on the Theory
of Computing that contained a startling discovery: any problem that
could be solved by an NTM in polynominal time can be reduced to
a specific NP problem called SATISFIABILITY.
SATISFIABILITY asks if there is an arrangement of Boolean
variables that can solve a particular equation. Boolean variables can

110
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

have the value of TRUE or FALSE; a Boolean equation combines
these variables with the operators AND, OR and NOT. So if A and
B are Boolean variables, a simple instance of the SATISFIABILITY

problem is:

SATISFIABILITY PROBLEM 1:
CHALLENGE: (A AND B) IS TRUE

In this case, it is satisfied if A is TRUE and B is true. Here is the
certificate:

SATISFIABILITY PROBLEM 1:
CHALLENGE: (A AND B) IS TRUE

SOLUTION:
A: TRUE
B: TRUE

Here is a problem that cannot be satisfied:

SATISFIABILITY PROBLEM 2:
(A AND B) AND (NOT B) IS TRUE

This problem can’t be satisfied, because the first clause can only
be TRUE if both A and B are TRUE, while the second clause can
only be TRUE if B is FALSE.

Cook’s paper was astonishing, because it showed that any prob-
lem that can be solved in polynomial time on a nondeterministic Tur-
ing machine can be transformed into a SATISFIABILITY problem
that can be solved in polynomial time. The following year, Richard
Karp published a paper showing that 21 other problems have this
property, including the TSP decision problem. This means that any
given TSP decision problem can be quickly rewritten as a Boolean
SATISFIABILITY problem. Conversely, any SATISFIABILITY prob-
lem can be rewritten as a TSP decision problem. If you can come up
with a general solution for efficiently solving a SATISFIABILITY
problem, you can solve TSP. If you can efficiently solve any TSP,
you can efficiently solve SATISFIABILITY. Today this property is
called NP-complete.

Since 1971, computer scientists have proven that hundreds of
similar problems, including the traveling salesperson problem, are
also NP-complete. On the positive side, this means that a solution
to one of these problems could be easily repurposed to solve the
others: a good solution to TSP can be used to solve packing problems,
for example. But no such solution has ever been found, and many

111
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

researchers suspect that no such solution exists. Indeed, after the
discovery of NP-completeness in 1971, many theoreticians thought
that within five or ten years there would be a proof showing that
problems in P (like sorting) are fundamentally easier than problems
in NP (like TSP). But nobody could create such a proof.

Today, after 50 years of searching, computer scientists still lack
proof that P and NP are fundamentally different kinds of problems.
This is astonishing, because we have problems that are clearly easy,
such as sorting a list of numbers into ascending order, and problems
that are clearly hard, like solving complex Sudoku puzzles. Sorting
is clearly in P, because there are algorithms of polynomial complex-
ity that sort. Sudoku, meanwhile, is NP-complete. That is, there is
no efficient algorithm for solving Sudoku, but there is an efficient
algorithm for turning any other NP-complete problem into a Su-
doku problem and vice versa. Perhaps there is some trick to solving
Sudoku problems, just waiting there for someone to find it. Alterna-
tively, there may be a proof that Sudoku is actually quite hard. And
yet .. nothing, even after 50 years of trying.

Even more infuriating, there are a few problems that were thought
to be hard, yet turned out to be easy. One such problem is primal-
ity testing. Primality testing means to take a number and determine
if it is a prime number or a composite. For decades the computing
world had a fast, probabilistic primality test that could determine
with high probability if a number was prime or not, but there was no
fast deterministic test that could determine in a reasonable amount
of time if a number was prime or not.3? Then in 2002, Manindra
Agrawal, Neeraj Kayal, and Nitin Saxena at the Indian Institute
of Technology Kanpur announced the discovery that “PRIMES is in
P,”%0 which presented a polynomial time algorithm for primality test-

39Note that primality testing is fundamentally a different problem than factor-
ing. With primality testing algorithms it is relatively straightforward to take a
thousand-digit number and determine in seconds if the number is prime or not.
However, these primality testing algorithms do not yield the factors of the num-
ber that is being tested. This is similar to the fact that you can tell quickly if a
number is divisible by 3 — just add up all the digits, and then take the resulting
number and add up all the digits, and keep going until you have a single digit. If
that digit is 3, 6, or 9, the original number was divisible by 3.

