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Abstract

The lack of completeness with respect to the semivariation norm, of the space of Banach space
valued functions, Pettis integrable with respect to a measure n, often impedes the direct extension
of results involving integral representations, true in the finite-dimensional setting, to the general
vector space setting. It is shown here that the space of functions with values in a space Y,
^-Archimedes integrable in a Banach space X embedded in Y, is complete with respect to
convergence in semivariation, provided the embedding from X into Y is completely summing.
The result is applied to the case when Y is a conuclear space, in particular, when A" is a function
space continuously included in a space of distributions.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 38 B 05,
46 G 10; secondary 47 B 10, 46 A 12.
Keywords and phrases: Archimedes integral, completeness, convergence in mean, absolutely sum-
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1. Introduction

It is well known that the basic difference between the Pettis and Bochner
integrals of functions with values in an infinite dimensional Banach space X
is that the vector space of equivalence classes of Pettis integrable functions is
not complete in the topology of convergence in semivariation, yet the space
of Bochner integrable functions is complete with respect to the L'-norm.
The completeness of the space of integrable functions is used extensively in
applications of integration theory.
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[2] Archimedes integrals and conuclear spaces 23

The Archimedes integral was introduced in [4] to compensate for this de-
ficiency of the Pettis integral. The Archimedes integral has values in the
Banach space X, but the integrand is allowed to take its values in a larger
space Y in which X is embedded. For the appropriate choice of the locally
convex space Y, and up to sets of measure zero, the space £(A; X, Y) of func-
tions Archimedes integrable with respect to a measure X is complete.

Our concern in this note is with the choice of the space Y. It is shown in [4]
that there always exists a space Y into which X embeds, for which £(A; X, Y)
is complete, but Y may be too large; for example, the product space C r with
r a separating family of continuous linear functionals on X. In Theorem 6,
we show that in the case when Y is a Banach space, if the embedding from
X into Y is absolutely summing, then £(A; X, Y) is complete. The conclusion
holds under somewhat weaker conditions, which are explored in Section 3.
A natural choice for Y is a space of distributions for which X is continuously
included in Y. Section 2 deals with the definition, and basic properties of
the Archimedes integral introduced in [4].

Some terminology adopted throughout this paper follows.
Let ft be a non-empty set. For ease of notation, subsets of Q will be identi-

fied with their characteristic functions. Let 21 be a <r-algebra of subsets of Q.
Given a Banach space X with norm | • | and dual space X', the variation

\m\ of a vector measure m: 2t —> X is defined to be the smallest non-negative
measure which dominates the set function E —> \m(E)\, E e 21. For each
x' e X', let (m,x') be the complex-valued measure defined by (m,x')(E) =
{m(E),x'), E e 2t. The semivariation \\m\\ of m is defined by

\\m\\(E) = sup{|(m,x'>|(£): |JC'| < l,x' e X'}, E e 21.

2. The Archimedes integral

Let A: 21 —> [0, oo] be a measure. The following lemma is well known.

LEMMA 1. Suppose that Cj e X are vectors and Ei e 21 are sets, i = 1,2, . . . ,
such that

(1) ^2\c,\X(Ei) < oo
i€N

and the equality ]C,€N CjEj(co) = 0 holds for every co e Q satisfying the relation

(2) £>,|£,(a>) < oo.
(€N

Then the equality £ / € N c,A(£,) = 0 holds.
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Recall that a strongly A-measurable function / on Q is said to be Bochner
A-integrable if the function | / | is A-integrable [2, Chapter 11].

According to [3], a function / : Q, -* X is Bochner A-integrable if and only
if there exist vectors c, € X and sets £/ € 91, / = 1,2,..., such that (1) holds
and the equality f(co) = 2 , € N

 ci^i((a) holds for every co e Cl satisfying (2).
For such a function / , the indefinite Bochner integral fk: 21 —> X is defined
by

(3) /A(£) = Y, c^Ein £ ) . ^ e 21.

The set function fk is well defined by Lemma 1, and it is a-additive by
the Vitali-Hahn-Saks Theorem [2, Corollary 1.5.10]. The space of X-valued
Bochner A-integrable functions on Q is denoted by <B(k,X). Define the
Bochner seminorm | • |, on the space *B(k,X) by |/ | i — \fX\(Q), for each

The next lemma is proved similarly to Theorem 3 of [4]; it is the Beppo
Levi theorem for Bochner integrable functions.

