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ON THE DEGREE OF APPROXIMATION
BY SZASZ OPERATORS

SURESH PRASAD SINGH

The aim of the present note is to give the degree of

approximation by Szasz operators.

1. Introduction

The linear positive operators i^nf) defined as

(1.1) [Sf)(x)={sff(t)-x))=e-nx I {(nx)k/\k)f(k/n)
n n k=0

were introduced by Sz3sz [3] to approximate f £ C[0, °°) . Stancu [2] has

given the following result in uniform norm.

THEOREM 1. Let f i. (?~{0, a] , a > 0 , and let u(/'; •) be its

modulus of continuity. Then, for n € N ,

(1.2) IIS/-/II 2 (aWa) • 1/Vn • u)(/'; 1/Vn) .

. Recently we [4] have obtained the estimate

(1.3) \\Snf-f\\ 5 [VaHa/2)) • 1/Vn • w(/'; 1/Vn)

which is sharper than the corresponding estimate (1.2).

The object of the present note is to extend the result (1.3) for
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/ € C r + 1 [ 0 ) a] , v = 0, 1, 2, . . . .

We prove the following.

THEOREM 2. Let f € (f+1[0, a] , a > 0 , and let w [ f ( r + l ) ; •) be

its modulus of continuity. Then, for n € N ,

(l.U) | | ^ r ) / - / ( r ) | s Tin • | | / ( r + 1 ) | | + Xn ' 1/Vn • u , ( / ( r + l )
; i/Vn)

A: [(a/2

2. Proof

We use the following results [ / ] ,

(2.1) {Snl)(x) = 1 ,

(2.2) {Sn(t-x))(x) = 0 ,

(2.3) 5w(t-x)'
:l(x) = x/n .

After differentiating (l.l) r times with respect to x , we get

(2.1.) (sir)/)(^) = n'e-*1* Y. {{nx^/^tf.^nk/n) (r < n) ,

where A ^f(k/n) represents the difference of order r of the function
n

f with step X/n starting from value k/n . This difference of order r

is defined by

t

= A
n~

r ^ / ( f e / n ) = A fAr / ( * / « ) ] , r = 1 , 2 , ... .

and

By using the mean value theorem,

(2.5) Ar f(k/n) = [x/nr)fKr){{k+rB)/n) , 9 € ( 0 , l ) .
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With the help of (2.!*) and (2.5),

(2.6) I {(nx)k/\k)f{r>){{k+rtk)/n)
o K

k=0

We know that

(2.7) /(r)(a

Using (2.6), (2.7) and the inequality

we obtain that

k=0

+ S2 (say).

Clearly

S, = If

(6 > 0)

k=0

r/n

{(nx)k/\k)[x-{k/n)-{rtjny)

16,

S rln ,(r+l),
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k=0

[j ({k+r6k) In)-x\ +(1/26) (((fc+r6fc) In)-x) 2]

[|x-(fc/n)-(r/2n) | + (r/2n) |+(r/2n))2]

; 6)
2/8n26))+(l/26)e-

nx

\k) \x-(k/n)-(r/2n) |

From (2.1), (2.2), (2.3) we know that

n))2 = x/n + r2

and

e~nx Y [(nx)K/[k)\x-(k/n)-(r/2n)\
k=0

/ ™
5 V e-

m I {{nxr/[k}[x-(k/n)-(r/2n))2-{s l)(x)

By choosing 6 = X/Vn , we finally get, for al l x i [0, a] , that

,.,r^+i).5 2 ~ Kn,r

This completes the proof.

C O R O L L A R Y 1 . 1 / / > ( r + 1 ) 6 L i P / ( / a , 0 < a 5 1 , M > 0 , t h e n , f o r

n e N ,

COROLLARY 2. I / , in addition to the hypotheses of Theorem 2,

f € ( ^ ^ [ O , a ] , then, for n £ N ,
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P)f-fM\\ 5 Tin • | | / ( r + l ) | | + K
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