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GENERALIZED GREEN FUNCTIONS
AND UNIPOTENT CLASSES
FOR FINITE REDUCTIVE GROUPS, 1

TOSHIAKI SHOJI

To George Lusztig on his sixtieth birthday

Abstract. The algorithm of computing generalized Green functions of a reduc-
tive group G contains some unknown scalars occurring from the F-structure of
irreducible local systems on unipotent classes of G. In this paper, we determine
such scalars in the case where G = SL,, with Frobenius map F' of split type or
non-split type. In the case where F' is of non-split type, we use the theory of
graded Hecke algebras due to Lusztig.

§0. Introduction

Let G be a connected reductive group defined over a finite field F, with
Frobenius map F'. In [L1], Lusztig classified the irreducible characters of
finite reductive groups G* in the case where the center of G is connected.
Later in [L5], he extended his results to the disconnected center case. In
the course of the classification, in particular in the connected center case,
he defined almost characters of G, which forms an orthonormal basis of
the space V(G¥') of class functions of G different from the basis consisting
of irreducible characters. They are defined as explicit linear combinations
of irreducible characters, and the transition matrix between these two bases
are almost diagonal. So, the determination of the character values of irre-
ducible characters of G is equivalent to that of almost characters.

On the other hand, Luszitg founded in [L3] the theory of character
sheaves, and showed that the characteristic functions of character sheaves
form an orthonormal basis of V(G*'). He conjectured that those functions
coincide, up to scalar, with almost characters (with an appropriate gen-
eralization of almost characters if the center is disconnected). Lusztig’s
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conjecture was proved by the author in [S3] in the case where the center is
connected. It was also proved for certain groups with disconnected center,
i.e., for Spa, and (under a suitable modification for a disconnected group)
Oy, with chF, # 2 by Waldspurger [W], for SL,, by the author [S4] (with
ch F, not too small), and independently, for SL,, and SU,, by Bonnafé [B]
(with ¢ not too small).

If Lusztig’s conjecture is established, the computation of irreducible
characters of G is reduced to the computation of characteristic functions of
character sheaves, and to the determination of scalars involved in Lusztig’s
conjecture. In [L3], Lusztig proved that the computation of the charac-
teristic functions of character sheaves are reduced to the computation of
generalized Green functions of various reductive subgroups of G¥. Then
he showed that there exists a general algorithm of computing generalized
Green functions. More precisely, he showed that generalized Green func-
tions can be expressed as an explicit linear combination of various charac-
teristic functions x¢v ¢ of the G-equivariant local system £’ on a unipotent
class C' in G. Up to scalar, x¢r ¢ can be easily described in terms of the
irreducible character of the component group Ag(u) = Zg(u)/Z2(u) for
ue '’ corresponding to £’. However, this scalar depends on the choice of
the isomorphism F*E = & for a cuspidal pair (C, £) on a Levi subgroup L of
a parabolic subgroup P of GG, and on the intersection cohomology complex
K induced from EX Q; on C x Z9 (see (1.2.2)).

The purpose of this paper is to determine these scalars occurring in
the computation of generalized Green functions. In the case of Green func-
tions, this problem is equivalent to determining a representative u € C &
such that the action of F on the l-adic cohomology group H™(B,,Q;) can
be described explicitly, where B, is the variety of Borel subgroups of G
containing u, and m/2 = dim B,,. It was shown in [S1], [S2] and [BS] that
there exists a unipotent element u € C’ F, in the case where G¥ is of split
type, and G is not of type Eg, such that F' acts on H™(B,, Q;) by a scalar
multiplication ¢™/2. Such a unipotent element is called a split element.
Even in the remaining cases, the action of F' can be described, and by using
this, Green functions of exceptional groups (Fy, Eg, F7 and Eg) were com-
puted explicitly by [S1], [BS] for a good characteristic case. The case G2
had been computed by Springer [Spr| in an earlier stage. (Green functions
of exceptional groups in certain bad characteristic case were computed by
Malle [M] by a direct computation.)

In the case of generalized Green functions, one has to consider the
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cohomology group H*(P,, £ ), where P, is a certain subvariety of parabolic
subgroups of G conjugate to P, and £ is a local system on P, determined
from the cuspidal pair (C, €) on a Levi subgroup L of P, and m/2 = dim P,,.
We need to describe the action of F' on such cohomology groups. This
problem is reduced to the case where GG is simply connected, and simple
modulo center. In this paper, we discuss the case where G = SL, with
F of split type or non-split type. In the case where F' is of split type, the
method employed here is to compare the Frobenius action in the case of SL,,
with SL,,_1, which is a natural generalization of the method in the case of
GL,. In the case of GL,, with F' of non-split type, the Frobenius action was
determined by investigating the action of F' on H*(B,Q;) by making use of
the F-equivariant surjective map 7w, : H™(B,Q;) — H™(B,, Q) induced
from the inclusion B, — B, where B is the flag variety of G. However, this
argument is not generalized to our case. Although we have a counter part
Py, of B, and a natural map m, : H"(Py,,E) — H™(Py,,E), there does
not exist an immersion P, — P,,, and the surjectivity of m, is no longer
trivial. In order to overcome such difficulties, following the idea of Lusztig,
we appeal to the theory of graded Hecke algebra developed in [L7], which
makes it possible to compare the Frobenius actions via the isomorphism
Hg(Pung) = HS(PM 5) = Ql'

The remaining cases where G # SL,, will be treated in a subsequent
paper.

The author is grateful to G. Lusztig for stimulating discussions on
graded Hecke algebras.

§1. Preliminaries

1.1. Let G be a connected reductive algebraic group over a field k,
where k is an algebraic closure of a finite filed F, of characteristic p. Let C
be a unipotent conjugacy class in G, and £ an irreducible local system on
C which is G-equivariant for the conjugation action. &£ is called a cuspidal
local system on C' if the following condition is satisfied: for any proper
parabolic subgroup P of G with Levi decomposition P = LUp and for
any unipotent element u € L, we have Hf(uUp NC,E) = 0, where § =
dim C —dim(class of w in L) (cf. [L2, 2.4]). It is known by [L3, V, 23.1], that
if p is almost good then the above condition is equivalent to the condition
that H:(uUpNC,E) = 0 for any i (i.e., & is strongly cuspidal). We also say
that (C,€) is a cuspidal pair in G.
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Let Mg be the set of pairs (C', &) up to G-conjugacy, where C' is a
unipotent class in G and £’ is a G-equivariant irreducible local system on
C. We also denote by Mg the set of triples (L,C, &) up to G-conjugacy,
where L is a Levi subgroup of a parabolic subgroup of G, and £ is a cuspidal
local system on a unipotent class C' of L. In [L2, 6.5], Lusztig has shown
that there exists a natural bijection

(1.1.1) Ne~ [ Wem)/p)",
(L,C,E)eMg

which is called the generalized Springer correspondence between unipotent
classes and irreducible characters of various Coxeter groups. (For a finite
group H, we denote by H” the set of irreducible characters of H.) Note that
N¢g(L)/L is a Coxeter group with standard generators whenever (L,C, &) €
Mag.

1.2. We describe the generalized Springer correspondence more pre-
cisely. Take (L,C,&) € Mg. Let Z9 be the connected center of L, and put
Crog = C - (Z)reg € C = C - Z9, where

(ZL)reg = {2 € Z} | Zg(2) = L}.
We define a diagram
(1.2.1) Cn vy Sy Ty,

where

Y = U xé’regafl C G,
zeG
= {(g,zL) € G x (G/L) | 27 gz € Creg),

Y
Y ={(g,z) e Gx G| z"'gx € C},

and

Oél(g,l') :x_lgx7 /81(971') - (gaxL)7 ﬂ—(g:xL) =g
Then Y is a smooth, irreducible subvariety of G, and w is a principal cov-
ering of Y with group W = Ng(L)/L. There is a canonical local system g
onY satisfying the property that ﬁi‘g = a}(E X Qy), where £ K Q is the
inverse image of £ under the natural map C=Cx Zg — C. We define an
intersection cohomology complex K by

(1.2.2) K =1C(Y,m€)[dimY]

https://doi.org/10.1017/50027763000009338 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009338

GENERALIZED GREEN FUNCTIONS 159

and regard it as a perverse sheaf on G by extending by 0 outside of Y.
Lusztig showed that K is a G-equivariant semisimple perverse sheaf on G,
and that End K ~ Q;[W)]. It follows that K can be decomposed as

(1.2.3) K~ P Ve®Kg,
EcwAh

where K is a simple perverse sheaf on G such that Vg = Hom(Kpg, K) is
an irreducible YW-module corresponding to E € W*.

Let Gyuni be the unipotent variety of G. Then K[—d]|g,,, turns out to
be a G-equivariant semisimple perverse sheaf on G i, where d = dim Zg =
dimY — dim(Y N Gyyni). Hence it is decomposed as

(1.2.4) K[-dlg,,= @ Viere)®ICC,&)dim ),
(C",£"eNg

where V(c/ ey is a multiplicity space for the simple perverse sheaf

IC(C,&)[dim C’] on Guyni. Comparing (1.2.3) with (1.2.4), we see that
for each E € W", there exists a pair (C',£’) € Ng such that

(1.2.5) Kgla,, ~IC(C,&)[dim C’ + dim Z9).

The correspondence E — (C', ') gives a bijection ]_[(1;7075)(Ng(L)/L)A —
Ng in (1.1.1).

1.3. We now consider the Fg-structure on G. So assume that G
is defined over F, with Frobenius endomorphism F' : ¢ — G. Then
F acts naturally on the set Ng and Mg by (C',&") — (F~1C', F*&'),
(L,C,&) — (F7L,F~1C, F*£), and the map in (1.1.1) is compatible with
F-action. Now assume that (L,C,£) € Mg is F-stable. Then we may
choose (L,C,E), as a representative of its G-conjugacy class, such that L
is an F'-stable Levi subgroup of an F-stable parabolic subgroup P of G,
with FIC = C, F*§ ~ £. We choose an isomorphism ¢q : F*€ =5 £ which
induces a map of finite order on the stalk of € at any point of C'¥". Since the
diagram in (1.2.1), and so the construction of the complex K is compatible
with Fg-structure, oo induces a natural isomorphism ¢ : F*K &= K. We
consider the characteristic function x g, of K. The restriction of xx , on

P which is the generalized Green

Guni gives a G* -invariant function on G ;,

function Qf ¢, (cf. [L3, 11]).
Here F' acts naturally on W, which induces a Coxeter group automor-
phism of order, say c. We consider the semidirect product W = Wx(Z/cZ).
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If an irreducible representation Vi of W is F-stable, it can be extended to an
irreducible representation of W, in ¢ different ways. Assume that £ € W"
is F-stable. Then the corresponding (C’,£’) € N is also F-stable, and we
have F*Kp = Kpg. A choice of an isomorphism ¢p : F*Kp = Kp induces
a bijection o : Vg — Vg, which makes Vg into an irreducible WW-module
VE. We choose ¢ so that VE turns out to be a preferred extension of Vg
(cf. [L3, IV, (17.2)]. By making use of ¢ : F*Kg ~ Kp, we shall define an
isomorphism ¢ : F*E" = £ as follows; By (1.2.5), we have H*(Kg)|cr = &’
for g = —dim Zg —dim C’. We define 9 so that ¢(@+7)/2¢) corresponds to
the map defined by ¢p : F*H*(Kg) = H*(KE), where

r=dimY = dimG — dim L + dim(C x ZY),
and so
(1.3.1) ap+ 7 = (dimG — dimC’) — (dim L — dim C).
We define a function Y; on GE . for each j = (C’,&’') € N} by

Tr(y,g) ifgeC”,
Y9 =9, itggcr

Then {Y; | j € N&} gives rise to a basis of the space of G¥-invariant
functions on G¥

uni-

putation of xg, ., for each F-stable irreducible character £ of WW. We

Now the computation of x ., is reduced to the com-

denote Xk o, by X; if E corresponds to j = (C’,€’) under the generalized
Springer correspondence. In [L3, V], Luszitg gave a general algorithm of
expressing X; as an explicit linear combination of various Y;. Thus the
computation of xr , is reduced to the computation of Y.