LEMMA 2. Suppose that fn: Q —* X, n — 1,2,..., are Bochner k-integrable
functions for which £ « € N \fn\\ <oo. Let f: £1 —» X be a function such that

for every co G Clfor which ] C € N Ifni^l < °°- Then the function f is Bochner
k-integrable and

N

lim /-£/«
> oo

n=\

= 0.

Let Y be a locally convex space for which there exists a continuous embed-
ding J: X —> Y. A function / : Cl —* Y is called Archimedes integrable with
respect to k in the space X, briefly, {J, X, A)-integrable, if there exist vectors
Cj € X and sets Ej e 2t, / = 1,2,..., satisfying the following conditions:

(Al) the sequence (c,-A(is,-)),-€N is unconditionally summable in the space
X, and

( A 2 ) i f / e r , then

i€N

for every co € Q for which £,€N \(J(Cj),y'}\Ej(co) < oo.
The set valued function fk: 2t —* X defined by

Y.cik{E^Ei), £621,
«€N
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is called the indefinite Archimedes integral of the function / with respect to
X. By Lemma 1, the indefinite integral fk is a well defined set function,
because Y' separates points of J{X). By the Vitali-Hahn-Saks Theorem, it is
er-additive.

The vector space of all y-valued (/,X,A)-integrable functions on Q is
denoted by £(A; J, X, Y). Define the seminorm || • || on £(A; J, X, Y) by

H/ll = ||/A||(«), fe£(k;J,X,Y).

The topology on £(A; / , X, Y) given by this seminorm is called the topology
of convergence in mean. Whenever there is no danger of confusion, the
reference to the embedding J is omitted.

If we let 2U = {E e 21: X(E) < oo}, then it is clear that the image of the
space sim(2lA, X) of A"-valued 2^-simple functions on Q, via the embedding
/ , is dense in the space £(A; / , X, Y) [4, Proposition 2].

If a function / : il —> A" is Bochner A-integrable, then it belongs to
£(A; X, X) and its indefinite Bochner integral is identical with its indefinite
Archimedes integral.

There always exists a locally convex space Y, and a continuous embedding
J of X into Y such that the space £(A; J, X, Y) is complete with respect to
convergence in the mean. For example, if F is a subset of X' separating
points of X, then define J?: X —* C r by

for every x € X and £ € F. The map Jr is a continuous embedding of X into
the product space Cr, and we have the following

THEOREM 3 [4, Theorem 5]. Let X be a Banach space and let F be a subset
of X' which separates points of X. Then the space £(A; 7p» X, Cr) is complete
with respect to the topology of convergence in mean for every non-negative
measure L

3. Completely summing operators

Let Y be a sequentially complete locally convex Hausdorff space. The lin-
ear subspace of Y spanned by a closed, bounded and disked (that is, balanced
and convex) subset B of Y is denoted by YB. The space YB, equipped with
the gauge | • \B of B, is a Banach space [1, Lemma III.3.1].

Let X be a Banach space. Let 6 be the family of all closed, bounded and
disked subsets of Y. A continuous linear map T from X into Y is called
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completely summing if for each unconditionally summable sequence (xn)nGN
in X, there exists a set B in S such that the sequence (Txn)n€n lies in YB
and £ n € N 17X1/, <oo.

The set B above may depend on the sequence {xn)ne^ in X. If there exists
a single set B in 6 such that for each unconditionally summable sequence
(xn)H&4 in X, the sequence (Txn)n&i lies in yB and £ n e N I^*«U < °°, then
the map T is said to be totally summing (see [8, page 69]).

A sequence {xn)n^n in the locally convex space Y is said to be absolutely
summable, if for every continuous seminorm p on Y, ]C€N/>(**) < oo. Re-
call that a continuous linear map from X into Y is said to be absolutely
summing if it maps each unconditionally summable sequence to an abso-
lutely summable sequence (see [2, Proposition VI.3.2]). If Y happens to be
a Banach space, then a map between X and Y is absolutely summing if and
only if it is totally summing. The same holds true for any locally convex space
Y with the property (B) introduced by Pietsch [6, 15.5], such as a metric or
dual metric space.

The following example shows that it can happen that a map is completely
summing without itself being totally summing.

