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Many biological microswimmers locomote by periodically beating the densely packed
cilia on their cell surface in a wave-like fashion. While the swimming mechanisms
of ciliated microswimmers have been extensively studied both from the analytical and
the numerical point of view, optimisation of the ciliary motion of microswimmers has
received limited attention, especially for non-spherical shapes. In this paper, using an
envelope model for the microswimmer, we numerically optimise the ciliary motion
of a ciliate with an arbitrary axisymmetric shape. Forward solutions are found using
a fast boundary-integral method, and the efficiency sensitivities are derived using an
adjoint-based method. Our results show that a prolate microswimmer with a 2 : 1 aspect
ratio shares similar optimal ciliary motion as the spherical microswimmer, yet the
swimming efficiency can increase two-fold. More interestingly, the optimal ciliary motion
of a concave microswimmer can be qualitatively different from that of the spherical
microswimmer, and adding a constraint to the cilia length is found to improve, on average,
the efficiency for such swimmers.

Key words: micro-organism dynamics, swimming/flying

1. Introduction

Many swimming microorganisms propel themselves by periodically beating the active
slender appendages on their cell surfaces. These slender appendages are known as cilia
or flagella depending on their lengths and distribution density. Eukaryotic flagella, such as
those found in mammalian sperm cells and algae cells, are often found in small numbers,
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whereas ciliated swimmers such as Paramecium and Opalina present many hundreds of
cilia densely packed on the cell surfaces (Brennen & Winet 1977; Witman 1990). Besides
the locomotion function for microswimmers, cilia inside mammals serve various other
functions, such as mucociliary clearance in the airway systems and transportation of egg
cells in fallopian tubes (see Satir & Christensen (2007), and references therein). Cilia
are also found to be critical in transporting cerebrospinal fluid in the third ventricle of
the mouse brain (Faubel et al. 2016) and in creating active flow environments to recruit
symbiotic bacteria in a squid-vibrio system (Nawroth et al. 2017).

Owing to the small length scale of cilia, the typical Reynolds number is close to zero.
In this regime, inertia is negligible and the dynamics is dominated by viscous effects. As
a result, many effective swimming strategies familiar to our everyday life become futile.
For example, waving a rigid tail back-and-forth will not generate any net motion over one
period. This is known as time reversibility, or the ‘scallop theorem’, which states that
a reciprocal motion cannot generate net motion (Purcell 1977). Microswimmers therefore
need to go through non-time-reversible shape changes to overcome and exploit drag (Lauga
& Powers 2009).

Ciliated microswimmers break the time reversibility on two levels. On the individual
level, each cilium beats in an asymmetric pattern: during the effective stroke, the cilium
pushes the fluid perpendicular to the cell surface like a straight rod, and then moves almost
parallel to the cell surface in a curly shape during the recovery stroke, in preparation for
the next effective stroke. On the collective level, neighbouring cilia beat with a small phase
difference that produces travelling waves on the cell surface, namely the metachronal wave.
Existing evidence suggests that the optimal ciliated swimmers exploit the asymmetry on
the collective level more than that on the individual level (Michelin & Lauga 2010; Guo
et al. 2014).

In this paper, we study the (hydrodynamic) swimming efficiency of ciliated
microswimmers of an arbitrary axisymmetric shape. Specifically, the swimming efficiency
is understood as the ratio between ‘useful power’ against ‘total power’. Useful power can
be computed as the power needed to drag a rigid body of the same shape as the swimmer
at the swim speed, while the total power is the rate of energy dissipation through viscous
stresses in the flow to produce this motion (Lighthill 1952). The goal of this paper is to
find the optimal ciliary motion that maximises the swimming efficiency for an arbitrary
axisymmetric microswimmer.