We shall describe the functions Y;. Let us choose u € C’ F, and put
Ac(u) = Zg(u)/Z%(u). Then F acts naturally on Ag(u), and the set of
G-equivariant simple local systems on C” is in bijective correspondence with
the set of F-stable irreducible characters of Ag(u). Let us denote by p the
irreducible character of Ag(u) corresponding to £'. Let o be the restriction
of F on Ag(u). Then p can be extended to an irreducible character of the
semidirect product Ag(u) = Ag(u) x (o). We choose an extension p of
p. & has a structure of Ag(u)-module affording the character p, which
is extended to the Ag(u)-module affording 5. We choose an isomorphism
o+ F*E' = &' by the condition that vy induces an isomorphism on &,
corresponding to the action of o on p.
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Since £’ is a simple local system, there exists v € QZ‘ (depending on
the choice of ¢g, u and p) such that ¢ = 9. We define functions on on
the set ani in a similar way as Y}, but replacing 1 by . Then clearly we
have Y; = 'ijO. We note that the functions on are described in an explicit
way as follows. The set of GF-conjugacy classes in C’ Fis in bijective
correspondence with the set of F-twisted conjugacy classes in Ag(u). We
denote by u, a representative in the GF-conjugacy class contained in C’ F
corresponding to an F-twisted conjugacy class in Ag(u) containing a. Then
we have

¥ plac) if g is GF-conjugate to ug,
79 =10 itg¢CF.

It follows from the above discussion that the computation of generalized
Green functions is reduced to the determination of the scalar constant
for each pair (C',&') € NE. Let us choose v € CF, and let py be the
F-stable irreducible character of Af(v) corresponding to £. Then as in the
discussion above, the isomorphism ¢q : F*E = £ is given by choosing an
extension py of py to the semidirect product Ay (v) = Az (v) x (o). Thus
~v is determined by v, pg, u, p, which we denote by v = (v, po,u, p). The
purpose of this paper is to describe the constants (v, po,u, p) explicitly.

1.4. In order to make the Frobenius action more explicit, we shall

consider the following varieties. Put

Pu={gP € G/P | g 'ug € CUp},
(L41) P {g / 1| 9 ug P}
P.={9€G|g ugeCUp},

and consider the diagram

(1.4.2) c—_p L .p
with

Yuge CUp, pB:g+— gP.

We define a local system & on P, by the property that o*& = $*€. Then
it is known by [L3, 24.2.5] that

« : g — C-component of g~

(1.4.3) HIO(K) ~ HOH (P, E).

It is also known by [L2, 1.2 (b)] that dim P, < (ag + r)/2. Since the left
hand side of (1.4.3) is non-zero by (1.2.5), we see that

(1.4.4) dim P, = (ap +1)/2.
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Since P is F-stable, Py, P, are F-stable, and the diagram in (1.4.2) is
compatible with Frobenius maps. Moreover, the isomorphism g induces
an isomorphism ¢g : F *€ 2 &. This induces a linear map ® on V =
H®4 (P, £). By (1.4.3), W acts on V. Also Zg(u) acts naturally on V,
where Z2(u) acts trivially on it. Then it induces an action of A¢(u), which
commutes with the action of W. Let p be an F-stable irreducible character
of Ag(u) corresponding to £ as in 1.3, and V, the p-isotypic part of V.
Then @ leaves V, stable. The previous discussion shows that V|, can be
identified with Vg ® &, and @[y, coincides with op ® q(qoﬁ)/ 23). Thus the
map ¢ can be described by investigating ® on H2t" (P, £),.

1.5. We show that the description of the mixed structure ¢ : F*& —
E" on C’ is reduced to the case where G is simply connected, almost sim-
ple. In fact, let 7 : G — G’ = G /Zg be the natural homomorphism.
Then 7 induces a bijection between M (resp. Ng) and Mg (resp. Ngr)
which commutes with their F,-structures. Hence we may assume that G is
semisimple. Let 7 : G — G be the simply connected covering of G. Then
(L,C,&) — (77Y(L),C,7*E) gives a bijection between the set M and the
subset of Mg on which ker 7 acts trivially. Hence the mixed structure
@0 : F**E — 7€ for the pair (C,7*€) on G determines the mixed struc-
ture for the pair (C,€) on G. Similarly, 7 induces a bijection between the
set Mg and the subset of V. & on which ker 7 acts trivially, and so the mixed
structure of the pair (C’,&’) on G is determined by the mixed structure of
the pair (C',7*E’) on G. The procedure of determining the mixed structure
of (C',&') from that of (C,&) is parallel for G and G.

It follows from the above discussion that we may assume G is simply
connected, semisimple. Then G is isomorphic to the direct product of sim-
ply connected, almost simple groups, with F-action. Now it is easy to see
that we are reduced to the case where G ~ G X --- X G,., with G; a copy
of G1, and F acts on G as a cyclic permutation of all the factors. Then
GG is F"-stable, and the set ./\/lg is in bijective correspondence with the set
Mg:, via the correspondence (L,C, &) < (L1,C4,&1), where

L=1IL x F7""™YL) x --- x F7Y(Ly),
C=Cyx FHHCy) x - x FHCY),
E=ERFVER...REE.

Moreover, Cf" ~ C¥ via vy — v = (v1, F(v1),..., F" " (v1)). Then ¢y :
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F*& = £ is determined by 1 : FT™*& =2 &7 as

(©0)v = (p1)0; ® (@I)F’“—l(vl) @ (4,01)1?(@1)

on &, = (51)111 (%9 (51)FT*1(111) R X (gl)F(vl)' Similarly, the mixed F-
structure of (C',&’) € Ng is described by the mixed F"-structure of
(Cll, 5/1) < NGl .

Thus, the determination of the mixed structure of (C’,E&’) is reduced
to the case where G is an F-stable, simply connected, almost simple group.

1.6. Assume that G is almost simple and simply connected. Let g =
Lie G be the Lie algebra of G. We further assume that p is good for G unless
G is of type A, and that p > n if G = SL,,. Then by [BR], there exists
a logarithm map log : G — g satisfying the following properties; log is an
Ad(G)-equivariant morphism and log(1) = 0, d(log) : g — g is the identity
map. In particular, for any closed subgroup H of G, log(H) C Lie H C g.
Moreover, log|g,,; turns out to be an isomorphism Gyni — gnil, Where gpni
is the nilpotent variety of g.

Let £ be an irreducible G-local system on a nilpotent orbit C in g. The
notion of cuspidal local system on C is defined in a similar way as in the
case of groups, i.e., L is said to be cuspidal or (C, £) is a cuspidal pair if for
any proper parabolic subalgebra p; of g with nilpotent radical n; and any
y € p1, we have Hi((y +n1)NC, L) =0 for any 4. Then it is easily checked
(cf. [L4]) that log™ gives a bijection between the set of cuspidal pairs in G
and the set of cuspidal pairs in g.

Let (L,C,E) € Mg, and (C,L) the corresponding cuspidal pair in
[ = LieL, where C = log™'(C), £ = log*£. We put p = Lie(P) and
np = LieUp. Let C' = log(C’) be a nilpotent orbit in g. For each y € C’,
put

={gP € G/P | Ad(9)"'y € C +np},

P
(1.6.1) i -
Py={9e€G|Ad(g) 'y eC+np}.

Then by using a similar diagram as in (1.4.2), one can define a local system
£ on Py. It is easy to see that log gives an isomorphism 73u = 73y with
y = log(u), and so induces an isomorphism P, = P,. Then we have
log* £ = £. Tt follows that we have a canonical isomorphism

(1.6.2) HOT(Py, E) =~ HOV (P, L).
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In the case where G has an F g -structure with Frobenius map F, g has
also an action of F, and we may assume that log is F-equivariant. Then
the isomorphism (1.6.2) is compatible with Fg-structures. We denote by
the same symbol ® the linear map on H%"(P,, L) obtained as in the case
of H®*7(P,, ). Hence the linear map ¢(®+7)/24 on &, can be described
in terms of the Frobenius action ® on H2+" (P, £),,.

§2. Graded Hecke algebras

2.1. The graded Hecke algebra H was introduced by Lusztig [L7],
which is a degenerate version of affine Hecke algebras. In this section, fol-
lowing [L7] we review the definition of H and its representations on equiv-
ariant K-homology groups. In [L7], H is constructed as an algebra over C,
but here we regard it as the algebra over Q; so that one can relate it to
[-adic cohomology groups.

Let @ be a root system with a set of simple roots IT = {aq, ..., a,,} and
W the Weyl group of ® with corresponding simple reflections {s1,..., sy}
We assume that the root lattice Z® is embedded in a vector space h* over
Q. The action of W on Z® makes h* into a W-module. (Hence h* has
a direct sum decomposition, one summand being W-invariant, the other
having II as a basis.) Let S be the symmetric algebra of h* © Q;.
denote r = (0,1) € h*® Qy, so that S = S(h*) ® Qi[r]. W acts naturally on
S so that r is left invariant by W. We denote by & — “¢ the action of W
on §. Let c1,..., ¢y, be integers > 2 such that ¢; = ¢; whenever s; and s;
are conjugate in W. Let e be the neutral element of W. Lusztig showed in
[L7, Theorem 6.3] that there is a unique structure of associative Q;-algebra
on the Q;-vector space H = S ® Q;[W] with unit 1 ® e such that

(i) £ — £ ®e is an algebra homomorphism S — H,

(ii) w — 1 ® w is an algebra homomorphism Q;[W] — H,
)( )(1®w):§®w, (£€S7w€W)a
| £~

i

(iii

(iv) (1®s;)(E®e)—(PiE®@e)(1®s;) = ¢ ®e, (£€8S,1<i<m).

H is called a graded Hecke algebra attached to W with parameters c;.
It follows from (iv) that r is in the center of H.

2.2. The discussion in [L7] is concerned with algebraic groups over C.
Hence the equivariant K-homology is defined for the varieties over C. Since
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we treat algebraic groups over finite fields, we need to construct the equiv-
ariant K-homology based on the l-adic cohomology groups. Fortunately,
the basic properties established in Section 1 in [L7] work well also for our
situation, by a suitable modification. We give some comments below.

Let G be an affine algebraic group over k, and let X be a k-variety on
which G acts algebraically. As in [L7], for each integer m > 1, there exists a
smooth irreducible variety I" with free G-action such that I' — G\I" has a
locally trivial principal G-fibration, and that H*(I',Q;) =0fori =1,...,m
(As in [L7, 1.1], we embed G as a closed subgroup of GL,, and consider the
embedding

(2.2.1) G CGL, x{e} CGL, x GLyy C GLp4y.