40 Although the preprint of the article was published on the Internet in 2002, the
formal article wasn’t published for two more years, finally appearing as (Agrawal,
Kayal, and Saxena, “Primes Is in P” (2004)).

112
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

ing. This means that you can now take any number and determine
quickly if the number is prime or not.

Primality testing is one thing, but what about factoring? Is that
hard? Or is there some hidden algorithm waiting to be discovered?
We don’t know. Although factoring is clearly in the complexity class
NP — there is a simple NP algorithm for factoring any number N
— efforts to prove that it is or is not NP-complete have failed.*!
Perhaps a polynomial-time algorithm for factoring exists just out
of reach, about to be discovered.*?> Today most computer scientists
believe both that P # NP and that factoring is not NP-complete,
but this is a matter of faith, not of proof. For more information, see
Section 3.5.6 (p. 116).

In addition to NP-complete problems, there is another complexity
class called NP-hard. NP-hard problems are problems at least as hard
as NP-complete problems, but possibly harder. One way to think of
these problems is to consider the set of problems for which it is
not obvious how to create a certificate. These problems might be
fundamentally harder than NP-complete problems, or perhaps there
is a way to efficiently create a certificate, and it just hasn’t been
discovered (yet).

Consider the game of chess. Assuming that it is white’s turn to
move, any given board position may be a winning position for white,
meaning that there is a specific sequence of moves and counter-moves
that white can play for which every possible response by black al-
ways leads to a victory for white or a draw. Likewise, any given board
position may be a losing board for white, meaning that no matter
what white does, black can always either win or achieve a draw. It
is not clear what a certificate for Chess would look like. The most
straightforward certificate would be a list of every possible move by
white, followed by every possible response by black, and so on. But
such a certificate would grow exponentially large with respect to the

‘I The simple NP algorithm for factoring any number N is to try all possible com-
binations of the numbers a and b such that 1 <a < b < N until you find a value
of a and b such that ax b = N. If you can find such a pair of numbers, then those
are the factors.

42Tt turns out that factoring can be done in polynomial time on a quantum com-
puter. Such algorithms are said to be in the complexity class BOP (bounded-error
quantum polynominal time). Such algorithms are discussed in the next chapter.
Perhaps one day someone who learns enough about quantum computing will come
up with a fast factoring algorithm that runs quickly on conventional computers.
If such an algorithm is found, that will prove that factoring is in P.

113
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

4 PSPACE problems .

4 Generalizations of many board games, \
| including Reversi (Othello) and Gomoku 1

o NP complete problems .

traveling salesperson E !
' \ NP+Hard

.l scheduling
I
|

N

1
| |
; roblems
: knapsack P
------:-------ﬂ-l—-------+-----
I
I
I
I
I
I
I
I
I
1
I
1
1

” BQP problems

\
factoring

1

‘V

! -

; g P problems
|

] greatest common divisor
|

1

sorting

. primality , P 4

Figure 3.6. The P, BOP, NP and PSPACE complexity spaces as they are thought to
be if P # BQP # NP # PSPACE. It is currently unproven if PSPACE and NP-complete
problems are in the same complexity class, or if there is a partition between the two.
Likewise, it is unproven if NP and BQOP are in the same complexity class, and if BOP
and P or in the same class. If NP = P, then NP, BQP and P are all in the same class.
However, it is straightforward to prove that P and PSPACE are in different complexity
classes.