Studies of ciliated microswimmers can be loosely classified into two types of models.
One type is known as the sublayer model in which the dynamics of each cilium is
explicitly modelled, either theoretically (Blake & Sleigh 1974; Brennen & Winet 1977) or
numerically (Gueron & Liron 1992, 1993; Guirao & Joanny 2007; Osterman & Vilfan
2011; Eloy & Lauga 2012; Elgeti & Gompper 2013; Guo et al. 2014; Ito, Omori &
Ishikawa 2019; Omori, Ito & Ishikawa 2020). The other type is known as the envelope
model (commonly known as the squirmer model if the slip profile is time independent),
which takes advantage of the densely packed nature of cilia, and traces the continuous
envelope formed by the cilia tips. The envelope model has been extensively applied to
study the locomotion of both single and multiple swimmers (e.g. see Lighthill 1952;
Blake 1971; Ishikawa, Simmonds & Pedley 2006; Ishikawa & Pedley 2008; Michelin
& Lauga 2010; Vilfan 2012; Brumley et al. 2015; Elgeti, Winkler & Gompper 2015;
Guo et al. 2021; Nasouri, Vilfan & Golestanian 2021), as well as the nutrient uptake of
microswimmers (e.g. Magar, Goto & Pedley 2003; Magar & Pedley 2005; Michelin &
Lauga 2011, 2013). While originally developed for spherical swimmers, the envelope
model has been generalised to include spheroidal swimmers (e.g. Ishimoto & Gaffney
2013; Theers et al. 2016).
927 A22-2
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In particular, in a seminal work, Michelin & Lauga (2010) studied the optimal beating
stroke of a spherical swimmer using the envelope model. Specifically, the material points
on the envelope were assumed to move tangentially on the surface in a time-periodic
fashion, hence the swimmer retains the spherical shape. The flow field, power loss,
swimming efficiency as well as their sensitivities, thereby, were computed explicitly using
spherical harmonics. Their optimisation showed that the envelope surface deforms in a
wave-like fashion, which significantly breaks the time symmetry at the organism level
similar to the metachronal waves observed in biological microswimmers.

Since most biological microswimmers do not have spherical shapes, there is a need for
extending the previous work to more general geometries. However, such an extension is
hard to carry out using semi-analytical methods. Therefore, in this paper, we develop a
computational framework for optimising the ciliary motion of a microswimmer with an
arbitrary axisymmetric shape. We employ the envelope model, wherein the envelope is
restricted to move tangentially to the surface, such that the shape of the microswimmer is
unchanged during the beating period. We use a boundary-integral method (BIM) to solve
the forward problem and derive an adjoint-based formulation for solving the optimisation
problem.

The paper is organised as follows. In § 2, we introduce the optimisation problem, derive
the sensitivity formulas and discuss our numerical solution procedure. In § 3, we present
the optimal unconstrained and constrained solutions for microswimmers of various shape
families. Finally, in § 4, we discuss our conclusions and future directions.

2. Problem formulation

2.1. Model
Consider an axisymmetric microswimmer whose boundary Γ is obtained by rotating a
generating curve γ of length � about the e3 axis, as shown in figure 1(a). We adopt
the classic envelope model (Lighthill 1952) and assume that the ciliary tips undergo
time-periodic tangential movements along the generating curve. Let s = α(s0, t) be the
ciliary tip arc length coordinate on the generating curve γ at time t for a cilium rooted at
s0. The tangential slip velocity of this material point in its body-frame is thus

uS(s, t) = uS(α(s0, t), t) = ∂tα(s0, t). (2.1)

In addition to the time-periodic condition, the ciliary motion α needs to satisfy two more
conditions to avoid singularity (Michelin & Lauga 2010). First, the slip velocities should
vanish at the poles

α(0, t) = 0 and α(�, t) = �, ∀ t ∈ R
+, (2.2)

and second, α should be a monotonic function, that is,

∂s0α(s0, t) > 0, ∀ (s0, t) ∈ [0, �] × R
+. (2.3)

The last condition ensures the slip velocity is unique at any arc length s; in other words,
crossing of cilia is forbidden. While in reality, cilia do cross, this condition is enforced to
ensure validity of the continuum model.

