A Method for Successive Graphic Integrations.

By R. F. Muirhead, D.Sc.

(Read 9th June 1911. Received ${ }_{2} 2 n d$ June 1911).

The method here described applies to the successive integrations of any function whose graph consists of segments of straight lines.

Fig. 1.
The integral curve $P_{1} Q_{1}$ of the straight graph $P Q$, which extends from $x=0$ to $x=h$, is of course parabolic, with axis parallel to $O y$, and hence it follows that the tangents at P_{1} and Q_{1} will meet at p_{1}^{\prime}, a point whose abscissa is $h / 2$.

This affords a ready means of obtaining the point Q_{1} and the tangent at Q_{1} by construction, provided the position of P_{1} is known, i.e. provided we know the value of the ordinate of the integral curve for $x=0$.

Starting from P_{1} we draw the line $P_{1} p_{1}{ }^{\prime} Q_{1}{ }^{\prime}$ whose gradient is OP / H, where H is the "polar distance" for graphic integration, to meet the ordinate of Q in Q_{1}^{\prime}. Then from p_{1}^{\prime}, the mid point of this line, we draw $p_{1}{ }^{\prime} Q_{1}$ to meet the ordinate of Q in Q_{1} the gradient of $p_{1}{ }^{\prime} Q_{1}$ being $L Q / H$ where $L Q$ is the ordinate of Q.

This determines the point Q_{1} of the integral curve, as well as the tangent at that point.

This observation led me to search for a generalization of the process just indicated, and what follows is the result of this search.

Let PQRS... be any graph (see Fig. 2) made up of straight line segments $P Q, Q R, R S$, etc., the abscissae of P, Q, R, S, etc., being $0, h, h+k, h+k+l$, etc.

Draw the ordinates QL, RM, SN, etc., and let lengths $00_{0,} \mathrm{LL}_{0}, \mathrm{MM}_{0}, \mathrm{NN}_{0} \ldots$, each equal to H , the "polar distance," be marked off on the axis, going backwards from the points $\mathrm{O}, \mathrm{L}, \mathrm{M}, \mathrm{N}$, etc.

Let OP_{1} be the initial value of the first integral, then for the first integration we proceed as follows :-

Through P_{1} draw $P_{1} p_{1}{ }^{\prime} Q_{1}^{\prime}$ parallel to $\mathrm{O}_{0} \mathrm{P}$ to meet QL in Q_{1}.
From p_{1}^{\prime}, the mid-point of $\mathrm{P}_{1} \mathrm{Q}_{1}^{\prime}$, draw $p_{1}{ }^{\prime} \mathrm{Q}_{1} q_{1}{ }^{\prime} \mathrm{R}_{1}^{\prime}$ parallel to $L_{0} Q$ to meet $Q L$ in Q_{1} and $R M$ in R_{1}^{\prime}.

From q_{1}^{\prime}, the mid-point of $\mathrm{Q}_{1} \mathbf{R}_{1}^{\prime}$, draw $q_{1}{ }^{\prime} \mathrm{R}_{1} r_{1}{ }^{\prime} \mathrm{S}_{1}^{\prime}$ parallel to $M_{0} R$ to meet $R M$ in R_{1} and $S N$ in S_{1}^{\prime}.

From r_{1}^{\prime}, the mid-point of $\mathrm{R}_{1} \mathrm{~S}_{1}^{\prime}$, draw $r_{1} \mathrm{~S}_{1}$ parallel to $\mathrm{N}_{0} \mathrm{~S}$ to meet SN in S_{1}.

Then $P_{1}, Q_{1}, R_{1}, S_{1}$ are points on the first integral graph, and $P_{1} Q_{1}, Q_{1} R_{1}{ }^{\prime}, R_{1} S_{1}{ }^{\prime}$ and $r_{1}^{\prime} S_{1}$ are the tangents at these points.

For brevity in what follows let us premise that all points indicated by one capital letter have the same abscissa, whatever suffixes or dashes they may have. Thus $Q, Q_{1}, Q_{1}^{\prime}, Q_{2}$, etc., have the same abscissa h. As for the small letters, the number of dashes indicates the corresponding abscissa. Thus the abscissae of $p_{3}^{\prime}, p_{3}^{\prime \prime}, p_{3}^{\prime \prime \prime}$, etc., are $h / 2,2 h / 3,3 h / 4$, etc., respectively, and that of $p_{n}{ }^{(r)}$ is $r h /(r+1)$, while the abscissa of $q_{n}^{(r)}$ is $h+r k /(r+1)$.

Second Integration.
Through P_{2} (supposed given) draw $\mathrm{P}_{2} p_{2}^{\prime} \mathrm{Q}_{2}^{\prime}$ parallel to $\mathrm{O}_{0} \mathrm{P}_{1}$.