number of pieces on the board, and it would therefore take exponen-
tially long to check. In fact, the only way to check such a certificate
would be to regenerate the certificate and prove it for yourself, and
so this list-of-all-possible-moves-certificate doesn’t actually accom-
plish its objective of being a certificate — that is, it doesn’t save any
time when you go to check it. Chess is said to be in the complexity
class PSPACE, meaning that it requires polynomial space to solve
— in this case, that space holds all of the possible chess games. In
fact, Chess is said to be PSPACE-complete, actually meaning that
all PSPACE problems can be reduced to the problem of finding a
winning chess game (assuming you have an infinite number of chess
pieces and an arbitrarily large chess board in which to express your
problem). Perhaps there is a dramatically more efficient representa-
tion for all possible moves in a specific Chess instance; perhaps you
will discover it.

114
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

3.5.5 NP-Complete Problems Are Solvable!

Just because a problem category is NP-complete doesn’t mean that
a specific instance of a problem in that category is impossible, or
even hard, to solve. SATISFIABILITY is NP-complete, but prob-
lems 1 and 2 above are both trivial to solve. Indeed, TSP has been
recognized as an important problem for more than 100 years,*> and
there are a growing number of approaches for solving the problem
faster, such that in 2004 a challenge problem with 85900 cities was
solved in 136 years of computer time on a cluster of 2.4 GHz com-
puters. (Because the program can be parallelized, it could be on a
single computer for 136 years, or on 136 computers in 1 year, or
on 1360 computers in 37 days.**) The actual computation was per-
formed on a mix of computers between February 2005 and April 2006,
because the TSP only ran when the computers were not being used
for other purposes. In 2009 the group published a certificate proving
that their solution was optimal: that certificate is 32.2 MB (uncom-
pressed) and can be verified in just 569 hours.*?

As mentioned above, the field of operations research really got
going during World War II. One of the exciting early developments
was the discovery of the simplex algorithm, an approach for opti-
mizing a system of linear equations. Although simple problems can
be solved exactly using symbolic mathematics, many optimization
problems are solved in practice using iterative numerical methods —
that is, the computer performs a series of computations, examines
the results, and then repeats the computations many times in a row,
with each iteration producing a more accurate result. Programs that
can perform these kinds of optimizations are called, unsurprisingly,
optimizers. Some optimizers are designed to solve a specific kind
of problem, while others are general-purpose solvers, employing a
broad range of algorithms and heuristics. The best optimizers today
are commercial programs that cost thousands of dollars per month
to run and save their users considerably more — according to one
case study, Air France saves 1 percent of its fuel costs by using an
optimizer to help assign planes to routes.46

43W. J. Cook, In Pursuit of The Traveling Salesman (2012).

44 Applegate, Bixby, Chvatal, and W. J. Cook, The Traveling Salesman Problem
(2006).

45 Applegate, Bixby, Chvatal, W. Cook, et al., “Certification of an Optimal TSP
Tour through 85,900 Cities” (2009).

46Gurobi Optimization, “Air France Tail Assignment Optimization” (2019).

115
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

3.5.6 BQP, BPP, and Beyond
So here’s where things stand in the Summer of 2021, as we get ready
to send this book to the printer:

e The class P contains problems that can be solved in polynomial
time with respect to the problem’s size. That is, they don’t get
dramatically harder as the problem gets larger. For example,
determining if a word is in a book is a problem that’s in P: just
look at every page in the book to verify that the word is not
there. If a second book has twice as many pages, it will take
you twice as long to check that book. Many common computer
problems are in P, such as sorting a list of numbers or taking
the square root of a number. It turns out that determining if
a number is prime or not is also in P.

e The class NP are the problems that take exponentially longer
to solve as the problem gets larger, but can be verified in poly-
nomial time. Factoring is a good example: there is no fast way
to factor a large integer like N, but if somebody gives you two
small integers a and b and claims that axb = N, you can verify
this pretty fast. Factoring is in NP.