In the viscous-dominated regime, the flow dynamics is described by the incompressible
Stokes equations at every instance of time:

−μ∇2u + ∇p = 0, ∇ · u = 0, (2.4)

where μ is the fluid viscosity, and p and u are the fluid pressure and velocity fields,
respectively. In the absence of external forces and imposed flow field, the far-field
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Figure 1. (a) Schematic of the microswimmer geometry. The shape is assumed to be axisymmetric, obtained
by rotating the generating curve γ about the e3 axis. The tip of the cilium rooted at s0 at time t is given by
s = α(s0, t). (b) Illustration of the algorithm for computing the slip velocity at the quadrature points uS(sq, t).
We first compute the ‘tip’ position and the corresponding tip velocities (open blue circles) of cilia rooted at
the Nq quadrature points sq (closed blue circles). We then obtain the slip velocities at sample points uniformly
distributed along the generating curve (open red squares) by a cubic interpolation. The slip velocity at any arc
length (black curve) is then obtained by a high-order B-spline interpolation from the sample points. We have
reduced the number of quadrature and sample points in this figure (compared to values used in the numerical
experiments) to avoid visual clutter.

boundary condition is simply

lim
x→∞ u(x, t) = 0. (2.5)

The free-swimming microswimmer also needs to satisfy the no-net-force and
no-net-torque conditions. Owing to the axisymmetric assumption, the no-net-torque
condition is satisfied by construction, and the no-net-force condition is reduced to one
scalar equation ∫

Γ

f (x, t) · e3dΓ = 2π

∫
γ

f3(x, t) x1 ds = 0, (2.6)

where x1 is the e1 component of x, f is the active force density the swimmer applied to
the fluid (negative to fluid traction) and f3 is its e3 component.

Given any ciliary motion α(s0, t) that satisfies (2.2) and (2.3), there is a unique tangential
slip velocity uS(s, t) defined by (2.1). Such a slip velocity propels the microswimmer at a
translational velocity U(t) in the e3 direction, determined by (2.6). Its angular velocity
as well as the translational velocities in the e1 and e2 directions are zero by symmetry.
Consequently, the boundary condition on γ is given by

u(x(s), t) = uS(s, t)τ (s)+ U(t)e3, (2.7)

where τ is the unit tangent vector on γ . Thereby, the instantaneous power loss P(t) can be
written as

P(t) =
∫
Γ

f (x, t) · u(x, t) dΓ
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= 2π

[∫
γ

f (s, t) · τ (s)uS(s, t) x1 ds + U(t)
∫
γ

f (s, t) · e3 x1 ds
]
. (2.8)

The second term on the right-hand side is zero provided that the no-net-force condition
(2.6) is satisfied.

Following Lighthill (1952), we quantify the performance of the microswimmer by its
swimming efficiency ε, defined as

ε = CD〈U〉2

〈P〉 , (2.9)

where P = P(t) and U = U(t) are the instantaneous power loss and swim speed, 〈·〉
denotes the time average over one period and CD is the drag coefficient defined as the total
drag force of towing a rigid body of the same shape at a unit speed along the e3 direction.
The coefficient CD depends on the given shape γ only; for example, CD = 6πμa in the
case of a spherical microswimmer with radius a.

In our simulations, we normalise the radius of the microswimmer to unity, and the
period of the ciliary motion to 2π. It is worth noting that the swimming efficiency (2.9) is
size and period independent, thanks to its dimensionless nature. The Reynolds number of
a ciliated microswimmer of radius 100 μm and frequency 30 Hz submerged in water can
be estimated as Re ∼ 10−4, confirming the applicability of the Stokes equations.