"		aw	$p_{2}^{\prime} p_{2}{ }^{\prime \prime} \mathrm{Q}_{2}{ }^{\prime \prime}$ pa			$L_{0} \mathbf{Q}_{1}{ }^{\prime}$.
"	$p_{2}{ }^{\prime \prime}$	"	$p_{2}{ }^{\prime \prime} \mathrm{Q}_{2} q_{2}{ }^{\prime} \mathrm{R}_{2}{ }^{\prime}$	"	"	.
"	$q_{2}{ }^{\prime}$	"	$q_{2}^{\prime} q_{2}{ }^{\prime \prime} \mathrm{R}^{\prime \prime}{ }^{\prime \prime}$	"	"	
"	$q_{2}{ }^{\prime \prime}$	"	$q_{2}{ }^{\prime \prime} \mathrm{R}_{2} r_{2}{ }^{\prime} \mathrm{S}_{2}{ }^{\prime}$	"	"	$M_{0} \mathrm{R}_{1}$.
"	$r_{2}{ }^{\prime}$	"	$r_{2}{ }^{\prime}{ }^{\prime \prime}{ }^{\prime \prime} \mathrm{S}_{2}{ }^{\prime \prime}$	"	"	$\mathrm{N}_{0} \mathrm{~S}_{1}{ }^{\prime}$.
"	$r_{2}^{\prime \prime}$	"	$r_{2}{ }^{\prime \prime} \mathrm{S}_{2}$	"		$\mathrm{N}_{0} \mathrm{~S}_{1}$.

And so on.

Then $P_{2}, Q_{2}, R_{2,}, S_{2}$ are points on the second integral graph, and the tangents at these points are respectively $P_{2} Q_{2}{ }^{\prime}, \mathrm{Q}_{2} \mathrm{R}_{2}{ }^{\prime}, \mathrm{R}_{2} \mathrm{~S}_{2}{ }^{\prime}$ and $r_{1}{ }^{\prime \prime} \mathrm{S}_{2}$.

Third Integral.
Through P_{3} draw $P_{3} p_{3}^{\prime} Q_{3}^{\prime}$ parallel to $O_{0} P_{2}$.

$p_{s}{ }^{\prime}$	$p_{s}^{\prime} p_{s}^{\prime \prime} Q_{3}^{\prime \prime}$	"	, $\mathrm{I}_{0} \mathrm{Q}_{2}^{\prime}$.
$p_{3}{ }^{\prime \prime}$	$p_{3}^{\prime \prime} p_{s}^{\prime \prime \prime} \mathrm{Q}_{3}^{\prime \prime \prime}$	"	" $\mathrm{I}_{0} \mathrm{Q}_{2}{ }^{\prime \prime}$.
$p_{3}^{\prime \prime \prime}$	$p_{3}{ }^{\prime \prime} \mathrm{Q}_{3} \mathrm{q}_{3}{ }^{\prime} \mathrm{R}_{3}^{\prime}$	"	, $\mathrm{L}_{0} \mathrm{Q}_{2}$.
$q_{3}{ }^{\prime}$	$q_{3} q_{3}{ }^{\prime \prime} \mathrm{R}_{3}{ }^{\prime \prime}$	"	" $\mathrm{M}_{0} \mathrm{R}^{\prime}{ }^{\prime}$.
$q_{3}{ }^{\prime \prime}$		"	" $\mathrm{M}_{0} \mathrm{R}_{2}{ }^{\prime \prime}$.
$q_{3}^{\prime \prime \prime}$	$q_{3}{ }^{\prime \prime \prime} \mathrm{R}_{3} r_{3}{ }^{\prime \prime} \mathrm{S}_{3}{ }^{\prime \prime}$	"	$\mathrm{M}_{0} \mathrm{R}_{2}$.
$r_{3}{ }^{\prime}$	$r_{3}^{\prime} r_{3}{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$	"	, $\mathrm{N}_{0} \mathrm{~S}_{2}{ }^{\text {. }}$.
$r_{3}^{\prime \prime}$	$r_{3}{ }^{\prime \prime} r_{3}{ }^{\prime \prime \prime} \mathrm{S}_{3}{ }^{\prime \prime \prime}$	"	" $\mathrm{N}_{\mathrm{o}} \mathrm{S}_{2}{ }^{\prime \prime}$.
$r_{3}^{\prime \prime \prime}$	$r_{3}{ }^{\prime \prime \prime} \mathrm{S}_{3}$	"	, $\mathrm{N}_{0} \mathrm{~S}_{2}$.

Then $P_{3} Q_{3} R_{3} S_{s}$ are points on the third integral graph, and the tangents at these points are respectively $P_{3} Q_{3}^{\prime}, \mathrm{Q}_{3} \mathrm{R}_{3}^{\prime}, \mathrm{R}_{3} \mathrm{~S}_{3}^{\prime}$ and $r_{3}{ }^{\prime \prime}{ }^{\prime} S_{8}$.

The law of construction of the successive integral graphs will now be obvious, but for completeness we may add the construction of the

$$
n^{\text {in }} \text { Integral. }
$$

Through P_{n} draw $\mathrm{P}_{n} p_{n}{ }^{\prime} \mathrm{Q}_{n}{ }^{\prime}$ parallel to $\mathrm{O}_{0} \mathrm{P}_{n-1}$.