Then I' = ({e} X GL/)\GL, 1, for large r' (2r' > m + 2), with the left
action of G on I', satisfies the required condition.) For a G-variety X, we
consider r X = G\(I" x X)) (the quotient by the diagonal action of G). Then
for an G-equivariant local system £ on X, there exists a unique local system
rL on rX such that 7*(rL) = p*L, where 7 : I' x X — G\(I' x X) is a
natural map, and p : I'x X — X is a projection. Then as in [L7], we define

HL(X,L) = HI(pX, L), HY(X,L)=HX7(pX,rL")",

where d = dim(pX), and the upper-script * denotes the dual local system
or the dual vector space. (We understand that H ]G(X ,L) = H/(X, L) and
HY(X,L) = H2MXI(X £*)* in the case where G = {e}.) We write
them as Hé(X), HJG(X) if £ is a constant sheaf Q. Also we write H:(X),
H'(X) instead of H(X,Qy), H'(X, Q).

By cup-product, HA(X) = @j H]G(X) becomes a graded Q;-algebra
with 1, and

HiH(X, L) = @HJXL HY(X,L) = @HGXL

become graded H (X )-modules.

We write Hf,, HS instead of Hy(point), HE (point). Then the map
X — point defines a Q;-algebra homomorphism ¢ : H}, — H}(X) preserv-
ing the grading. Via the map ¢, Hj(X, £), HE(X, L) can be regarded also
as H7-modules.
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2.3. Let T be a torus and X (7T') be its character group. The arguments
in 1.10 in [L7] do not hold in that form. We modify them as follows. In the
case where T' ~ G,, is the one dimensional torus, it can be verified directly
by the definition that H% ~ Q[z], a polynomial ring with one variable,
with = € H2. Since HY, o ~ H} ® H},, we see that Hjy ~ S(V*), the
symmetric algebra of a Q-vector space V* = Q; ®z X (T). In particular,
we have

HY ~ /(") HP™ =0,
and we may identify H2 with V*. (S7(V*) denotes the degree j-part of
S(V*).)

For x € X(T), let k, be the T-module k£ with the T-action by (¢, z) —
x(t)z. Let i: {0} — k, m: k — {0} be the obvious maps. Then 7* is an
isomorphism, and the composition

HT({0}) — HT(ky) T HT({0})

is Hi-linear of degree 2. Since HI ({0}) ~ H% as Hi-modules, (7*) 1o, is
given by multiplication by an element c(x) € H2 (cf. [L7, 1.10]). The map
c: X(T) — H2 =V* x+ c(x) gives an injective group homomorphism.

Assume that G is an algebraic group such that G is a torus 7. Then
W = G/G" acts naturally on Hz%, preserving the grading (see [L7, 1.9]). W
acts also on X (7'), and we have

(2.3.1) The map c¢: X(T) — H% = V* is W-equivariant.

In fact, take I" on which G acts freely. Then, for a representative w € G
of w € W, the map I' X ky — I' X ky(yy, (9,7) — (g, ) induces a map
fw + T\(I" x ky) — T\(I' X ky(y)), which makes the following diagram
commutative.

HI((0)) — HT(h) 1L HT({0))

o o Jo
| .

HI({0}) —— HI(ky) —— HI({0}).

(2.3.1) follows from this.
It follows from (2.3.1) that we have

(2.3.2) Hp ~ S(Qi ez X(T))
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as graded W-modules.
We don’t know whether the counter part of 1.11 in [L7] holds in our
setting. However, the following related fact holds.

LEMMA 2.4. Assume that G is a connected algebraic group. Let G,
be a mazimal reductive subgroup of G, and T a maximal torus of G,. Let
W = Ng,.(T)/T be the Weyl group of G,. Then W acts naturally on H7,
and the natural map Hf — HF. (cf. [L7, 1.4 (g)]) induced from the inclusion
T — G gives an isomorphism

Hf >, (HMW.

Proof. By [L7, 1.4 (h)], we know that Hf, = H{, . Hence it is enough
to show the lemma in the case where G is reductive. Assume that G = G,.
Let m be a large integer and let I" be an irreducible, smooth variety with
a free G-action such that H*(I') = 0 for 1 < i < m. We consider the map
f:T\I' — G\I', which is a locally trivial fibration with fibre isomorphic
to T\G. We have a spectral sequence

(2.4.1) HP(G\I', R1f,.Q;) = HPYY(T\I).

The map f is W-equivariant with respect to the trivial action of W on
G\I', and the left action of W on T\I', and so R?f.Q; has a structure
of W-sheaf, which induces an action of W on HP(G\I', R1f,Q;). W acts
naturally on HPT4(T\TI'), and by taking the W-invariant parts in (2.4.1),
we have a spectral sequence

(2.4.2) HP(G\I', R f.Q))"V = HPTI(T\I")".

Since f is a locally trivial fibration, RIf,Q; is a local system with fibre
HY(T\I'). We may assume that I" = ({e} x GLv)\GL,4, as in 2.2. Then
f is GL, -equivariant, and so R?f,Q; is a GL,,-local system on the
space G\I' (with respect to the right action of GL,,,/). Now GL,, acts
transitively on G\I" with a stabilizer of a point isomorphic to G x GL,..
Since G is connected, we see that RYf,Q, is a constant sheaf HY(T\I'). It
follows that

HP(G\I', R f,Qq) ~ H?(G\I') ® H)(T\G)
and we have

HP(G\I, R f.Qu)"" ~ HP(G\I') ® HI(T\G)"
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since W acts trivially on HP(G\I"). It is known that H*(T\G) is a graded
regular W-module, and

Ql if q= 07
0 otherwise.

HY(T\G)W = {

Hence the spectral sequence (2.4.2) collapses, and we have
(2.4.3) HP(G\I") ~ HP(T\I")"V.

This isomorphism is induced from the natural map HP(G\I") — HP(T\I').
Since Hy, = HP(G\I'), and HY. = HP(T\I") by definition, the lemma follows
from (2.4.3). a

For later discussion, we note the following.

COROLLARY 2.5. Assume that G is connected reductive, and let T,
W be as before. Let L be a Levi subgroup of a parabolic subgroup of G
containing T. Assume further that L contains a cuspidal pair as in 1.1.
Put W = Ng(Z?)/L = Ng(L)/L. Then the image of the natural map
Hf — H;g coincides with (H}E)W.

Proof. The inclusions Zg — T < @G induces the maps H, — H} —
Hyy. Put V* = Q oz X(T), Vi = Qi®z X(Z)). Then by (2.3.2), the map
HY — Hzg is nothing but the natural map ¢ : S(V*) — S(V;*) obtained
from the restriction map X(T) — X(Z9). Now W, W acts naturally on
S(V*), S(Vi"), respectively. Since W ~ Ny (Wr)/Wp, ¢ induces a map
o S(VHW — S(Vi)W. By [L7, Proposition 2.6], Z? coincides with a
maximal torus of a certain connected reductive subgroup H of G, and W is
regarded as the Weyl group of H. Thus in view of Lemma 2.4, it is enough to
show that ¢ is surjective. This is equivalent to the fact that V3 /W — V/W
is a closed embedding, where V' is the dual space of V* which is identified
with the Lie algebra of the torus Tgq, over Q;, and similarly for V;. But
by using the classification of the triple (L,C,E) € Mg, it is checked that
Vi/W — V/W is a closed embedding. Thus the corollary follows. U

2.6. 1.12 (a), (b) in [L7] were deduced by using 1.11 there. Here we
show the corresponding facts by using 2.3 as follows.
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(2.6.1) Let G be an algebraic group such that G is a central torus in G.
Then we have
HE ~ é«o.

In fact, by [L7, 1.9 (a)], we have
* * 0
HE ~ (HE)C9

But H}, ~ S(V*) with V* = HZ,, and the action of G/G° on S(V*) is
determined by the action of G/G° on X (G) by (2.3.2). By our assumption,
G/GY acts trivially on X(G?), and so on S(V*). This implies that H}, ~

S(V*) ~ H,, and (2.6.1) follows.

(2.6.2) In the same setting as above, let E be an irreducible representation
of G/G® over Q;. Then we have

HE (point, E ® E*) ~ HE".

The proof is similar to [L7, 1.12 (b)], by making use of (2.6.1).

2.7. We return to the setting in 1.1, and consider a connected reduc-
tive algebraic group G, and its Lie algebra g. We further assume that G
is almost simple, simply connected. Let G,, be the multiplicative group
of k. Then G acts on g by the adjoint action, and G x G,, acts on g by
(g1,t) : @ — t=2 Ad(gy)x. For x € g, we denote by Zg(x) the stabilizer of x
in G, and by Mg (x) the stabilizer of x in G x G,. Hence

Mg(z) = {(g1,t) € G x Gy, | Ad(g1)z = t2z}.

We assume that p is large enough so that Jacobson-Morozov’s theorem
and Dynkin-Kostant theory hold for g, (e.g., p > 3(h — 1), where h is the
Coxeter number of W, [C, 5.5]). Then, for each nilpotent element y € g,
there exists a Lie algebra homomorphism ¢ : sls — g, and elements y—,
h € g such that

0 1 . 00 10
y:¢<0 0>’ Y :¢<1 0>’ h:¢(o —1>'

Thus we have [h,y] = 2y, [h,y~|] = =2y, [y,y~] = h. Moreover, we
have a decomposition g = €p, g;, where g; is the i-eigenspace of adh :
g — g. In particular, note that y € go, ¥y~ € g_2. One can define an
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algebra homomorphism p’ : G, — Autg by p/(t)z = t'z for 2 € g;. Since
the identity component of Autg coincides with adG = G/Z¢, p'(Gy,) is
a one-dimensional torus in ad G. By taking the identity component of
71 (Gp)) for 1 : G — ad G, one obtains a one parameter subgroup
p: Gy, — G such that p' =mop.

We put

Za(9) = Za(y) N Za(y™),
Mea(¢) = {(g1,1) € G X Gy | Ad(g1)y = t7y, Ad(g1)y~ =ty }.

It is known that Zg(¢) is a maximal reductive subgroup of Z(y). It is easy
to check that (g1,t) — (g1p(t),t) gives isomorphisms of algebraic groups

(2.7.1) Za(y) x Gm = Ma(y), Za(9) X Gm == Mg(9).

Hence Mg (¢) is also a maximal reductive subgroup of M¢(y). It also follows
from (2.7.1) that the embedding Zg(y) — Mg (y) by g1 — (g1,1) induces
an isomorphism

Za(y)/Za(y) = Ma(y) /M (y)-

This implies that the G-orbit of x € g is also a G x G,-orbit, and a G-
local system on a nilpotent G-orbit in g is automatically a G x G,,-local
system. In later discussions, we use the notation M (y), M°(y), etc. instead
of M(y), M2(y), etc. by omitting the subscript G if there is no fear of
confusion.

2.8. Under the setting in 1.1, let p, [, np be the Lie algebras of P, L,
Up so that p = [ & np. Let 3 be the Lie algebra of Zg. We assume that
(L,C,E) € Mg, and let (C, L) be the corresponding cuspidal pair on [ (cf.
1.6). Let

(2.8.1) g={(z,gP) €gx G/P | Ad(g_l)x €C+j3+np},

and T : § — g be the first projection. G x Gy, acts on g by (g1,t) :
(z,gP) — (t72Ad(g1)z, g19P), and 7 is G x G,-equivariant. We consider
the diagram

C > §={(r,9) €gx G |Ad(g )z €C+j+np} —— g,

where a(x, g) = pre(Ad(g~1)x), B(z,g) = (z,gP). Here a, 8 are G x G-
equivariant with respect to the action of G x G,, on C given by (g1,t) :
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x + t~2x, and the action of it on the middle term given by (g1,t) : (z,9) —
(t72Ad(g1)x,g19). Since L is an L-local system, there exists a unique local
system £ on § such that oL = 3*L. By 2.7, L is L x G,-equivariant, and
$0 is G X Gy,-equivariant with respect to the above action. Hence £ turns
out to be G x G,,-equivariant.