2.2. Numerical algorithm for solving the forward problem
Before stating the optimisation problem, we summarise our numerical solution procedure
for the governing equations (2.4)–(2.7). By the quasi-static nature of the Stokes equation
(2.4), the flow field u(x, t) can be solved independently at any given time, and the time
averages can be found using standard numerical integration techniques (e.g. trapezoidal
rule). We use a BIM at every time step. A similar BIM implementation was detailed in our
recent work Guo et al. (2021) in which we studied the optimisation of time-independent
slip profiles. The main procedures are summarised below, with key equations highlighted
in boxes.

We use the single-layer potential ansatz, which expresses the velocity as a convolution
of an unknown density function μ with Green’s function for the Stokes equations:

u(x) = 1
8π

∫
Γ

(
1
|r|I + r ⊗ r

|r|3
)

μ(y) dΓ (y), where r = x − y. (2.10)

The force density can then be evaluated as a convolution of μ with the (negative of) traction
kernel:

f (x) = 1
2
μ (x)+ 3

4π

∫
Γ

(
r ⊗ r
|r|5

)
(r · n(x))μ (y) dΓ (y) . (2.11)

We convert these weakly singular boundary integrals into convolutions on the generating
curve γ by performing an analytic integration in the orthoradial direction, and then
apply a high-order quadrature rule designed to handle the log singularity of the resulting
kernels (Veerapaneni et al. 2009). The Stokes flow problem defined at any time t by
(2.4)–(2.7) is then recast as the BIM system for the unknowns μ and U(t) obtained by
substituting (2.10) into (2.7) and (2.11) into (2.6). The numerical solution method consists
in discretising γ into Np non-overlapping panels, each panel supporting the nodes of a
10-point Gaussian quadrature rule. The single-layer operator is approximated in Nyström
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fashion, by collocation at the Nq = 10Np quadrature nodes, while the values of μ are
sought at the same quadrature nodes. The resulting BIM system is

[S −B
C 0

] [
μ

U(t)

]
=

[
uS

0

]
, (2.12)

where the vectors μ = μ(sq, t) and uS = uS(sq, t) are the unknown density and the given
slip velocity at all quadrature nodes sq, S is the axisymmetric single-layer potential
operator (which is fixed for a given shape γ ), B is the column vector reproducing e3 at
each quadrature node and C is the row vector, such that C[μ] = ∫

Γ
f (x) · e3dΓ is the

total traction force in the e3 direction.
The algorithm to obtain the slip velocity at the quadrature nodes at a given time uS(sq, t)

is summarised in figure 1(b). Specifically, we start by computing the corresponding ciliary
tip position s = α(sq, t) and the slip velocity uS(s, t) from (2.1). These tip positions s
can be highly non-uniform, depending on the form of α, which can be difficult for the
forward solver. To circumvent this difficulty and to find a smooth representation of the
slip velocities on the quadrature points, we first find the slip velocities at Ns sample
points uniformly distributed along the generating curve by interpolating uS(s, t) (we use
the routine PCHIP in MATLAB); the slip velocities at the quadrature nodes uS(sq, t) are
then in turn interpolated from the Ns sample points using high-order B-spline bases. An
alternative approach could be to follow the position and the slip velocity of each material
point. In other words, one can use uS(s, t) directly on the right-hand side of (2.12), which
will bypass the interpolation steps mentioned above. However, it requires reassembly of
the matrix S at every time step, significantly increasing the computational cost.

2.3. Optimisation problem
The goal of this work is to find the optimal ciliary motion for a given arbitrary
axisymmetric shape; that is, the ciliary motion α�(s0, t) that maximises the swimming
efficiency ε:

α� = arg max
α∈A

ε(α), (2.13)

where A is the space of all possible time-periodic ciliary motion satisfying (2.2) and (2.3).
It is, however, not easy to define and manipulate finite-dimensional parametrisations of α
that remain in that space. To circumvent this difficulty, we follow the ideas in Michelin &
Lauga (2010) and represent α in terms of a time-periodic function ψ(x, t), such that