And so on.
$P_{n}, Q_{n}, R_{n} \ldots$ are points on the $n^{\text {th }}$ integral graph, and the tangents at these points are respectively $\mathrm{P}_{n} \mathrm{Q}_{n}{ }^{\prime}, \mathrm{Q}_{n} \mathrm{R}_{n}{ }^{\prime}, \mathrm{R}_{n} \mathrm{~S}_{n}{ }^{\prime} \ldots$

Fig. 2.

When I had hit upon the rules given above, I did not at first see my way to a general proof, and was much indebted to Miss Marjory Strathie, who kindly went through the laborious algebra required to find the expression for the ordinate of S_{3} in terms of the given quantities. The result agreeing with that arrived at by the ordinary process of integration, my opinion as to the correctness of the rules was confirmed.

I found later, however, that a direct proof of their correctness is not difficult. It turns out, in fact, that the quantities $0 \mathrm{P}_{n}, \mathrm{LQ}_{n}{ }^{\prime}-\mathrm{OP}_{n}, \mathrm{Q}_{n}{ }^{\prime} \mathrm{Q}_{n}{ }^{\prime \prime}, \mathrm{Q}_{n}{ }^{\prime \prime} \mathrm{Q}_{n}{ }^{\prime \prime \prime}, \ldots \mathrm{Q}_{n}{ }^{(r)} \mathbf{Q}_{n}{ }^{(r+1} \ldots \mathrm{Q}_{n}{ }^{(n)} \mathrm{Q}_{n}$ are simply the successive terms of Maclaurin's Theorem as applied to the $n^{\text {th }}$ integral, for the value of $x=h$.

We have, in fact, if $f(x), f_{1}(x), f_{2}(x) \ldots f_{n}(x)$ denote the original function and its successive integrals, $f(x)=f_{1}^{\prime}(x)=f_{2}^{\prime \prime}(x) \ldots \ldots=f_{n}^{(x)}(x)$, and generally, $f_{r}^{(p)}(x)=f_{r+q}^{(p+q)}(x)$.

Now by the construction,

$$
\begin{aligned}
\mathrm{Q}_{n}{ }^{(r)} \mathrm{Q}_{n}^{(r+1)} & =\frac{h}{r+1} \cdot \frac{\mathrm{Q}_{n-1}^{(r-1)} \mathrm{Q}_{n-1}^{(r)}}{\mathrm{H}} \\
& =\frac{h}{r+1} \cdot \frac{h}{r} \cdot \frac{\mathrm{Q}_{n-2}^{(r-2)} \mathrm{Q}_{n-2}^{(r-1)}}{\mathrm{H}^{r-1}}=\ldots \\
& =\frac{h}{r+1} \cdot \frac{h}{r} \cdot \frac{h}{r-1} \cdots \cdot \frac{h}{3} \cdot \frac{\mathrm{Q}_{n-r+1}^{\prime} \mathrm{Q}^{\prime \prime}{ }_{n-r+1}}{\mathbf{H}^{r-1}} \\
& =\frac{h^{r}}{r+1 \cdot r \ldots 3 \cdot 2} \cdot \frac{\mathrm{~L} \mathrm{Q}_{n-r}-\mathrm{OP}_{n-r}}{\mathbf{H}^{r}} \\
& =\frac{h^{r+1}}{(r+1)!} \cdot \frac{\mathrm{OP}_{n-r-1}}{\mathbf{H}^{r+1}} . \\
& =\frac{h^{r+1}}{(r+1)!} \cdot \frac{f(0)}{\mathbf{H}^{r+1}} \\
& =\frac{h^{r+1}}{(r+1)!} \cdot \frac{f_{n}^{(r+1)}(0)}{\mathbf{H}^{r+1}} .
\end{aligned}
$$

Thus if we take the "polar distance" H equal to 1 , we have $O Q_{n}=f_{n}(0)+\frac{h}{1} f_{n}^{\prime}(0)+\frac{h^{2}}{2!} f_{n}^{\prime \prime}(0)+\ldots+\frac{h^{r}}{r!} f_{n}^{(r)}(0)+\ldots+\frac{h^{n+1}}{(n+1)!} f_{n}^{(n+1)}(0)$,
which is by Maclaurin's Theorem $=f_{n}(h)$, since $f_{n}^{(n+1)}(x)$ is constant from $x=0$ to $x=h$, so that the series stops at the $n+2^{\text {th }}$ term.

The foregoing graphic method of successive integration, like all others, is liable to lead to ill-conditioned constructions, in some cases, for instance, if the scale of ordinates were such as to keep the 3rd or 4th integral curves within the limits of a sheet of drawing paper, it might be too small for accurate work. This may to a great extent be avoided by changing the x-axis so as to bring the successive integral curves within bounds. The correction to be applied to the result is, of course, easy to make.

By drawing the lines belonging to the successive integrations in different colours, the diagram can be made clearer to look at. A check on the accuracy of the construction can be obtained by treating two parts of one line-segment as two successive segments, and modifying the construction accordingly.

Note.-The points referred to in the text as $\mathrm{L}_{0}, \mathrm{M}_{0}, \mathrm{~N}_{0}$, have by inadvertence been marked l, m, n in Figure 2.

