On soluble groups which admit the dihedral group of order eight fixed-point-freely

Alan R. Camina and F. Peter Lockett

Abstract

If the finite soluble group G admits the dinedral group of order eight as a fixed-point-free group of automorphisms then the nilpotent length of G is at most three.

A theorem of Berger [2] has substantially enlarged the class of nilpotent groups A for which the following statement holds.
(*) If the soluble group G admits the group A as a fixed-pointfree group of automorphisms and $(|G|,|A|)=1$, then the nilpotent length of G is bounded by the namber of primes, including multiplicities, which divide $|A|$.

The smallest group A not covered by Berger's result is D_{8}, the dihedral group of order 8 . It is our object here to establish (*) when $A=D_{8}$. In [5] Gross shows that, in this case, 4 is a bound, and in this paper he provides an important step in our argument.
$F_{1}(G), F_{2}(G), \ldots$ (or often just F_{1}, F_{2}, \ldots when no confusion arises) will denote the successive terms of the upper nilpotent series of the soluble group G, and f.p.f. will be used to abbreviate both "fixed-point-free" and "fixed-point-freely". $\Phi(H)$ will denote the Frattini subgroup of H. All groups considered will be finite.

THEOREM. If the soluble group G admits D_{8} as a fixed-point-free
group of automorphisms then the nilpotent length of G is at most 3.
Proof. Let G be a minimal counterexample to the theorem, so G has nilpotent length 4 and each D_{8}-admissible proper section of G has nilpotent length 3 . Let $D_{8}=\left\langle\tau, \eta: \tau^{4}=1=\eta^{2}, \tau^{\eta}=\tau^{-1}\right\rangle$ and put $\sigma=\tau^{2}$, the central involution. The hypothesis of f.p.f. action implies that G has odd order.

We first apply Theorem 2.4, Corollary 2.5 and Lemma 2.6 of Gross [6] to achieve a major part of the reduction.
(1) $G=S R Q P$ where S, R, Q and P are D_{8}-admissible subgroups of G and:
(a) S is an s-group, R is an r-group, Q is a q-group and P is a p-group;
(b) s, r, q and p are primes with $s \neq r \neq q \neq p$;
(c) P normalizes Q, R and S; Q normalizes R and S; and R normalizes S;
(d) $S \leq F_{1}(G), \quad R \leq F_{2}(G), \quad R \neq F_{1}(G), \quad Q \leq F_{3}(G), \quad Q \neq F_{2}(G)$, $P \neq F_{3}(G) ;$
(e) $[Q, P]=Q, \quad[R, Q]=R$ and $[S, R]=S$;
(f) each proper D_{8}-admissible subgroup of P lies in $F_{3} ; P / P \cap F_{3}$ is elementary abelian and D_{8}-irreducible;
(g) for each proper $P D_{8}$-admissible subgroup Q_{1} of Q, $\left[Q_{1}, P\right] \leq F_{2}$ and $Q / Q \cap F$ is a special q-group with $P D_{8^{-}}$ irreducible Frattini quotient;
(h) for each proper $Q P D_{8}$-admissible subgroup R_{1} of R, $\left[R_{1}, Q\right] \leq F_{1}$ and $R / R \cap F_{1}$ is a special r-group with $Q P D_{8^{-}}$ irreducible Frattini quotient;
(i) R centralizes each proper $R_{R Q P D}^{8}$-admissible subgroup of S and S is a special s-group with $R Q P D$-irreducible Frattini
quotient.
(2) $S=F_{1}(G)$ and is a faithful irreducible $R Q P D_{8}$-module.