e Some NP problems have a property called NP-complete. It
turns out that SATISFIABILITY, the Traveling Salesperson
Problem, Sudoku played on an arbitrarily large n x n grid, and
many other problems are all fundamentally the same problem.
By this we mean that a SATISFIABILITY problem can be
transformed (in polynomial time) into a TSP, and vice versa.
Transforming the problem is fast, but solving the transformed
problem is still hard. On the other hand, this means that if
we find a fast way to solve any NP-complete problem, we’ve
identified a fast way to solve them all.

o It’s unknown whether or not P and NP are actually the same
class. There might be some clever way to transform an NP-
complete problem into a P problem — that is, to solve it in
polynomial time. If we find that way, then P = NP. Most com-
puter scientists think that this is highly unlikely, but even after
decades of trying, nobody has been able to prove that P # NP.

‘We write this confusion as: P z NP.

116
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

3.5. MOORE’S LAW, EXPONENTIAL GROWTH, AND
COMPLEXITY THEORY

BQP is a complexity class that is conjectured to be between P
and NP. As we will see in Chapter 5, there are a growing number of
problems that take exponential time to solve on a classical computer,
but which can be solved quickly, in polynomial time, on a quantum
computer. This is the class BQP, short for bounded-error quantum
polynomial time. The proofs that these algorithms are correct typi-
cally involve a combination of quantum mechanics and number the-
ory, but they are irrefutable — that is, they are irrefutable if you
believe in mathematics and quantum mechanics. We used the word
conjectured at the start of this paragraph because if P = NP, then
P = BOP = NP. But it might also be the case that P = BOQP C NP or
that P € BQP = NP. We just don’t know!

A second complexity class that is conjectured to be between P
and NP is BPP, the bounded-error probabilistic polynomial time com-
plexity class. BPP is like BOP, but instead of using a quantum com-
puter, the algorithms are run on a conventional computer (a Turing
machine) that has access to a true random number generator. It
turns out that there are many algorithms that can run much faster
if they have access to truly random numbers: these are called ran-
domized algorithms. Until 2002 primality testing was known to be in
BPP, because there was a randomized algorithm that did an arbitrar-
ily good job determining if a number is prime or not. Then in 2002,
Agrawal et al. developed an algorithm that can test if a number is
prime or not in polynominal time.*” This was a huge breakthrough.
However, the algorithm is slower than the randomized algorithm, so
in practice the randomized algorithm is typically used in preference
to the 2002 algorithm.

Quantum mechanics gives quantum computers an unlimited sup-
ply of perfectly random numbers so BQP necessarily contains BPP:
that is, every problem in BPP can be solved in polynomial time by
a quantum computer. But we don’t know if BPP is the same as BOQP
or contained in BQP. We write this mathematically as:

BPP & BOP (1)

This means that we can write the complexity theory that we
covered above succinctly as:

? ? ?
P C BPP C BOP C NP (2)

47 Agrawal, Kayal, and Saxena, “Primes Is in P” (2004).

117
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

And we have just gotten started! Today there are hundreds of
complexity classes that have been formally defined — the online “Com-
plexity Zoo” (www.complexityzoo.net) listed 545 such classes as of
April 2021. (The website also has an easier-to-digest “petting zoo”
that has just 17 complexity classes.) The good news is that not all
of these classes little question marks over their relations: recall that
it’s straightforward to prove that P ¢ PSPACE. But we won’t prove
it here! To see that proof, and many others, we recommend Introduc-
tion to the Theory of Computation, 3rd Edition.*®

3.6 Computing Today

More than any other human technology, electronic computation has
undergone phenomenal changes since its inception roughly 80 years
ago. That improvement has come both from roughly a trillion-fold
increase in the speed of computation and storage, as well as a speedup
in the efficiency of algorithms that is surprisingly difficult to measure.
But starting in the early 2000s, technology trends changed abruptly:

e Many of the tricks that semiconductor companies had used to
speed up their computers since the 1960s started to sputter out.
Companies like Intel responded by putting two, four, eight or
more general-purpose computers on a single chip, what is now
called multi-core systems. Companies like NVidia responded
by putting hundreds and then thousands of restrictive, special-
purpose cores on graphics cards, called graphical processing
units (GPUs). Programmers responded by adapting software
to use this more difficult-to-program hardware.