EXAMPLE 4. Let T be an uncountable index set, and set X = /2(T),
Y = CT. The collection of all closed, bounded and disked subsets of Y is
denoted by 6 . Let {ej)j€r be the standard orthonormal basis of /2(T). The
map J: X —> Y denned by J(x) = ( x , ^ ) ; € T for every x e X is absolutely
summing.

Let (xn)n€n be an unconditionally summable sequence in X. Then there
exists a countable subset F of T such that (xn, ej) = 0 for every j e T\F, and
every n e N.

Let n be the projection of CT onto Cr . Then (noJ(xn)}n€N is an absolutely
summable sequence in Cr . The space C r is a Frechet space, so it has property
(B) mentioned earlier [6]. Consequently, there exist a closed, bounded disked
subset B of C r such that the sequence {n o J(xn))n&N lies in (Cr)s and

Let A = B x {0} in CT. Then A is also closed, bounded and disked, the
sequence (J(xn))n€M lies in YA and

\J{xn)U = J2 \n o J{xn)\B < oo.

Thus, / is completely summing.
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On the other hand, J is not totally summing. If so, there would exist a set
B e 6 such that J: X —> YB is absolutely summing. Since X is non-separable
and reflexive, there is no such map J [5, Corollary 7].

PROPOSITION 5. Let Y be a sequentially complete locally convex Hausdorff
space and let X be a Banach space for which there exists a continuous em-
bedding J from X into Y. Let 6 be the family of all closed, bounded, disked
subsets ofY.

Then the following statements are equivalent.
(i) Given a non-negative measure X and a subset ofT ofX' which separates

points ofX, to each function f € £(A; Jr, X, Cr) there corresponds a set B e 6
and a function g e ©(A, YB) such that

(4) Jo(fX) = gX.

(ii) Let X be the Lebesgue measure on [0,1 ]. To each Junction f € £(A; X, X)
there corresponds a set B e 6 and a function g e 03 (A, Ys)for which (4) holds.

(iii) The injection J is completely summing.

PROOF. It is clear that statement (i) implies statement (ii).
To see that statement (ii) implies (iii), take an unconditionally summable

sequence (xn)nen from X. Let En, n = 1,2,..., be pairwise disjoint sets
of positive measure, and define the function / : [0,1] —» X by f(co) =
En^xnEn((o)/X(En), <o e [0,1]. Then / e Z{X;X,X), and so by virtue
of (ii), there exists a set B e 6 and a function g e 55(A, J^) s u c n that (4)
holds. Consequently,

= / \s(o>)\Bdco < oo.
Jo

Assume now that (iii) holds and let / 6 £(A; Jr, X, Cr) be a function.
Choose vectors c, € A" and sets is, € 2t, / = 1,2,..., such that the se-
quence (c,-A(is,-))ieN is unconditionally summable in A", and for each y e F,
the equality (f(co),y) = Z)/eN(c"5')^'((y) holds for every w 6 Q for which

Since the map J is completely summing, there exists a set B e 6 such that
the sequence (7(c,)A(£,)),6N lies in YB and £ / € N l^teMCE/OU < oo.

Define the function g: il -> yB by £(<w) = X),eN J(Ci)Ei(co) for every
OJ e Q such that £ , e N |7(c,)|B£,(cu) < oo, and let g(co) = 0 otherwise. Then
g e Q5(A, rB) and (4) holds.

THEOREM 6. Let X be a Banach space, and let J be a continuous embedding
from X into a sequentially complete locally convex space Y. Let X: 21 —> [0, oo]
be a non-negative measure.
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IfJis completely summing, then the space £,(X; / , X, Y) is complete.

PROOF. It suffices to show that for every sequence (sn)ne^ in
which is Cauchy in mean, (/o.sn)n e N converges in £(X;J,X, Y). Let I1(A) be
the collection of all families of finitely many pairwise disjoint sets E from 2t
which satisfy X(E) < oo. The set FI(A) is directed by refinement.

Let Z be a Banach space with norm | • \z. Given a vector measure m: 21 —>
Z absolutely continuous with respect to the scalar measure X, for each n €
Tl(X) define the Z-valued 2l-simple function En(m) by

En(m)((o) =

with the understanding that 0/0 = 0. It is clear that \\En(m)X\\z{Q) <
||/n||z(£2), and if m has finite variation, then \En(m)A\z(£l) < |/n|z(£2).