Let £* be the dual local system of £, and consider K = m(ﬁ*) Then
it is shown in [L7, 3.4] that K[J] is a G x G,,-equivariant perverse sheaf on
g with a canonical W action, where ¢ = dim(g/l) + dim(C + 3).

Let X be an algebraic variety with a given morphism m : X — g. We
consider the fibre product X = X x g § with the cartesian diagram

X "4
(2.8.2) ”'l ”l
X " g

Then m* K is a complex with W-action, and it induces a natural W-action
on the cohomologies

(2.8.3) HI (X, m*K) ~ H(X, n{m*L*) ~ HI (X, m*L").

We further assume that X is a G’-variety, where G’ is a connected
closed subgroup of G x G,,, and that m is compatible with G’-actions. If
we choose a smooth irreducible variety I" with a free G'-action as in 2.2,
the cartesian diagram (2.8.2) is lifted to the cartesian diagram

PX rg
|l
rX - rg

As in 2.2, we have a local system rL£* on g, and a perverse sheaf (up to
shift) r K on pg which inherits a W-action from K. Since K = (pm)i(pL*),
as in (2.8.3) we have natural W-actions on cohomologies

HY(r X, (rm)*(rK)) = BL(r X, (e )i(pri)*rL*) = HI(r X, (rm)* rLY).
Hence we have an action of W on the equivariant homology
H (X, £) = B (r X, pL7)",

where d = dim(prX). (Here we write ri*L*, (p1n)*rL*, etc. as L*, pL*, etc.
by abbreviation.)
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2.9. We fix an element xy € C and a Lie algebra homomorphism ¢ :
sly — [ such that ¢o (§§) = zo. Asin [L7, 2.3 (b)], we have

(2.9.1) Z}(¢0) =
It follows that Z9(¢) is central in Z1,(¢). Hence by (2.7.1), we see that

(2.9.2) MP(¢o) ~ Z9 x Gy, and MP(¢p) is contained in the center of
M (o).

Put h* = Q, ®z X(Z?). The bh* is a Q;-space of dimg, h* = dimy 3, on
which W acts naturally. We define a symmetric algebra S over Q; by

=S(h" o Q) =5(h") ® Qr],

where Q[r] is the polynomial ring with an indeterminate r corresponding to
(0,1) € b* © Q;. We now consider the equivariant cohomology H¢,, g (9)-
As in [L7, Proposition 4.2], we have an isomorphism

(2.9.3) Hiyg, (8) =S

as graded algebras. In particular, HéxGm (§) = 0 for odd j. For the proof,
the argument in [L7] implies that

Then by using (2.6.1) and (2.9.2), combined with (2.3.2), we have

~ H*

M9 (60) = H7

X4L(¢O) Z9%Gm =S.

Hence (2.9.3) follows.

Let X be a G-variety (G is a connected closed subgroup of G' x G m)s
with a given G’-equivariant morphism m : X — g m*L is a G'-local
system on X which we denote by L by abbrev1at10n Now m* induces
an algebra homomorphism H¢,(g) — HG,()N( ). By combining the natural
homomorphism H¢,, g (§) — HE(9) (cf. [L7, 1.4 (g)]), we have a homo-
morphism HGxG (g) — Hg,()?) Since HY' (X, L) is a Hg,()?)—module
by 2.2, HS' (X, £) has a structure of a left H¢y g, (9)-module. Thus by
(2.9.3), HY (X, £) turns out to be an S-module.
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2.10. Let 7 : g — g be as in 2.8. Then for each y € gy, 7 ()
coincides with Py in (1.6.1). The variety X = {y} is invariant under the
action of M%(y) € G x G,,. Let G’ be a connected closed subgroup of
M?O(y). By applying 2.8 to the inclusion m : X < g together with X = Py,
we see that HE' (Py, £) has a natural W-action. By applying 2.9 for X =X,
HY (Py,ﬁ) has a natural S-action. It also has a structure of H¢,-module
by 2.2.

We consider the graded Hecke algebra H = S ® Q;[W)] as defined in
2.1, where S is as in 2.9, with a natural action of the Coxeter group W.
Lusztig proved the following theorem.

THEOREM 2.11. (Lusztig [L7, Theorem 8.13]) There is a unique H-
module structure on Hi\/lo(y) (Py,ﬁ) such that the actions of S and W are
given as in 2.10. (The integers ¢; are determined according to the cuspidal
pair (C,L). See [L7, 2.13] for explicit values for ¢;.) Moreover, the H-module

0 .
structure commutes with the H7 ~module structure on H.' ®) (Py, L).

MO(y)

Remark 2.12. The arguments used in [L7] to prove the theorem are
valid also for our setting in almost all cases, by taking 2.3-2.7 into account.
We give further comments on the discrepancies of the arguments.

(a) In [L7, 4.3], the property of the image H, g — H}

MO (60) is used.

For this we appeal to Corollary 2.5.

(b) In the proof of Proposition 7.2 in [L7], a property of simply con-
nected space is used, which is not valid in the positive characteristic case.
As in 7.1, we consider a connected algebraic group M, and an M-variety
X, M-equivariant local system & on X. Let I' be an irreducible, smooth
variety with a free M-action as before. Let f : M\(I" x X) — M\I" be the
locally trivial fibration. We consider the Leray-Serre spectral sequence

HP(M\T, R1f\(p&E*)) = HPYI(M\(I" x X), rEY).
We show that
(212.1)  E}Y = HY(M\L, RUAi(r€")) = HP(M\I') @ HI(X,€°).
(In [L7], this is obtained as a consequence of the fact that M\I" can be
chosen to be simply connected.) We consider the cartesian diagram

I'x X —— M\(I" x X)

7 s

r - ML
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Now r&* on M\(I" x X) satisfies the property that Q; X &* = 7*(r£*). By
the base change theorem, we have 7 R?fi(p£*) ~ RIfim*(pE*). Tt is easy to
see that RYf,(Q;XE*) is an M-equivariant constant sheaf, and RYf,(rE¥) is
obtained from it as the unique quotient. Thus, R?f,(p£¥) is also a constant
sheaf with the stalk HZ(X,£*). This implies (2.12.1).

Once this is established, the other parts in the proof of Proposition 7.2
work without change.

2.13. We return to the setting in 2.10. Let T'(y) be a maximal torus
of M°(y) and W (y) the Weyl group of a maximal reductive subgroup of

MPO(y) with respect to T(y). Then by (2.3.2) and Lemma 2.4, H3 o, can

be identified with S(V*)W®) | where V* = Q; ®z X (T(y)). Hence Hipo,
may be regarded as the coordinate ring of an affine algebraic variety (over
Q) Vi = V/W (y), where V is the dual space of V*. Then for each v € V4,
one obtains an algebra homomorphism H} W Qi, f — f(v). We denote

the thus obtained Hy o, -module Q; by (Qq),. It is known by [L7, 8.6] that

Hi\/[ 2 (Py,ﬁ) is a finitely generated projective H&O(y)-module. It follows

that Hiw "W (Py,ﬁ) may be regarded as a space of sections of algebraic
vector bundle E over Vi, where the fibre of E at v € V] is given by

2.13.1 Ey = (Q)y @5 HM' WP, £).
)

MO (y)

Put M(y) = My)/M°(y). Then the finite group M(y) acts on Hy,) as a

Q-algebra automorphism, and acts on H M 2 (Py, £) compatible with the
action of Hy ). Also this action of M(y) on MW (Py, £) commutes
with the action of H. The action of M(y) on H Ao(y) induces an action
of M(y) on Vi, and E turns out to be an M (y)-equivariant vector bundle
over V;. For each v € V3, we denote by M (y,v) the stabilizer of v in M (y).
Then M (y,v) acts naturally on E,,.

Let M (y,v)" be the set of irreducible representations of M (y,v) up to
isomorphisms. For each p € M(y,v)", put E,, = (p* @ E,)M®?) where
p* is the dual representation of p. Then E, , is an H-module, and FE, is
decomposed as

E,= @ »@E,,.
pEM (y,v)"

The action of M(y) on Py, L, £* induces an action of M(y) on

H*(P,, L), H:(P,, £*), hence on H{? (P, £) = H*(P,, £*)*. Tt is known
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by [L7, 8.10] that E, , # 0 if and only if p occurs in the restriction of M (y)-

module H,;{e}(Py,[',) to M(y,v). The H-modules E, , are called standard
modules.

Remarks 2.14. (i) Standard modules E,, , are parametrized in [L7] (i.e.,
in the setting that G and g are defined over C) as E}, ,, , in terms of the pair
(h,ro) € g ® C such that [h,y] = 2roy with h semisimple. This is also pos-
sible in our situation, though we cannot use the Lie algebra g over k. Since
p is good, we have corresponding objects G, gc, and the parametrization
of nilpotent orbits and the structure of M(y) are the same for g¢ also. If
we consider the maximal torus T'(y)c in M (y)c corresponding to T'(y) in
M (y), the space V* may be identified (under a choice of an isomorphism
Q; ~ C) with the dual of the Cartan subalgebra h(y)c of a maximal reduc-
tive subalgebra m(y)c, of m(y)c = Lie M(y)c with the action of W (y).
Then the action of M(y) on S(V*)W®) coincides with the action of M (y)
on S(h(y)e)" W =~ S(m(y)g,) " We. Here

m(y)c = Lie M°(y)c = {(z,70) € gc & C | [z, y] = 2roy}.

Moreover, the action of M(y) on S (m(y)&,) is induced from the action of
M(y)c, (91,t) : (z,70) — (72 Ad(g1)x,t 2rg). Hence V; is identified with
the set of semisimple M?(y)c-orbits on m(y)c. This implies, in our case,
that E, , may be expressed as Ej, , », and M (y,v) as M (y, h,ro), if (h,7q)
is a semisimple orbit in gc @ C corresponding to v € V.

(ii) Standard modules play a crucial role in the representation theory
of H. The structure of H-module E, , was studied throughly in [L8], [L9].
However, the result in [L7] is enough for our purpose.

In view of the above remarks, the following result of Lusztig can be
applied to our setting.

THEOREM 2.15. ([L7, Theorem 8.17]) Let (h,r9) € gc ® C be a semi-
simple element such that ro # 0. Then

(i) Let Yy = {7 € gc | [hz] = 2rox}. Then Yy, consists of
nilpotent elements, and Zg(h) acts (by the adjoint action) on Y, )
with finitely many orbits.

(ii) Let y be an element in the unique open dense orbit in Y- Then
(h,ro) € m(y)c. Let p € M(y,h,ro)" be such that Ep ., # {0}.
Then Ej, ;. , 18 a simple H-module.
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2.16. Here we summarize the properties connecting the equivariant
homology with the ordinary cohomology. Let M be a connected algebraic
group, X an M-variety and £ an M-equivariant local system on X. We
consider HM(X,€). For each i, we define F’ as the Hj}-submodule of
HM(X, &) generated by D, H]]-V[(X,S). Then F' gives a filtration F* C
F'C...and Fi=0fori<0. PutIl; = HM(X,&)/HM(X,E)NFi~1. We
have a natural injection II; — F?/F'~! as Q-spaces. Since F'"/F~! is an
H3,-module, this is extended to an Hj,-linear map

(2.16.1) Hy ®q, I — F'/F.

The natural homomorphism HM (X, &) — Hz{e} (X, &) is zero on HM (X, E)
N Fi~1 and it factors through a Q;-linear map

(2.16.2) I, — H(X,E).