α(s0, ψ) = �
∫ s0

0 [ψ(x, t)]2 dx∫ �
0 [ψ(x, t)]2 dx

, (2.14)

where � is the total length of the generating curve γ . Note that α is also (implicitly) a
function of time t, through ψ = ψ(x, t). It is easy to verify that α given by (2.14) satisfies
the boundary conditions (2.2) and the monotonicity requirement (2.3) for any choice of ψ .
Conversely, for any α satisfying (2.2) and (2.3), there is at least one ψ that provides α. As
a result, the optimisation problem is recast as finding

ψ� = arg max
ψ

ε(ψ), (2.15)

where ψ(·, t) is only required to be square-integrable over [0, �] for any t.
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We use a quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method (Nocedal
& Wright 2006) to optimise the ciliary motion via ψ , which requires repeated evaluations
of efficiency sensitivities with respect to perturbations of ψ . The sensitivities of power
loss and swim speed are derived using an adjoint-based method, while the efficiency
sensitivity is found using the quotient rule thereafter. The adjoint-based method exhibits a
great advantage over the traditional finite-difference method when finding the sensitivities,
because regardless of the dimension of the parameter space, the objective derivatives with
respect to all design parameters can here be evaluated on the basis of one solve of the
forward problem for each given ciliary motion α. The derivations are detailed below.

2.4. Sensitivity analysis
We start by finding the sensitivities in terms of the slip profile uS. The sensitivities in
terms of the auxiliary unknown ψ will be found subsequently by a change of variable. As
the concept of an adjoint solution, in general, rests on duality considerations, we recast
the forward-flow problem in weak form for the purpose of finding the sought sensitivities
of power loss and swim speed, even though the numerical forward-solution method used
in this work does not directly exploit that weak form. Specifically, we recast the forward
problem (2.4)–(2.7) in mixed weak form (see e.g. Brezzi & Fortin 1991, chapter 6). That
is, to find (u, p, f ,U) ∈ V × P × F × R, such that

a(u, v)− b(v, p)− b(u, q)− 〈 f , v〉Γ = 0 ∀ (v, q) ∈ V × P, (2.16a)

〈g, e3〉Γ U + 〈g, uSτ 〉Γ − 〈g,u〉Γ = 0 ∀g ∈ F , (2.16b)

〈 f , e3〉Γ = 0, (2.16c)

where the bilinear forms a and b are defined by

a(u, v) :=
∫
Ω

2μD[u] : D[v] dV, b(v, q) :=
∫
Ω

q div v dV, (2.17a,b)

and D[u] := (∇u + ∇Tu)/2 is the strain-rate tensor; we use 〈·, ·〉Γ as shorthand for the
inner product on Γ . For example, 〈 f , v〉Γ = ∫

Γ
f · v dΓ . Similarly, with a slight abuse

of notation, the power loss functional can be written as P(uS) := 〈 f , uSτ + Ue3〉Γ , where
U := U(uS) is the swim speed functional.

The Dirichlet boundary condition (2.7) is (weakly) enforced explicitly through (2.16b),
rather than being embedded in the velocity solution space V , as this will facilitate the
derivation of slip-derivative identities; this is in fact our motivation for using the mixed
weak form (2.16). Condition (2.16c) is the no-net-force condition (2.6).

First-order sensitivities of functionals at uS are defined as directional derivatives, by
considering perturbations of uS of the form

uS
η = uS + ην (2.18)

for some ν in the slip velocity space and η ∈ R. Then, the directional (or Gâteaux)
derivative of a functional J(uS) in the direction ν, denoted by J′(uS; ν), is defined as

J′(uS; ν) = lim
η→0

1
η

(
J[uS

η] − J[uS]
)
. (2.19)

For the power-loss functional, we obtain (because the derivative of uS in the above sense
is ν)