If $\Phi(S) \neq 1, G / \Phi(S)$ has nilpotent length 3 by the minimality of G. Now $\Phi(S) \leq \Phi(G)$, so in this case $G / \Phi(G)$ has nilpotent length 3 , from which it follows that G does too, a contradiction. Therefore by (li), S is an elementary abelian s-group irreducible under the action of $R_{R P D}$ - Clearly the minimality of G implies that $G D_{8}$ has a unique minimal normal 2-subgroup, which must therefore be S. In particular $R \cap F_{1}=1$. Certainly $G D_{8}$ can have no normal 2-subgroup for otherwise G would admit the four-group $D_{8} /(\sigma)$ f.p.f. contrary to a theorem of Bauman [1], which states that such groups have nilpotent derived group. It is now sufficient to prove that $R Q P$ complements S in G (for then $G D_{8}$ is a primitive soluble group with self-centralizing unique minimal normal subgroup S) and this will hold if $Q \cap S=1=P \cap S$. By (lc), $[Q \cap S, R] \leq R \cap S=1$ but $[S, R]=S$ by (le), so the irreducibility of S forces $Q \cap S=1$. Similarly $[P \cap S, R] \leq R \cap S=1$ implies $P \cap S=1$.
(3) σ centralizes $Q P$.
$P / \Phi(P)$ is a completely reducible D_{8}-module. If it were not D_{8} irreducible (lf) would force $P \leq F_{3}$, against (ld). So $P / \Phi(P)$ is D_{8} irreducible and therefore $P \cap F_{3} \leq \Phi(P)$. Since $p \neq q, Q / \Phi(Q)$ is a completely reducible $P D_{8}$-module. If it were not irreducible, say $Q / \Phi(Q)=Q_{1} / \Phi(Q)+Q_{2} / \Phi(Q)$ where $Q \neq Q_{1}, Q_{2}$, then (le) and (lf) would imply $Q=\left[Q_{1} Q_{2}, P\right]=\left[Q_{1}, P\right]\left[Q_{2}, P\right] \leq F_{2}$, against (ld). So $Q / \Phi(Q)$ is $P D_{8}$-irreducible and therefore $Q \cap F_{2} \leq \Phi(Q)$.

We may apply Theorem 1 of Gross [5] to the group $R Q P D_{8}$, which by (2) acts faithfully and irreducibly on S, to deduce that σ centralizes F_{3} / F_{2}. Since G is a 2^{\prime}-group it follows immediately that σ centralizes G / F_{2} and hence that σ centralizes $P / P \cap F_{3}$ and $Q / Q \cap F_{2}$. But then, in view of the inclusions proved above, σ centralizes $P / \Phi(P)$ and $Q / \Phi(Q)$ yielding the statement (3).
(4) R is a special group of exponent r, σ inverts $R / \Phi(R)$ and centralizes $\Phi(R)$.

By (2), $R \cap F_{I}=1$, so (lh) says that R is a special group whose Frattini quotient is isomorphic to a chief factor of $G D_{8}$. If $\Omega_{1}(R)=\left\langle x \in R: x^{2}=1\right\rangle$ were a proper subgroup of R then $\left[\Omega_{1}(R), Q\right]=1$ by (lh), therefore by 5.3 .10 of [4], Q would centralize R, contrary to (le). Thus R is a special group generated by elements of order r, so it has exponent r. σ does not centralize $R / \Phi(R)$, otherwise the group $R Q P$ of nilpotent length 3 admits the four-group $D_{8} /\langle\sigma\rangle$ f.p.f. again contrary to Bauman's Theorem. Now by (3), σ is central in $Q P D_{8}$ so $C_{R / \Phi(R)}(\sigma)$ is normalized by $Q P D_{8}$, so by the irreducibility of $R / \Phi(R)$ this group is trivial. Thus σ inverts each element of $R / \Phi(R)$. R has class 2 so if $x, y \in R$ then
$[x, y]^{\sigma}=\left[x^{\sigma}, y^{\sigma}\right]=\left[x^{-1} z_{1}, y^{-1} z_{2}\right]=\left[x^{-1}, y^{-1}\right]=[x, y]$ (for some $z_{1}, z_{2} \in \Phi(R)$), that is, σ centralizes $R^{\prime}=\Phi(R)$.
(5) $Q P$ centralizes $\Phi(R)$.

By (3) and (4), $[\Phi(R), Q P] \leq\left(C_{G}(\sigma)\right)^{\prime}$. Now $C_{G}(\sigma)$ admits $D_{8} /\langle\sigma\rangle$ f.p.f. so Bauman's Theorem tells us that $[\Phi(R), Q P] \leq F_{1}\left(C_{G}(\sigma)\right) \cdot C_{S}(\sigma)$ is non-trivial, for otherwise σ would invert S and therefore commute with the automorphisms of S induced by $R Q P$, against (4). So $C_{S}(\sigma)$ is non-trivial and lies, with $[\Phi(R), Q P]$, in $F_{1}\left(C_{G}(\sigma)\right)$. Since $r \neq s$ we deduce that $[\Phi(R), Q P]$ centralizes $C_{S}(\sigma)$. But $[\Phi(R), Q P] \triangleleft R Q P D_{8}$ so the irreducibility of S implies that $[\Phi(R), Q P]$ centralizes S, contrary to (2) unless $[\Phi(R), Q P]=1$.