Lusztig showed in [L7, 7.2] that the maps (2.16.1) and (2.16.2) are isomor-
phisms whenever H44(X,£) = 0, and in that case we obtain an isomor-
phism

(2.16.3) Hyy @q, HIY (X, 6) -~ PP,

We now consider the case where X = P,, £ = £ and M = MO(y).
It is known that H244(P,, L) = 0 by [L3, V, 24.8], and so the previous
argument can be applied. We consider E,, as in (2.13.1) and H X/lo(y)-module

(Q;)y. We define an Q;-space F! by F! = (Q;), ®H;40(y) Fi. Then F! is

naturglly iden‘;iﬁed with a quotient of ,; H]]-V[é(y) (Py, L) We denote by
fi : Fi7! — F the natural map induced from F*~1 — F'. Tt follows from
(2.16.3) we have an exact sequence of Q-spaces

(2.16.4) pimt HY P, L) —— 0.

In particular, we have
(2.16.5) FO ~ HY (P, L).

2.17. We consider the F g -structure on the equivariant homology. As-
sume that G and X are defined over F, with Frobenius map F', and G
acts on X over Fy. Let £ be an G-equivariant local system on X such
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that F*E& ~ £. We fix an isomorphism ¢ : F*& =X £. Then ¢ induces
natural linear isomorphisms on HE(X,E), H%(X,E), etc. In fact, one can
choose a G-variety I" so that I" is defined over F,. (We may assume that
G is an F-stable closed subgroup of some GL,. The case where GL, has
a split Fy-structure, the construction of I" in 2.2 works well. If GL, is
of non-split type, we choose F' = ogFp, where Fj is a split Frobenius,
and g is an automorphism of GL, defined by oq(g) = g~!. By choos-
ing similar Frobenius maps for GL,» and GL,,, the inclusions in (2.2.1)
are F-equivariant. Hence I' = {e} X GL\GL,4, is defined over F,.)
Then the maps 7 : I' x X — rX, p: I'x X — X are defined over F,,.
Hence p& inherits an Fg-structure of &, which induces a linear map on
HL(X,E) = H'(rX,r€). The thus obtained linear map is independent
of the choice of I'. In fact, if I is another choice, we have an isomor-
phism H7(rX, r€) = T (rxr X, rxr€), ete. as in [L7, 1.1], which are
compatible with the induced F-actions on them.

83. G = SL, with F of split type

3.1. In this section, we assume that p is arbitrary, and consider G =
SL, with the standard Frobenius map F on G, i.e., for g = (g;5) € G,
F(g) = (gfj). Let V = k™ with the standard basis ey, ..., e, and we identify
SL, with SL(V).

Let g = sl, be the Lie algebra of GG, and we denote by F' the corre-
sponding Frobenius map on g. The unipotent classes in G and nilpotent
orbits in g are parametrized by partitions of n, via Jordan normal form.
Let A = (A1, A\2,..., ) be a partition of n, and let C) (resp. Cy) be the
corresponding unipotent class in G (resp. nilpotent orbit in g). Each C, is
F-stable, and we construct a specific nilpotent transformation y = y) € Cf
by defining a basis {y®f; | 1 < j <r, 0 <a < \;} of V obtained from the
standard basis as follows;

(3.1.1) y'fj=e with i=X+---4+Xi_1 +a.

Then uy =y +1 € Cf. The element y) € Cf (resp. uy € Cf) is called
the split element corresponding to A.

3.2. By [L2]|, [LS], the generalized Springer correspondence for the
case where G = SL,, is described as follows. Let n’ be the largest divisor
of m which is prime to p. Then the center Zg is a cyclic group of order

n/. For a divisor d of n/, consider a Levi subgroup L of P of the type
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Ag—1 X+ x Ag—1 (n/d-factors). Let C be the regular unipotent class in L.
Then for v € C, Ap(v) = Z,/Z9 ~ Z/dZ. Let € be an L-equivariant local
system on C' corresponding to a character py of Ar(v) of order d. Then
(C,€) is a cuspidal pair on L, and any cuspidal pair on a Levi subgroup
of a parabolic subgroup of G is obtained in this way. Hence for a Levi
subgroup L determined by d, there exist exactly ¢(d) cuspidal pairs in L,
where ¢ is the Euler function.

Let K be as in (1.2.2) with respect to the cuspidal pair (C,€) on
L. Let C’ be a unipotent class in G corresponding to a partition A =
(A1, A2,...,Ar). Then for v € C', Ag(u) is a cyclic group of order n),
where 7, is the greatest common divisor of n’, A, Ag,..., . Let £ be the
local system on C’ corresponding to p € Ag(u)”. The condition for C’
such that IC(C’,&’) is a component of K (up to shift) is that each \; is
divisible by d. In this case n/ is divisible by d, and we have a surjective
homomorphism Ag(u) — Ar(v) which factors through the natural maps
Za — Ag(u) and Zg — Ar(v). Let p € Ag(u)” be the character obtained
as the pull back of pg € Az (v)". Then IC(C’,&’) is the unique component
in K whose support is c.

Now W = Ng(L)/L is isomorphic to the symmetric group S, /4. The
irreducible character £ = E, € S} /4 corresponding to (C',E&") under the
generalized Springer correspondence is given by p = (A1/d, A2/d,...).

3.3. We fix an F-stable Borel subgroup B of G and an F-stable maxi-
mal torus contained in B, where B (resp. T') is the subgroup of G consisting
of upper triangular matrices (resp. diagonal matrices). We fix d as in 3.2,
and put t = n/d. Let P = LUp be the parabolic subgroup of G containing
B, where L is the Levi subgroup of P containing T" of type Ag_1 X--- X Ag_1,
(t-times). Hence P, L and Up are all F-stable. Let (C, &) be the cuspidal
pair in L corresponding to pg € Ar(v)" as in 3.2, and (C,L) the corre-
sponding objects in [. The unipotent class C' in L can be identified with
Cy x--xCyin SLg x --+ x SLy with C; regular unipotent in SLy. We
choose v = vg € CF so that vy is a product of split elements in C’Z-F , and
let yo = vg — 1 the corresponding element in CF'. Let AVL(’U()) be as in 1.3.
Since Af(vg) is abelian, py € Ar(v)"
po so that pyp(c) = 1. This corresponds to an isomorphism ¢g : F*€ =5 &
which induces the identity map on the stalk &,,.

Let A = (A1, ..., ) be a partition of n such that all the \; are divisible
by d, and u = uy the split unipotent element in G¥". As in the case of (C, &),

is linear. We choose an extension
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we choose an extension p of p € Ag(u)” corresponding to £’ by the condition
that p(o) = 1, and consider v = (v, po, u, p) as in 1.3. Passing to the Lie
algebra situation, we consider y = yy € g¥ and yo € CF'. Under this setting,
we write v as v = 7(yo, po, ¥, p). We consider the subvariety P, of G/P as
given in (1.6.1). As in 1.6, the map ¢ induces a linear isomorphism ® on
H&F7(Py, L£). We have

THEOREM 3.4. Assume that p is arbitrary, and let G = SL,, with the
standard Frobenius map F. Then ® acts on HZV"(Py, L) = HIV (Py, L),
as ¢(9+7)/2 times identity. In particular, we have ¥(yo, po,y,p) = 1.

3.5. The remainder of this section is devoted to the proof of Theo-
rem 3.4. Since the second statement easily follows from the first one, we
concentrate to the proof of the first statement. First we note that P, may
be identified with the set F, of partial flags

D= (Vg CVag C-+- CVy_pya),

such that D is y-stable and that y induces a regular nilpotent transformation
on V;q/V(j—1)q for each i > 1. (Here V; denotes a subspace of V with
dimVj = j.)

Let G, be the set of d-dimensional subspaces V; of V such that Vj is y-
stable and that y acts as a regular nilpotent transformation on V;. We have
a natural surjective map p : F, — G, by p(D) = V;. Then G, is identified
with the variety P(Ker y¢) — P(Ker y?~1); for each v € Kery? — Kery¢!,
the space spanned by v, yv,...,y% v gives an element in Gy. We have a
filtration of G,

Gy=G0D>G1 D,

where G; — G411 ~ A%~ with dim Gy = s = d(dimKery) — 1. Here G; is
defined by P(U;) — P(Kery?—!) for a certain subspace U; of Kery? con-
taining Kery?! such that Kery?® = Uy D U; D ---. Let us choose a
non-zero vector w; € U; — U;41 for each i. We can choose some e; as w;.
As in the case of B, for GL,, one can define a map f® : A5~% — Zx(y),
v f}@ such that fqgi) -w; = v for v € U; — U;_1, under the identification
P(U;) — P(Ui_1) ~ A5, (Here G denotes GLy.) Let de‘) be the element
in G, corresponding to w;. Then y induces a nilpotent transformation 7 on
V=V V(i), which corresponds to a partition A’ of n — d obtained from A
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by replacing some A; by A; — d. Moreover, pil(Vd(i)) is isomorphic to F,

the corresponding variety for SL(V'), under the correspondence

D=V CVoaC- CVy i) — D=Vaa C---CViy_1)a)

with V4 = de/Vd(i). As in the case of GL,, by using the map f®) : A5~% —
Z&(y), we have an isomorphism

(35.1) p V) % (G = Gin) 2 p7N (G — Gin1), (Dyv) — ) D.

Note that F, and G, have natural F ;-structures inherited from G /P. Then
G; are all F-stable, and the isomorphism in (3.5.1) is F-equivariant.

3.6. Let @ be the maximal parabolic subgroup of G containing P of
type A,_qg-1 X Ag_1. Let G be the set of subspaces of dimension d in V.
Then G may be identified with G/Q and G, is a locally closed subvariety
of G. The map p : 7, — G, is obtained from the map G/P — G/Q by
restricting it to P,, which we also denote by p. Now, Vd(i) € Gy corresponds
to gQ € G/Q for some g = g; € G and pil(Vd(Z)) may be identified with
p 1 (gQ), where

p ' (9Q) = {zP € gQ/P | Ad(z) "'y € C+np}.

We may choose g so that gP € P,.

We note that @/P is isomorphic to M /Py, where M is the subgroup
of G isomorphic to SL,_4, and is isogeneous to a component of the Levi
subgroup of ) containing T'. Then Py; = PN M is the parabolic subgroup
of M of type Ag—1 X -+ X Ag_1, (t — 1 factors), and Ly; = LN M is the
Levi subgroup of Pj;. The regular nilpotent orbit C in [ can be written
as C = Cpr X Ci, where Cyy is the regular nilpotent orbit in Lie Lys = [
and C; is the regular nilpotent orbit in the ¢-th component of [. Since
Ad(g)~'y € C + np, one can write Ad(g)"'y = v/ + 2’ with ' € m and
Z' € C +ng. (Here m = Lie M and ng = LieUg.) Set

Pyl ={xPy € M/Py | Ad(z)™'y € Cs + npy, },
P ={z e M| Ad(x)""y € Car +np,, }-

We note that

(3.6.1) The map xPys — gxP gives an isomorphism Pé‘,/f ~ p~H(gQ).
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In fact, since M normalizes CtUg, we have Ad(z) "'z’ € C; +ng. Then
the condition Ad(gz) 'y € C+np is equivalent to the condition Ad(z) =1y’ €
Cy +1np,,. (3.6.1) follows from this.