P′(uS; ν) = 〈 f ′, uSτ + Ue3〉Γ + 〈 f , ντ 〉Γ + 〈 f , e3〉Γ U′, (2.20)
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where f ′ and U′ are the derivatives of the active force f and swim speed U solving
problem (2.16), considered as functionals on the slip velocity uS:

f ′ = lim
η→0

1
η

(
f [uS

η] − f [uS]
)
, U′ = lim

η→0

1
η

(
U[uS

η] − U[uS]
)
. (2.21)

Differentiating the weak formulation (2.16) of the forward problem with respect to uS

leads to the weak formulation of the governing problem for the derivatives (u′, f ′, p′,U′)
of the solution (u, f , p,U):

a(u′, v)− b(u′, q)− b(v, p′)− 〈 f ′, v〉Γ = 0 ∀(v, q) ∈ V × P, (2.22a)

〈ντ , g〉Γ + U′〈e3, g〉Γ − 〈u′, g〉Γ = 0 ∀ g ∈ F , (2.22b)

〈 f ′, e3〉Γ = 0. (2.22c)

Here we have assumed without loss of generality that the test functions in (2.16) verify
v′ = 0, g′ = 0, and q′ = 0, which is made possible by the absence of boundary constraints
in V .

At first glance, evaluating P′(uS; ν) in a given perturbation ν appears to rely on solving
the derivative problem (2.22). However, a more effective approach allows us to bypass the
actual evaluation of f ′. Let the adjoint problem be defined by

a(û, v)− b(û, q)− b(v, p̂)− 〈f̂ , v〉Γ = 0 ∀(v, q) ∈ V × P, (2.23a)

〈e3, g〉Γ − 〈û, g〉Γ = 0 ∀g ∈ F , (2.23b)

i.e. (û, p̂) are the flow variables induced by prescribing a unit velocity e3 on Γ . For later
convenience, we let F0 denote the (non-zero) net force exerted on Γ by the adjoint flow:

F0 := 〈 f̂ , e3〉Γ . (2.24)

Problem (2.23) in strong form is defined by (2.4)–(2.7) with U = 1, uS = 0. In fact, F0
takes the same value as the drag coefficient CD in (2.9).

Then, combining the derivative problem (2.22) with the forward problem (2.16) or
the adjoint problem (2.23) with appropriate choices of test functions allows us to
derive expressions of P′(uS; ν) and U′(uS; ν) which do not involve the forward solution
derivatives.

Specifically, we set the test functions to (v, q, g) = (u′, p′, f ′) in ((2.16a) and (2.16b))
of the forward problem and (v, q, g) = (u, p, f ) in ((2.22a) and (2.22b)) of the derivative
problem. Then, the combination (2.22a) + (2.22b) − (2.16a) − (2.16b) is evaluated, to
obtain

〈 f ′, uSτ + Ue3〉Γ = 〈 f , ντ 〉Γ + 〈 f , e3〉Γ U′. (2.25)

Substituting (2.25) into (2.20), and recalling the no-net-force condition (2.6), we have

P′(uS; ν) = 2〈 f , ντ 〉Γ = 4π

∫
γ

( f · τ ) νx1 ds. (2.26)

Likewise, setting the test functions to (v, q, g) = (u′, p′, f ′) in the adjoint problem
(2.23) and (v, q, g) = (û, p̂, f̂ ) in ((2.22a) and (2.22b)) of the derivative problem (2.22),
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Optimal ciliary locomotion of axisymmetric microswimmers

then evaluating (2.22a) + (2.22b) − (2.23a) − (2.23b), yields

0 = 〈 f̂ , ντ 〉Γ + 〈 f̂ ,U′e3〉Γ − 〈 f ′, e3〉Γ = 〈 f̂ , ντ 〉Γ + F0U′. (2.27)

Note that 〈 f ′, e3〉Γ = 0 according to (2.22c). Rearranging terms in (2.27), we have

U′(uS; ν) = − 1
F0

〈 f̂ , ντ 〉Γ = −2π

F0

∫
γ

(f̂ · τ ) νx1 ds. (2.28)