If / : Q —> Z is a Bochner A-integrable function, then

Km \En(fX)-fU=0,
nenw

which can be proved as in the case when X is finite [2, Lemma III.2.1].
Let F be a subset of X which separates points of X. It follows from

Theorem 3 that the sequence {Jr-sn)ne>i is convergent in mean to a function
/ e £{X;X,Cr). Choose, according to Proposition 5, a set B e 6 and a
function g e «8(A, YB) such that (4) holds. Then

(5) JoEx{fX) = EK(gX), nen(X).

For every n — 1,2,..., there exist a member nn of Tl(X) such that

(6) EK(snX) = sH, n>nn, n e

The Bochner seminorm on the space <B(X, YB) will be denoted by | • 11. Since
) |E^(gA) - g\\ = 0, it is possible to choose a sequence of elements

Kn from n(A) such that Kn > nn and

(7) \EKa(gX)-gU<2-n, n = l,2,...-

Let /„ = EKn(fX), n = 1,2,.... Then it follows from (6) that | | / - fn\\ <
2 | | / - sn\\, n = 1,2, Since (/p ° -yn)neN is convergent in mean to / we
may assume that 52neN \\fn+i - fn\\ < oo. It follows from (5) and (7) that
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Therefore the set T of all co e ft for which ^ n € N \Jofn+i(co)-Jofn(co)\B <
oo has full A-measure. Define the function h: ft —> Y by

h((O) = £ (J ° /«+! M - / O fn(C0)) + J O / , (CO)
n€N

for all w € F and let h(co) be zero otherwise.
Then it follows from [4, Theorem 3] that h e £(A; 7, X, 7) and that /iA =

gA. The sequence (J o 5n>neN is convergent in mean to h, and so the space
£(A; J, X, Y) is complete.

That the converse of Theorem 6 is not valid may be seen by taking any
infinite dimensional Banach space X and setting Y - C r with Y = X'.
The space £(A; Jr, X, Y) is complete for any non-negative measure A, but
by the Dvoretsky-Rogers theorem, there always exists in X an uncondition-
ally summable sequence which is not absolutely summable, so the natural
injection from X into Y is not completely summing.

The following proposition can be proved by the arguments used to show
Theorem 4.7 in [8], and its proof is omitted.

PROPOSITION 7. Let X be a Banach space and let J be a continuous embed-
ding ofX into a locally convex Hausdorffspace Y. If there exists a non-atomic,
finite measure A such that the space £(A; J, X, Y) is complete with respect to
the topology of convergence in mean, then J is absolutely summing.

The converse of Proposition 7 is not valid for arbitrary locally convex
spaces Y. Let Y be the space X equipped with the weak topology. Then the
identity map on X is absolutely summing from X into Y; nevertheless, the
space £,(fi; X, Y) is not complete for the Lebesgue measure ft, since 2(ft; X, Y)
is identical to the space of all A"-valued strongly measurable, //-Pettis in-
tegrable functions [4, Proposition 14], which is not complete [2, Theorem
VIII. 1.5].

In the case when Y is a Banach space, an absolutely summing injection J
from X into Y is totally summing, so £(A; / , X, Y) is complete. However, if
X is a non-separable and reflexive Banach space, then there exists no Banach
space (and therefore no metric, or dual metric space) Y, for which there
exists an absolutely summing embedding of X into Y [5, Corollary 7].

EXAMPLE 8. Let Q be an open subset of R", n - 1,2, Let T> (ft) be the
linear space of all smooth functions on Q with compact support, endowed
with the usual inductive limit topology. Let 2)(Q)' be the dual of S)(Q),
equipped with the strong dual topology. Then 2) (ft)' is conuclear with respect
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to the family of all bounded disked subsets of 3) {Q,)' [7, Theorem IV. 1, Part
II].

The space C(Q) of all bounded continuous functions on £2 is endowed with
the uniform norm. The Lebesgue measure on Q is denoted by ft. Define the
linear map J: C(Q) -> 2)(ft)' by

) = [ f(<o)<p(a>) dfi((o), <p
Ja

for every / e C(Q).
Then / is a continuous linear injection. To see that it is totally summing,

we observe that nuclear maps are absolutely summing, and from the definition
of conuclear spaces, there exists a closed, bounded disked subset B of S)(Q)'
for which /(C(Q)) c »(£2)J, and / : C(Q) -> S)(Q)i is nuclear.

It now follows from Theorem 6 that the space £(A; /,C(i2),D(Q)') is com-
plete with respect to the topology of convergence in mean, for every non-
negative measure X.
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