By (3.6.1), one can define an injective map ¢ : Pé‘,/f — Py. Similarly,
7/5;\/4 is isomorphic to the set {2’ € gM | Ad(z')"'y € C + np} which is a
subset of 73y. Hence we have an injective map ¢ : 735‘,/1 — 7/53/. Now it is easy
to see that the following diagram commutes.

B

(3.6.2) T Tz T

Ol, -~ ﬂ/
Cy —2— PM 2 PM.

Here the left vertical map is an injection ¢ : Cpy — C, x — (z,y”), where
y” is the projection of 2’ € C; +ng to Cy, i.e., the projection of Ad(g)~ty €
C +np on C;. The horizontal maps o/, 5" are defined in a similar way as «
and [ by replacing G by M.

Let £ and £ be local systems on C and P, respectively, as in 1.6. We
denote by Lj3; and L M similar objects for Cj; and Pé‘,/f as L, L for C and
P,. Then L coincides with (¢/)*£. This implies, by (3.6.2), that

(3.6.3) VL= Ly
Put

Y, ={2Q € G/Q | Ad(z) 'y e m +C; +ng},
V,={zcG|Adz) lycm+C +ng}.
Then Y, is isomorphic to G,. We consider the subset Y; of Y}, corresponding
to G;. Since G; — G;11 coincides with the set {ff,z) cw; | v € AST} one

can write as Y; — Y;411 = {fqu)giQ | v € A57%}. Then we have the following
commutative diagram

a > B

C —— Y, —— Y,

(3.6.4) I I I

{y/} —— fOAT)g —— Vi — Vi1
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Here y! = y” is as in (3.6.2), and &(x) is the Ci-component of Ad(z) 'y €
m+ C; +ng, 6 () = x@Q. All the vertical maps are natural inclusions and
the lower horizontal arrows are the restrictions of upper ones. Note that
the right lower horizontal map is an isomorphism since Y; — Y41 ~ A7,
Let £; be the cuspidal local system on C;. Then we have a local system
ﬁt on Y, by the condition that a*L; = B*Lt Since L; is a local system of

rank 1, it follows from (3.6.4) that
(3.6.5) The restriction of LionY; — Y;,1 is the constant sheaf Q;.

We now consider the commutative diagram

3 B

(3.6.6) T T T

2 _ _ /6” _
Cur x {y!'} «2— B (p (Y — Yip1)) ——— p NY; — Vi)

Here all the vertical maps are natural inclusions, and the horizontal maps
o and " are the restrictions of @ and . By (3.5.1), we have

p N Y; = Yigr) = Pl x (Y; — Vi),
B pHY: = Vi) = PY x fO(A* g,
and under the above isomorphisms, the maps «”, 3" are given as
o (2, fPgi) = (o (@),)), Bz fg:) = (B(x),v)

for:repy, vEY; — Y~ A5
Now the restriction of £ to Cps x {y!'} is a local system £, X Q;. Hence
by making use of (3.6.6) and (3.6.7), we have

(3.6.7)

(3.6.8) Under the isomorphism p~!(Y; — Yi 1) ~ Pé\? x (Y; — Yiy1), the
restriction of £ on p~1(Y; — Y4 1) coincides with Ly RQ.

It follows from (3.6.8) that we have an isomorphism
(3'6'9) H!:C(pil(yé - Yi-l-l)v E) = Hf,(PyaﬁM)v

where k& = k' (mod 2). Then using the locally trivial filtration of P, =
p~1(Yp) D p~ (Y1) D -+, and by induction on the rank of G, we see that

(3.6.10) HYY(p™'(Y7),£) =0

for any ¢ > 0.
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3.7. We are now ready to prove Theorem 3.4. Put m = ag + r. First
we note the following.

(3.7.1) H™(P,,L) = H™(P,, L),, and the map ® acts on H*(P,, L) as a
scalar multiplication.

In fact, it follows from Section 2 that H ?(Py,ﬁ) has a natural struc-
ture of W x Ag(y)-module, which is compatible with the isomorphisms
(1.4.3) and (1.6.2). Hence by the generalized Springer correspondence, it is
decomposed as

HT(Py,ﬁ) ~ GB Vyp @0,
p'EAG (YN
where V, , is an irreducible W-module whenever it is non-zero. Now the
explicit description of the generalized Springer correspondence in the case
of SL,, (see 3.2) shows that p is the unique character such that V, , # 0.
Hence H™(P,,L) = H(P,,L),. Since Ag(y) is abelian, H™(Py,L) is
an irreducible W-module. Tt is easy to see that the map ® on HI'(P,, L)

commutes with the action of W. Hence ® is a scalar multiplication, and so
(3.7.1) holds.

Note that in the discussion of 3.5 and 3.6, G, Y, etc. have natural F-
structures. We may choose the filtration of G, and Y, compatible with the
F,-structure, i.e., all the Y; and }Afy are F-stable. Then all the diagrams and
formulas there hold with F ,-structure. We consider the top piece Yy — Y7 of
the filtration of Y}. In this case, we may choose g = go = 1 in the discussion
in 3.6, and so y is decomposed as y =y’ + 2’ with ¢ € m and 2’ € C; + ng.
Hence 3/ (resp. y”) is the projection of y on m (resp. on C;). Since y is a
split element, 1/, y” are also split. Let

m' = (dim M — dimCy) — (dim Lps — dim Cpy),

where C,/ is the nilpotent orbit in m containing y’. Since C is the regular
nilpotent orbit in I, we see easily that m = 2dimB,, where B, is the
variety of Borel subgroups whose Lie algebra contains y. Similarly, we
have m' = 2dim sz/\fl . Then by using the locally trivial filtration of B, we
see that

(3.7.2) m —m' = 2d dim Ker y = 2s.

In fact, assume that y = y) with A = (A1,..., Ax). By using the locally triv-
ial filtration arising from the maximal parabolic subgroup P; of G with Levi
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subgroup L of type A,,_», one obtains that dim B, — dim ByLll = dim Kery,
where y; is a nilpotent element in Lie L; of type X = (A1,...,A\x — 1).
In the same way, one can find a nilpotent element yo € Lie Ly with type
(Aly..., A — 2) such that dimB{;ll - dimB{;; = dim Ker y, where Ly is a
Levi subgroup of the maximal parabolic subgroup P»> of L;. Repeating this
procedure, one can find similar formulas for Ly D Ly D --- D Ly with
Bl = Bé\fl. (3.7.2) follows from this.
Since Yy — Y7 ~ A®, we have an isomorphism with F,-structures

(3.7.3) HI'(p™ (Yo — Y1), £) ~ HI (P, Las)ls]

as a special case of (3.6.9), where [s] is the Tate twist. (The compatibility of
the Frobenius actions comes from the discussion in 3.6 by noticing that y”
is a split element in C;.) Let @5 be the map on H?/(Pé‘,/[, L) defined in a
similar way as ®. By induction on the rank of G, we may assume that ®
acts on H™ (Pé\?, L) as a scalar multiplication by ¢™/2. Then by (3.7.3),

m/2  Now

® acts on H™(p~'(Yy — Y1), L) as a scalar multiplication by ¢
by using the cohomology long exact sequence with respect to the closed
immersion p~1(Y1) € p~1(Yy) = Py, together with (3.6.10), we see that the
natural map

H(p~' (Yo = Y1), L) — H['(Py, L)

is injective. This proves the theorem since ® acts on H"(P,, E) by a scalar
multiplication by (3.7.1).

84. G = SL, with F of non-split type

4.1. In this section, we assume that G = SL,, is as in Section 3, and
that p is large enough so that the argument in Section 2 can be applied
(e.g., p > 3(n —1)). Let FF = oF, be the twisted Frobenius map on G,
where Fj is the standard Frobenius map over F, as in 3.1, and o is the
graph automorphism on G of order 2. Here we take o : G — G defined
by o(g) = wolg twy ! for g € G (wp is the permutation matrix in GL,
corresponding to the longest element in S,,, and g means the transpose of
the matrix g = (g;j)). Then B and T in 3.3 are F' and Fy-stable.

Unipotent classes in G are all F-stable. In order to describe elements in
CF for each unipotent class C, we introduce a sesqui-linear form as follows.
Let V ~ k" be as in 3.1, and Vj the F2-subspace of V' generated by {e;}.
We define a sesqui-linear form (, ) on Vo by (3=, aie;, 3, bjej) = 3, aiby,_;.
Then it is easy to see that for g € GF g € GF if and only if (gv, gw) =
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(v,w) for any v,w € Vj. Let g be the Lie algebra of G, on which F acts
naturally. Then for z € g¥%, z € g¥' if and only if (zv,w) + (v, zw) = 0 for
any v,w € V.

4.2. For a partition A = (Aq,..., ) of n, we shall construct a nilpo-
tent element yy € g¥. First we note that there exist basis vectors

i< 1<i< N
of V} satisfying the property that

1 ifi=4,j+k=XN+1and j#k,
GO =341 ifi=7, j4+k=XA+1and j =k,

0 otherwise.

In fact, we can choose f}i) = e, for some k if \; is even. If \; is odd, put
Ai = 2t;+1. Then f}i) is of the form ey, if j # ¢;+1, and we can choose ft(:_)H
from one of the vectors e &= %en_k_l’_l with 2k # n+ 1 (note that p > 2), or
e; with n = 21 + 1.

Put t; = [Xi/2] ([ ] is the Gauss symbol) for each \;. We now define a
nilpotent transformation v € g * on Vo by
<<t -1
affn Hi=t,
9D 1< <N -,
0 if j =M\,

Z/Afj(i) =

where ¢; = 1 if \; is even, and ¢; = <f;21,f](21> if \; is odd. Then

(4.2.1) W 1<i<rno<j<n-1}

gives a basis of V| satisfying the relation

(4.2.2) WA ) = (D an (e = £1)
and <y§\f1(i), y’f\fli/)> = 0 for all other pairs. It follows from this that v € g

Let d be as in 3.2, and assume that d > 2. We assume that the partition
A satisfies the condition that all the parts A; are divisible by d. We shall
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construct a nilpotent element y; € g of type v = (d,...,d) associated to
Y. We define a map y; on Vj by
; 0 if j=0 (mod d),
(4.2.3) mﬁ”: @ .
S j otherwise.

Then in view of (4.2.2), it is easy to check that y; leaves the form ( , )
invariant, and we have y; € g%

4.3. Let L be a Levi subgroup of the standard parabolic subgroup P
of G of type Ag—1 X -+ x Ag_1 (t = n/d-factors). (Here P and L are as
in 3.1 with respect to Fy, P is o-stable, ¢ permutes the i-th factor and
(t — i+ 1)-th factor, etc.) Thus P and L are F-stable. Let C be the regular
nilpotent orbit in [. We choose a representative yg € CF in the following
way; we define a basis {e |1<i<t, 1<j<d}ofVyby e() = €(i—1)d+j-
Then in the case where ¢ is even, or ¢ is odd and 7 # (¢t + 1) / 2, we define

| el if1<i<[t/2),j#d,
yoel) = =), it t—[t/2+1<i<t, j#d,
0 if j = d.

If t is odd and i = (t 4+ 1)/2, let V} be the subspace of V' spanned by egz)
with 1 < 5 < d. We define yg|y, as a regular nilpotent element y) € 5[5 as
in 4.2.