The sensitivity formulas (2.26) and (2.28) are not practically applicable in this form to
the current optimisation problem, because the constraints (2.2) and (2.3) are not easy to
enforce on parametrisations of the unknown slip profiles uS. For this reason, we rewrite
the quantities of interest as functionals of ψ , and the connection between ψ and α is given
by (2.14). Specifically, the slip profile is

uS(s, t) = ∂tα(s0, ψ) = ∂ψα(s0, ψ; ψ̇) = ∂ψα
(
β(s, ψ), ψ; ψ̇) = vS(s, ψ), (2.29)

where ψ̇ := ∂tψ and β(s, ψ) is the inverse function of α, i.e. s0 = β(s, ψ). The average
power-loss and swim-speed functionals are written as

〈P〉(ψ) := 〈P〉(uS), 〈U〉(ψ) := 〈U〉(uS) with uS(s, t) = vS(s, ψ). (2.30)

On applying the change of variables s = α(s0, ψ) in the integrals (2.26) and (2.28) and
averaged over one period, we obtain

〈P〉′(ψ; ψ̂) = 2
∫ 2π

0

∫
γ

f (α) · τ (α) x1(α) v
S′(s, ψ; ψ̂) ∂sα ds0 dt, (2.31)

〈U〉′(ψ; ψ̂) = − 1
F0

∫ 2π

0

∫
γ

f̂ (α) · τ (α) x1(α) v
S′(s, ψ; ψ̂) ∂sα ds0 dt, (2.32)

where vS′(s, ψ; ψ̂) is the directional derivative of uS with respect to ψ and in the direction
ψ̂ . Specifically, we can show that

vS′(s, ψ; ψ̂) ∂sα(s0, ψ)ds0 =
{
∂sα(s0, ψ)

[
∂2
ψα

(
s0, ψ; ψ̂, ψ̇

)
+ ∂ψα

(
s0, ψ; ˙̂

ψ
) ]

−∂ψsα
(
s0, ψ; ψ̇)

∂ψα
(

s0, ψ; ψ̂
)}

ds0. (2.33)

The derivation and the explicit expression of each term in (2.33) are given in Appendix A.
Finally, the efficiency sensitivity in terms of ψ readily follows by the quotient rule

ε′(ψ; ψ̂) = CD
2〈U〉〈U〉′〈P〉 − 〈U〉2〈P〉′

〈P〉2 . (2.34)

2.5. Constraints on surface displacement
The unconstrained optimisation problem (2.15) introduced previously has the tendency to
converge to unphysical/unrealistic strokes, where each cilium effectively ‘covers’ the entire
generating curve. For a more realistic model, we should add a constraint on the length of
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the cilium. To this end, and again following Michelin & Lauga (2010), we replace the
initial unconstrained optimisation problem (2.15) with the penalised optimisation problem

ψ� = arg maxψE(ψ), E(ψ) = ε(ψ)− C(ψ), (2.35a,b)

where the (non-negative) penalty term C(ψ), defined as

C(ψ) =
∫ �

0
H(A(ψ)− c) ds0, (2.36)

serves to incorporate the kinematic constraint A(ψ) ≤ c in the optimisation problem. The
functional A(ψ) in (2.36) is a measure of the amplitude of the displacement of individual
material points for the stroke (through α) and c is a threshold parameter to bound A(ψ)
(a smaller c corresponding to a stricter constraint). We use H as a smooth non-negative
penalty function defined by

H(u) = Λ1 [1 + tanh (Λ2u)] u2, (2.37)

which for a large enough Λ2 approximates u → 2Λ1u2Y(u) (Y being the Heaviside unit
step function). The multiplicative parameter Λ1 then serves to tune the severity of the
penalty incurred by violations of the constraint A(ψ) ≤ c. We useΛ1 = 104 andΛ2 = 104

in our numerical simulations unless otherwise mentioned. The optimisation results are
not sensitive to the choice of Λ1 and Λ2. A small caveat of the penalty function (2.37)
is that it has a (small) bump at Λ2u ≈ −1.109. This bump can occasionally trap the
optimisations into local extrema that have significantly lower efficiencies, depending on
the initial guesses. Perturbing Λ2 for such cases helps to alleviate the problem.