At this point it is convenient to pass to a finite splitting field F for $R Q P D_{8}$ and its subgroups, of characteristic s; and to a faithful irreducible $R Q P D_{8}$-submodule S^{*} say, of $S \otimes_{G F(s)} F$. The condition that D_{8} act f.p.f. on S, namely that $\sum_{\alpha \in D_{8}} \alpha$ be the zero transformation,
remains invariant under these manoeuvres, so D_{8} acts f.p.f. on S^{*}.
(6) R is not elementary abelian.

Let W be an $R Q P$-homogeneous component of S^{*} and D_{1} the stabilizer of W in D_{8}. So W is an irreducible $R Q P D_{1}$-module and $W=W_{1}+\ldots+W_{n}$ where the W_{i} are isomorphic irreducible $R Q P-$ modules. The number of isomorphism types of irreducible R-submodules of W_{i} is prime to 2 , so D_{1} stabilizes an R-homogeneous component V say, of W. S^{*} is a faithful R-module, irreducible for $R Q P D_{8}$, therefore R acts f.p.f. on S^{*} and so R acts non-trivially on V.

If $D_{1}=1$, then for any non-trivial element $w \in W, \sum_{\alpha \in D_{8}} w_{\alpha}$ is a non-trivial fixed-point of D_{8} in S^{*}, contrary to our initial assumption.

Now suppose $\sigma \notin D_{1}$, so we may assume without loss of generality that $D_{1}=\langle\eta\rangle$. Then a non-trivial fixed-point $\omega \in W$ of η would yield a non-trivial fixed-point $w+w \tau+w \sigma+w \sigma \tau \in S^{*}$ of D_{8}, so η must act f.p.f. on W, therefore η inverts W and hence centralizes $R Q P / \operatorname{ker}(R Q P$ on $W)$. Therefore η centralizes $Q P / \operatorname{ker}(Q P$ on $W), \quad \eta^{\tau}=n \sigma$ centralizes $Q P / \operatorname{ker}(Q P$ on $W \tau), \eta^{\sigma}=\eta$ centralizes $Q P / \operatorname{ker}(Q P$ on $W \sigma$) and $\eta^{\sigma \tau}=\eta \sigma$ centralizes $Q P / \operatorname{ker}(Q P$ on $W \sigma \tau)$. However, by (3), σ centralizes $Q P$ so η itself centralizes these quotients. Therefore η centralizes $Q P$ (because $i^{*}=W+W \tau+W \sigma+W \sigma \tau$ is a faithful $Q P-$ module) and so $Q P$ admits $D_{8} /\langle\sigma, \eta\rangle$ f.p.f. which is impossible since ${ }_{6 P} P$ is not abelian.

We have thus shown that $\sigma \in D_{1} \cdot$ Suppose R is elementary abelian. V is a homogeneous R-module, non-trivial for R, so $1 \neq R / \operatorname{ker}(R$ on $V)$ is cyclic and represented by scalar transformations. Therefore σ centralizes this quotient (whether σ is trivial on V or not) against (4).
(7) τ centralizzes" $\Phi(R)$ and R is extraspecial.

Our aim is to show that η and $\eta \tau$ act f.p.f. on $\Phi(R)$, from which (7) follows readily. By (4), $C_{\Phi(R)}(\eta)=C_{\Phi(R)}(\langle n, \sigma\rangle) \triangleleft R$, so by (5), $C_{\Phi(R)}((\eta, \sigma)) \& R Q P D_{8}$. If the four-group $\langle\eta, \sigma\rangle$ acts f.p.f. on S^{*} then it acts f.p.f. on an $R Q P\langle\eta, \sigma\rangle$-homogeneous component, U say, of S^{*}. Now we may apply Theorem 4.1 of Shult [7] to deduce that some element, ω say, of $(\eta, \sigma\rangle$ centralizes $R Q P / \operatorname{ker}(R Q P$ on U). If $\omega=\sigma$ then $\sigma=\sigma^{\tau}$ also centralizes $R Q P / \operatorname{ker}(R Q P$ on $U \tau)$, so σ centralizes $R Q P$ (because $S^{*}=U+U \tau$ is a faithful $R Q P$-module) against (4). If $\omega=\eta$ or $\eta \sigma$ then an argument like that used in the proof of (6) yields a contradiction. Thus $C_{S^{*}}(\langle\eta, \sigma\rangle)$ is non-trivial.