Let (C, L) be the cuspidal pair in [ corresponding to an F-stable char-
acter pg of Ar(yp). We have a natural homomorphism Ay (yg) — Ac(yo)-
Since Ag(yp) is a cyclic group of order d, this gives an isomorphism compat-
ible with F-action. Thus pg is regarded as an F-stable character of Ag(yp).
Since yo and y; are conjugate under G, there exists ¢; € Ag(yo) (up to
F-conjugacy) such that y; is obtained from yo by twisting by ¢;. Since pg
is F-stable, the value pg(cy) is well-defined. This value is determined by
y1, hence by yy, which we denote by 7. Let v(yo, po,yx, p) be the scalar
defined by choosing the extensions pg, p in a similar way as the case of split
F (cf. 3.3). Put m = ag + r as before. We have the following theorem.

THEOREM 4.4. Assume that p is large enough so that Dynkin-Kostant
theory can be applied. Let wg be the longest element in W. Then Pwg acts
on H™(Py,, L) = H™(P,,, L), as a scalar multiplication by nx(—q)™/?. In
particular, v(yo, po, Yx, p) = ma(—1)™/2.
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4.5. The remainder of this section is devoted to the proof of the theo-
rem. If we notice that the preferred extension Vi of Vi is given by defining
the action of o € W by the action of wg € W, the second statement fol-
lows easily from the first one. So we concentrate on the proof of the first
statement. For y; of type (d,...,d), we construct a sly-triple {y1,y;,h1}
as follows. On each Jordan block, y; can be expressed as a matrix of degree
d with respect to the basis in (4.2.1) as

We define matrices Y ~, H of degree d by

0 1-(d—1)
0 2(d — 2)

Y~ = o :

d—1

Then [H,Y]=2Y,[H, Y| =-2Y, [Y,Y "] = H. Thus by combining these
matrices for all the Jordan blocks, one obtains y; ,h; € g satisfying the
property that [hi,y1] = 2y1, [h1,y7 | = —2y;, [y1,¥7 ] = h1 as asserted. It
follows easily from the construction that y; ,h; € gt".

We define a transversal slice X' with respect to the orbit through y; in
g by XY =y1+ Z4(y; ). Hence X' is F-stable. We have the following lemma.

LEMMA 4.6. Let yy be as in 4.2. Then we have yy € XF.

Proof. We write yx as yx = y1 +y. It is enough to show that y €
Zg(yy ). Now y is a nilpotent transformation on Vy determined by the
condition that

v i i — Y
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for j =0 (mod d), and it maps all other yifli) to 0. Since y; maps yg\fl(i)
to yiflflz) up to scalar if j # 1 (mod d), and to 0 if j =1 (mod d). we see
easily check that y; oy =yoy; =0on Vy. Hence y € Zg(y; ). [

4.7. By using the sly-triple {y1,y; ,h1}, one can define a Lie algebra
homomorphism ¢, : sl — g as in 2.7. The construction of sly-triple given
in 4.5 works well for y, in general, and one gets the slo-triple containing
yYx. We denote by ¢, the homomorphism sly — g obtained from it. Thus
Za(d), Mg (o), are defined as in 2.7 for ¢ = ¢1, ¢,.

Let 7 : g — g be as in 2.8. Then P, C g, and the local system L on Py
can be extended to a local system on g (cf. 2.8), which we denote also by
£ as in 2.8. Put K, = mﬁ. K is essentially the same as K = Wgﬁ* in 2.8,
and so K1[d] is a perverse sheaf on g with a canonical W-action, where § is
as in 2.8. By making use of the transversal slice Y, we show the following
proposition.

PropPOSITION 4.8. There exist natural maps of W-modules, which
make the following diagram commutative.

Hi(gvKl) = Hé(,Pyle)

o

H{(Py,, L)

Moreover, the map &y is equivariant with respect to the actions of ® on both
cohomologies.

Proof. By the inclusion {y)} C X C g, we have the canonical maps

H (g, K1) H(X, K1)
(4.8.1) l /
Hy (K1)

Since K7 is a W-complex with respect to the trivial action of W on g,
the above maps are W-equivariant. Since K1 = m L, we have

Hy, (K1) = H(Py,, £)
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by the proper base change theorem. On the other hand, K[| is a perverse
sheaf on g. Since the morphism G x X — g is smooth with all fibres of
pure dimension equal to dim Z¢(y1), by a similar argument as in [L6, 3.2],
K;[dim X]|5 is a perverse sheaf on Y. Y is stable under the G,-action (¢ :
x — t"72x for each x € g; with respect to the grading g = € g; associated
to ¢1 : sly — g), and contracts to y; € X. Since K is Gy,-equivariant, the
canonical map H'(X, K1) — H}, (K1) gives rise to an isomorphism

H'(Z, K1) ~ ), (K1) =~ H(P,,, £).
The proposition follows from this. U

For the special case where i = 0, we have the following more precise
result.

LEMMA 4.9. The maps w1, my in Proposition 4.8 give isomorphisms
H(g, K1) = H(Py, £) = I'(C, £)

for y = y1,yx. In particular, £ : HY(Py,,L) — HY(Py,, L) is an isomor-
phism.

Proof. We consider the following commutative diagram

Y B P £ g
(4.9.1) ﬁ ;T Tj Tid
c—— 5o g ">y

where the lower horizontal maps are as in 2.8, and

¢ ={(z,gP) € gx G/P|Ad(g )z €C+3+np},
§ ={(x,9) €gx G| Ad(g")w € C+3+np}

and @, § and T are maps defined in a similar way as «, and‘ . 3, J
are open immersions, and 7 is proper. Now the local system £ on g is
determined by the condition that o*L = §*L. Since the square in the left
hand side in (4.9.1) is cartesian, ji(a*£L) ~ @*(j1£). The middle square is
also cartesian, and we have

B (L) = ji(BL) = ji(a* L) ~a (jiL).
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By the definition of the direct image with compact support, we have ml =
T«(71L). Then

H (g, K1) = H(g, m L)
= Ho(gvﬁ*(j'ﬁ))
~ Ho(g/,jgt).

Similarly, by using the open immersion
Jj Py — fy ={gP € G/P | Ad(g_l)y €C+np},

we see that HO(P,, L) ~ HO(P,,j1L) for y = y1,y». It follows that the
maps 71, m) in Proposition 4.8 for ¢ = 0 are nothing but the restriction
@, L) — F(fy,jgﬁ) of the global section of the sheaf ji£ on § for
Yy = Y1, Y. But since E*Quﬁ) ~a*(51L), we have

I, L) ~I(C,HL) =~ T'(Py,iL).

Finally, we note that ji£ ~ j,£ since L is the cuspidal local system and so
is clean ([L7, 2.2]). Hence

rC,i7£)~rI(C,j.L)~T(C,L)
as asserted. [

4.10. Let ¢q : slo — [ C g be the Lie algebra homomorphism such that
d0 (83) = yo constructed as in 4.3. Thus ¢g is F-equivariant with respect
to the twisted Frobenius action on sly. Put Gy = Zg(%) and Ty = Zg(¢>0).
Then G and Ty are F-stable. It is checked that G is isomorphic to SL;,
and F acts as a twisted Frobenius endomorphism on SL;. By (2.9.1) we
have Ty ~ Zg, and under the identification Gy ~ SL;, Ty coincides with
a maximally split maximal torus of SL;, and W = N¢(Z9)/L is naturally
isomorphic to the Weyl group of G with respect to 1.

F acts naturally on W ~ §;, as a conjugation by wy € W, where wy is
the longest element in W. Thus Fwy acts trivially on W. By 2.17, F acts
naturally on Hy, = (P, H%é ~ S(h*), where h* = Q;®z X (Tp). W also acts
on Hy,, which coincides with the action of W on S(h*) induced from the
action of W on X (Tp) (cf. (2.3.2)). We have the following lemma.

LEMMA 4.11. Fwg acts on H%é as a scalar multiplication by (—q)*.
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Proof.  Fwy commutes with the graded algebra structure of Hf, . Since
H7, is generated by H%O, it is enough to show that Fwg acts on H%O as a
scalar multiplication by —q. We show this by modifying the arguments used
in the proof of Lemma 2.4. Let I" be as in the proof of Lemma 2.4 (with
respect to Gy). We consider the locally trivial fibration f : To\I" — Go\I.
We may assume that I" is defined over F,, and f is F-equivariant. We
consider the spectral sequence

(4.11.1) HP(Go\TI', R1f.Q;) = HPTI(Ty\I),

which have natural actions of W (cf. 2.4) and of F'. Let 6 be the reflection
representation of WW. Then (4.11.1) implies a spectral sequence

HP(Go\I', R1f,Q))g = HPT9(Ty\I)y,

where Xy denotes the #-isotypic subspace for a W-module X. Asin 2.4, we
have B

HP(Go\I', R*£,Qu) ~ H?(Go\I') ® H(Ty\Go),
and so B

HP(Go\I', R1£.Qu)p ~ HP(Go\I") ® H(Tp\Go)o

since W acts trivially on HP(Go\I'). Now it is known that @; H*(1p\Go)
is a graded regular representation of W, and that

HY(To\Go) if ¢ =2,

HYT)\Go)y =
(To\Go)e {0 if ¢ < 2.

Since H*(To\I') = Hj, ~ S(h*), we have H*(To\I")g = H*(To\I"). More-
over, HY(Go\I') = H2 = Q; be Lemma 2.4. It follows that

H*(Ty\I') ~ H*(Tp\Go).

This isomorphism is compatible with the actions of F' and W. It is well-
known that Fwgy acts as a scalar multiplication —q on HZ?(Tp\Go) =
H?(By\Gy), where By is the F-stable Borel subgroup of G containing Tp.
Hence Fwy acts similarly on H 20 = H?(Ty\I'). This proves the lemma. []

4.12. We consider the equivariant homology H ivj O(y*)(PyA,E'*), where
MO(yy) = M2(yx). By results in Section 2, the graded Hecke algebra

H = S® QW] acts on Hi\/lo(w)(waﬁ'*), where S = S(h*) ® Q[r] as
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defined in 2.9 with S(h*) in 4.10. We shall construct a standard H-module

E, , obtained from H,VO(W(PW,L’*) for a certain pair (v, p’). Let y be the
nilpotent element in gc corresponding to yy € g. We choose y~,hg € gc
such that {y,y~,ho} forms an sly-triple. Put h = hg, 79 = 1. Then
(h,r0) € m(y)c with h semisimple. We denote by v an element in H7y (1)

corresponding to the M?(y)-orbit of (h, 7). Let p be the irreducible char-
acter of Ag(yy) as in 4.3. Since Ag(yy) ~ M(yy) ~ M(y), one can regard
p as a character of M(y). Let p* be the dual representation of p.

Under the notation in Remark 2.14 and Theorem 2.15, we note that

(4.12.1) Let v be as above. Then E, , is a simple H-module, where p’ is
the restriction of p* on M(y,v).

It is enough to show that (h,r() satisfies the property in Theorem 2.15.
By Dynkin-Kostant theory, y is contained in the open dense orbit in
Y(h,r0) = 92 (the graded space with respect to h) under the action of Zgg(h).

It remains to show that p’ occurs in H. ie} (Pyy s E*) But this is clear since
H(Py,,L) = H(Py,,L), Thus (4.12.1) holds.

4.13. The Fg-structure ¢g : F*£ = L induces a linear isomorphism ¢

on H:(Py,,L). ¢o also induces a linear isomorphism ¥ on H e O(w)(PyX , L)
satisfying the following property; by [L6, 7.2, (d)], there exists a Q;-linear
isomorphism

_ 0 5 e Ak
(4.13.1) Qg , HTWNP, L) — B (P, L),

MO(yy)
where Q; is regarded as an H7 o (yx)—module via the canonical map
Hypogy)
the last map is F-equivariant with respect to the trivial action on Q;. Thus
VU induces a linear map ¥ on the left hand side of (4.13.1). The Q-linear
map in (4.13.1) is compatible with ¥ and the map ®* on biaS (Pys, £¥) =
HZ(PyA,L‘)*, where ®* is the transposed inverse of ®.