e Companies like Amazon, Google, and Yahoo developed and de-
ployed workable approaches for orchestrating thousands of in-
dividual computer systems to solve a individual complex prob-
lems. These approaches, alternatively called cluster-computing,
grid-computing, and warehouse-scale computing, first appeared
in the 1990s in the world of scientific computing, where engi-
neers created systems with dozens and then hundreds of racks,
each filled with very expensive, very reliable machines. The big
breakthrough in the 2000s was the realization that companies
could achieve better price-performance ratios by using com-
modity hardware. In today’s warehouse-scale computing, each

48Sipser, Introduction to The Theory of Computatio (2012).

118
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://www.complexityzoo.net
https://doi.org/10.1017/9781108883719.007

3.7. CONCLUSION

individual system isn’t as fast or as reliable as the high-end
systems used in scientific computing, but the individual com-
puters are so much cheaper that many more computers can be
purchased for the same cost, and fault-tolerant software can
automatically reschedule work on a different computer if there
is a hardware failure.

o Corporations that previously bought and ran their own com-
puter systems transitioned to renting slices of computers at
shared data centers. This approach, called cloud computing,
gave organizations access to far more computing than was pre-
viously possible. The reason for this is that most organizations
(and individuals) do not need a steady amount of computing
power: they need it in bursts. Thus, just as it is more economi-
cally efficient for a home-owner wanting to dig a trench to rent
rather than purchase an excavator (and perhaps an operator),
in like manner, it is more efficient for a business that needs to
solve a big problem to rent a few thousand virtual machines
for a week, than to purchase a few dozen machines and run
them for six months or a year.

The rate of technology change accelerates because one of the
things that engineers can do with faster computers is create faster
computers. For example, computer programs running on today’s top-
of-the-line integrated circuits not only help engineers design the next
generation systems — today’s computers can also simulate next years’
systems to find out if the systems will work when they are finally con-
structed. Even though such simulations run significantly slower than
will the future chips, they still help engineers find problems with the
chips while they are still being designed, which saves money, short-
ens design cycles, and allows engineers to pursue more aggressive
designs.

This feedback loop, what some people call a virtuous circle, is
the reason that computers have become a trillion times faster, while
aircraft and cars travel no faster today than in the 1960s: faster,
more powerful vehicles don’t make it possible to build faster, more
powerful vehicles.

3.7 Conclusion
For most of its early history, computing has been a tool of gov-
ernments to solve the kinds of problems governments have. Govern-

119
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

CHAPTER 3. UNDERSTANDING COMPUTATION

ment and academic research in computing led to its adoption in other
data-intensive activities. The trends of democratization of computing
services through parallelization, cloud, and eventually the personal
computer, brought these devices into our daily lives in unforeseen,
wonderful ways.

The path and future of quantum computing could share char-
acteristics with those of classical computing, but with important
differences. Like classical computers, quantum computers need pa-
tronage from well-resourced and determined actors, and this often
requires that government/military problems are on the front burner
for applications. Classical computers experienced successive genera-
tions of speedups in hardware improvements from the relay, to the
vacuum tube, to the transistor. Since the 1960s, classical computing
has been transistor based. Quantum computing is still in the relay-
vacuum tube stage and needs a breakthrough on the level of the
transistor to scale up.

The introduction to complexity theory in this chapter lays the
foundation for elucidating the kinds of applications that quantum
computing will pursue most effectively. The press often focuses upon
cryptanalysis as the problem that quantum computers will solve.
However, complexity theory shows that much more interesting, yet
more difficult-to-understand challenges, with far-reaching social im-
plications, will be important domains for quantum computing.

120
https://doi.org/10.1017/9781108883719.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.007