Now $C_{S^{*} R Q P}(\langle\eta, \sigma\rangle)$ admits $D_{8} /(\eta, \sigma\rangle$ f.p.f. so it is abelian. Therefore $C_{\Phi(R)}(\langle\eta, \sigma\rangle)$ centralizes $C_{S^{*}}(\langle\eta, \sigma\rangle)$. In view of the normality $C_{\Phi(R)}(\langle\eta, \sigma\rangle) \triangleleft R Q P D_{8}$ and the irreducibility of S^{*}, we must have $C_{\Phi(R)}((\eta, \sigma\rangle)=1$, so η acts f.p.f. on $\Phi(R)$. Thus η inverts each element of $\Phi(R)$. But by the same argument so doe.; $n \tau$, therefore τ centralizes $\Phi(R)$ as we require. This means that D_{8} inverts $\Phi(R)$ so, in view of (4) and (5), it follows that each subgroup of $\Phi(R)$ is normal in $R Q P D_{8}$. Therefore each element of $\Phi(R)$ acts f.p.f. on S^{*}, that is, $\Phi(R)$ acts regularly on S^{*}. (4) and (6) establish that R is a non-abelian special group, so by 5.3.14 of [4], $\Phi(R)$ is cyclic of order r.
(8) S^{*} is the sum of 2 homogeneous components, S_{1}^{*} and S_{2}^{*} say, under $\Phi(R)$ and τ acts f.p.f. on S^{*}.

Since, by (4), (5) and (7), RQP(τ) centralizes $\Phi(R), S^{*}$ is either a homogeneous $\Phi(R)$-module or is the sum of 2 homogeneous components. In the first case $\Phi(R)$ acts as scalar transformations of S^{*}, so the transformations representing $\Phi(R)$ commute with those representing D_{8}, that is, D_{8} centralizes $\Phi(R)$, contradicting the f.p.f. action of D_{8} on G. Therefore $S^{*}=S_{1}^{*}+S_{2}^{*}$ say, the
$\Phi(R)$-homogeneous components S_{1}^{*} and S_{2}^{*} stabilized by and irreducible under $R Q P\langle\tau\rangle$, and interchanged by η. If v is a non-trivial element of S_{1}^{*} centralized by τ then $v+v \eta$ is a non-trivial element of S^{*} centralized by D_{8} again contrary to assumption. Similarly τ acts f.p.f. on S_{2}^{*} and so (8) is established.

Our final contradiction follows from
(9) R has order 3^{3}.

Let S_{0}^{*} be an irreducible $R(\tau)$-submodule of S_{1}^{*}. Since S^{*} is an irreducible $R Q P D_{8}$-module, $\Phi(R)$ acts $\mathrm{f} . \mathrm{p} . \mathrm{f}$. on S^{*}, so S_{0}^{*} is a faithful R-module and hence, by (4), also faithful for $R\langle\tau\rangle$. Because S_{0}^{*} is homogeneous for $\Phi(R)$ and R is extraspecial, it follows that S_{0}^{*} is a homogeneous R-module. (The $r-1$ faithful irreducible representations of R are characterized by the actions of $\Phi(R)$.) Since an irreducible projective representation of a cyclic group is l-dimensional, the analogue of Theorem 51.7 of [3] in characteristic s shows that S_{0}^{*} is actually an irreducible R-module. By (4), T acts regularly on the non-trivial elements of $R / \Phi(R)$ and by (8), τ acts f.p.f. on S_{0}^{*}. These last three facts enable us to use the Hall-Higman type argument of Shult [7] in his proof of Theorem 3.1 to deduce that R has order 3^{3}.

Now by (9) the chief factor $R / \Phi(R)$ of $G D_{8}$ has order 3^{2} and must therefore be centralized by Q, against (le). This final contradiction establishes the theorem.

References

[1] S.F. Bauman, "The Klein group as an automorphism group without fixed point", Pacific J. Math. 18 (1966), 9-13.
[2] T.R. Berger, "Nilpotent fixed point free automorphism groups of solvable groups", (to appear).
[3] Charles W. Curtis, Irving Reiner, Representation theory of finite groups and associative algebras (Pure and Applied Mathematics, XI. Interscience [John Wiley \& Sons], New York, London, 1962).
[4] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[5] Fletcher Gross, "Fixed-point-free operator groups of order 8", Pacific J. Math. 28 (1969), 357-361.
[6] Fletcher Gross; "Elementary abelian operator groups", BuZl. Austral. Math. Soc. 7 (1972), 91-100.
[7] Ernest E. Shult, "On groups admitting fixed point free abelian operator groups", Illinois J. Math. 9 (1965), 701-720.

School of Mathematics and Physics, University of East Anglia, Norwich,

England.