Note that HI'(P,,, L) is an irreducible W-module. Since ®wq com-
mutes with all the elements in W, we see that ®wg acts on HI'(P,,, L) as
a scalar multiplication. Then we have the following lemma.

*

— er} = Q. F acts naturally on HMO(yA) and on I{}:e}, and

LEMMA 4.14. Assume that Pwq acts on H?(waz) by a scalar mul-
tiplication by . Then Pwgy acts on Hg(PyA,E) by a scalar multiplication

by C(—q~ )™,
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Proof. Let v = (h,rg) be as in (4.12.1). Let ~, : H&O(yx) — Q be

the algebra homomorphism corresponding to v (cf. 2.13). Since M°(y,) is
F-stable, F' acts naturally on H&O(w) such that ¥(mz) = F(m)¥(z) for
m € Hy

MO(y») Qs 0 ~ 70
MOy, 20d T € H (Pyy, £L¥). Since Ma(yn) =~ Za(yn) X G, we
have Hy, MO(yy) =~ ~ S(h1H)"1 @ Qq[r], where W7 is the Weyl group of a reductive

group Z&(¢,) and b} = Q;®z X (T1) with a maximally split maximal torus
T of Zg(gi))\). We note that

(4.14.1) The maximal ideal Kery, in H7} (W) is generated by homogeneous
polynomials.

In fact, by the previous argument, we may replace Hj (3) by
S(m(y)*CT)MO(y), and v by (h,rg) € m(y)c,,. It is enough to show that
ifa polyﬁomial function f on m(y)c , which is invariant under the action of
MO (y) vanishes on (h, rq), then its homogeneous parts also vanish at (h, rg).
But the G,,-action on m(y)c implies that ¢ : (h,7q) — (t=2h,t"2rg). Since
f is invariant under M°(y), we see that f vanishes also on (t=2h,t=2rg) for
any t € C*. It follows that each homogeneous part of f also vanishes at
(h,ro) as asserted.

Next we note that

(4.14.2) The maximal ideal Ker~, is F-stable.

Let wy be the longest element in Wi. As in Lemma 4.11, Fw; acts
i

on S(h7); (the i-th homogeneous part) as a scalar multiplication by (—¢)".
Hence F' acts on S(b} )W1 by a scalar multiplication by (—g)*. Also, F acts
on Q[r]; as a scalar multiplication by q’. Since Ker~, is a homogeneous
ideal, F stabilizes Ker+y,. Hence (4.14.2) holds.

0 .

Now E, , is obtained as the quotient of g (y*)(Pyx,E*)p/ by the
H-submodule I, = Ker~, - Hi”o(“)(waﬁ'*)p,. Since Ker~, is F-stable,
we see that I, is W-stable. Thus ¥ induces a linear map on E, . We
consider the filtration FO C F1 C ... of Hiwo(w)(PyA,[',*) as in 2.16. Then
each F, as well as its p’-isotypic part F;,, is W-stable. Then (Fé,)v is also
U-stable since it is the quotient of Fp", by Fp", N I,. By (2.16.5) and by
our assumption, Wwy acts on the non-zero space FC = (F;?/)“ as a scalar
multiplication by ¢~!. This implies that Uw, acts on Hé\/[ O(y*)(Pyx,ﬁ*)
modulo I, by ¢~!. On the other hand, since E,  is a simple H-module,

Hiwo(w)(waZ*)p/ is generated by H(])V[O(w)(waﬁ'*)p' mod I, as an H-
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module. Since r acts as a scalar multiplication by 7o on E, ,, the action
of H on E, , is given by the action of S(h*) = Hf, and of W. Note that

Vwy(€x) = Fwo(§)Vwo(z) for € € S, z € Hi\/lo(y*)(Pyk,E‘*). The action
of W preserves the grading of H Mo(y*)(Pyk,E‘*), and Pwy commutes with

W. Tt follows, by Lemma 4.11 that \I/wo acts on Hp (y*)(PyA,E*) » modulo
I, as a scalar multiplication by ¢~'(—q)™/2. Let f,, be the map F/*~! —
FJ" as in 2.16, which is M(yy,v)-equivariant. Since (F}"),/(Im fm)p/ is
regarded as a natural quotient of H. Mo(w)(wa L*),, modulo I, Ywy acts

n (F™),/(Im f)y as ¢"1(—q)™?2. Since Hi }(waﬁ*) is isomorphic to
E"/Im f,, by (2.16.4), we see that Twq acts on j26S, (Pys, L)y by a scalar
multiplication by ¢~!(—¢)™/2, which coincides with the action of ®*wq on
it. We claim that Hr{,f}(PyA,L.',*) = Hr{,f}(PyA,L.',*)pf. In fact,

HYH Py, L¥) = HO(P,,, L) = I'(C, L)*

by Lemma 4.9. Apr(yp) acts on I'(C,L) by the character pg. Since p is
the pull back of pyg under the map Ag(yx) — AL(yo) (cf. 3.2), the action of
M(yy) = Ac(yy) on HY(Py,, L) is via pg. Hence H)(Py,, L) = H)(P,,, L),
and the claim follows.

Thus ®wy acts on HY(P,,, L) = j28S, (Py,, £*)* by a scalar multiplica-
tion by ((—¢g~')™/? as asserted. 0

4.15. We are now ready to prove Theorem 4.4. First we note that
W acts trivially on H2(Py, L) for any y = y, such that all the parts of v
are divisible by d. In fact, if y, is regular nilpotent, ag + 7 = 0 by (1.3.1)
since C is also a regular nilpotent class in L. It follows, by the generalized
Springer correspondence (see 3.2), that H, S(Pyy,ﬁ) is the irreducible W-
module corresponding to the unit representation. Thus by Lemma 4.9,
HO(P,, L) is also a trivial W-module for any y.

Now assume that dwy acts on H" (Pym L) by a scalar multiplication
by ¢. Then by Lemma 4.14, ®wq acts on H? (waﬁ) by a scalar multipli-
cation by ¢(—¢~')™2. Since the map H(Py,,L) — HO(P,,,L) is Pwo-
equivariant isomorphism by Lemma 4.9 (and Proposition 4.8), we see that
dwy acts on HY(Py,, L) by a scalar multiplication by ¢(—g~ )™/
wo acts trivially on it, we see that

. Since

(4.15.1) @ acts on Hg(Pyl,L",) by C(—q_l)m/Q.
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On the other hand, by a similar argument as in the proof of Lemma 4.9,
the natural map

HY(Py,, L) =~ T(C,L) — Ly,

gives an isomorphism. This isomorphism is compatible with the action of
® and of py. Tt follows that ® acts on HO(P,,, L) as an identity map. Since
y1 is in the G-orbit of yo, H2(Py,, L) =~ H2(Py,,,L). As discussed in the
proof of Lemma 4.14, Ag(yo) acts on HO(Py,, L) via pyg. We also note that
Ar(yo) ~ Ag(yo). Since y; is GF-conjugate to y.,, an element twisted by
c1 € Ag(yo) from yg, we see that

(4.15.2) ® acts on H2(P,,, L) by a scalar multiplication by po(c1) = .

Comparing (4.15.1) and (4.15.2), we see that ¢ = nx(—¢)"/2. This
proves the theorem.

4.16. In order to apply Theorem 4.4, we need to know c¢; € Ag(yo)
such that y; = (yo),. For a given yg, we shall choose a specific y; and yy,
and determine ¢; explicitly. Put X = (X},...,\.) with A, = X\;/d. Hence
X is a partition of t. Let {egi)} be the basis of Vj as in 4.3. Put d’ = [d/2].
Let us define a subspace Wy of V) and define yg by

e I1<i<t) ifdisodd,
{0} if d is even.

Also we define subspaces W1, Wy of V| by
W=V 1<j<d, 1<i<t),

(
J
Wo= (e |d—d +1<j<d 1<i<t).

Clearly we have Vy = W1 @ Wy @ W,. We define a new basis {hg-i) |1<j5<
d, 1 <i <t} of V satisfying the following conditions.

(@) A = el it el e Wy,
(ii) The set {hg-i) |d—d +1<j<d, 1<i<t} coincides with the set of

the basis {ey)} of Ws.
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(iii) Let z be the number of ¢ such that A} is odd. Then

WG =1 forl<i<(t-2)/2,1<j<4d,
<§7 W) =1 for(t—2)/2+1<i<t1<j<d,
(W) WG ) = +1 for (t—2)/2+1<i <tifd: odd,

(h§Z ,hgz ) =0  for all other cases.

(iv) {h((;,)_H} gives a basis of W) in the case where d is odd.

The conditions (i)—(iv) determines {hg-i)} uniquely except the vectors con-
tained in Wy. We note that one can choose the basis {hg-i)} of Wy so that
the transition matrix between {eg-i)} and {hg-i)} has the determinant +1 (see
the construction of f;i) in 4.2).

We define a nilpotent transformation y} € g as in 4.2 replacing f](.i)
by h;i). Then it is easy to construct y} € g such that y/ is obtained from
Y4 by a similar procedure as y; is obtained from y,. Clearly, y] (resp. y})
is conjugate to y; (resp. yy). The argument in the proof of Theorem 4.4
works well for y;, y4. Thus we consider ¥} and v}, and write them as y;,
yx. We shall describe ¢; € Ag(yo) such that y1 = (yo)c,. It follows from the
construction that there exists g € G = GL,, such that Ad(g)yo = y1, where
g stabilizes the subspaces Wy, Wi, Wa. More precisely, g acts trivially on
W1, and gives a permutation matrix with respect to the basis {egz)} up to
+1 on Wj. Thus by our choice of the basis {hg-i)}, we have det g = +1. Let
us take o € F, such that o = +1 (if detg = 1, we choose a = 1). We

note that Keryy C Ws, and that g stabilizes Ker yg. We denote by gg the
restriction of g on Keryg. Then we have

LEMMA 4.17. Let the notations be as before. Then we have y; = (y )C17
where c1 € Aa(yo) is given, under the identification Ag(yo) ~ {x € F ]
z? =1}, by

c1 = o179 det 90-

Proof. Let ¢g : slo — g be as in 4.10, and we consider the group

Z(¢o). Then Ac(yo) =~ Za(bo)/Zg (o). We have Zg(¢o) ~ {x € GL; |
det ¢ = 1}, where the element g, € Zg(¢g) corresponding to z is given as
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follows; g1 acts on the subspace V; of Vj spanned by {ey) | 1 <i <t} for
a fixed j, as x € GLy. Now if we can find g; € G such that Ad(g1)yo = 1,
then g7 'F(g1) € Ac(yo), and it leaves Keryo invariant. Moreover, the
determinant of the restriction of g;° 1F(g1) gives rise to the corresponding
element in Ag(yo) ~ {x € FZ | 24 = 1}.

Now in our situation, if we put ¢; = a~'g, we have g1 € G and
Ad(g1)yo = y1. Then g 'F(g1) = a'~% 'F(g). On the other hand,
since F(g) = wo(tg~Hwy L F(g) also stabilizes the subspaces Wy, Wi,
Ws. Moreover, it acts on Wy trivially, and on W7 as a permutation of the
basis {ey)} up to sign. It follows that g~!F(g) acts on the space Keryyq

as go_l. Thus gl_lF(gl) acts on Keryg as a map al_qggl, and we have

det(a' =gy 1) = a!1=9) det g as asserted. 0
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