The most relevant physical definition of A would be the actual displacement amplitude of
an individual point, i.e. �s = [αmax(s0)− αmin(s0)]/2. However, the strong nonlinearity
of this measure is not appropriate for the computation of the gradient. Following Michelin
& Lauga (2010), we measure the displacement by its variance in time:

A(ψ) = 〈(α(s0, ψ)− 〈α〉(s0))
2〉. (2.38)

The maximum displacement �smax = maxs0(�s) will be found post-optimisation for the
optimal ciliary motion α� to better illustrate our results in § 3.

Like the initial problem (2.15), the penalised problem (2.35a,b) is solvable using
unconstrained optimisation methods, and we again adopt a quasi-Newton BFGS algorithm
to optimise the ciliary motion. Applying the chain rule to the penalty functional C(ψ), we
obtain the derivative of the penalty term in the direction of ψ̂ as

C′(ψ; ψ̂) =
∫ �

0
H′(A(ψ)− c)A′(ψ; ψ̂) ds0. (2.39)

The derivative of the penalised objective functional E(ψ) is therefore

E′(ψ; ψ̂) = ε′(ψ; ψ̂)− C′(ψ; ψ̂), (2.40)

where ε′ and C′ are given by (2.34) and (2.39), respectively.
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Optimal ciliary locomotion of axisymmetric microswimmers

3. Results

3.1. Parametrisation
We parametrise ψ(s0, t), such that

ψ(s0, t) =
m∑

k=1

ξk(t)Bk(s0), (3.1)

where Bk are the fifth-order B-spline basis functions and their coordinates ξk(t) are
expanded as trigonometric polynomials ξk(t) = a0k/2 + ∑n

j=1[ajk cos jt + bjk sin jt] to
ensure time periodicity. Taken together, we have

ψ(s0, t) =
m∑

k=1

⎡
⎣a0k

2
+

n∑
j=1

(ajk cos jt + bjk sin jt)

⎤
⎦ Bk(s0) (3.2)

so that the finite-dimensional optimisation problem seeks optimal values for the m(2n + 1)
coefficients a0k, ajk and bjk. The initial guesses are chosen to be low-frequency waves with
small-wave amplitudes. To obtain such initial waves, the coefficients of the zeroth Fourier
mode a0k/2 are randomly chosen from a uniform distribution within [0, 1], the first Fourier
modes a1k and b1k are randomly chosen from a uniform distribution within [0, 0.01] and
the coefficients for higher order Fourier modes j > 1 are set to 0. A brief discussion about
the initial guesses can be found in Appendix B. To evaluate the gradient of E(ψ) with
respect to the design parameters a0k, ajk and bjk, we use (2.40) with ψ̂ taken as the
basis functions of the adopted parametrisation (3.2), i.e. ψ̂(s0, t) = Bk(s0)/2, ψ̂(s0, t) =
Bk(s0) cos jt and ψ̂(s0, t) = Bk(s0) sin jt, respectively. In terms of parametrisation, local
minima are multiple in the parameter space, because multiplying optimal parameters by a
constant factor yields the same optimum for α.

3.2. Spheroidal swimmers
By way of validation, we start with optimising the ciliary motion of a spherical
microswimmer. The efficiency ε as a function of iteration number for the unconstrained
optimisation (2.15) is shown in figure 2(a) in blue. The maximum efficiency is about
35 %. The ciliary motion of the optimal spherical microswimmer is shown in figure 2(b).
Each curve follows the arc length coordinate of a cilium tip over one period. We observe,
similar to the results of Michelin & Lauga (2010), clearly distinguished strokes within
the beating period. In particular, cilia travel downward ‘spread out’ during the effective
stroke (corresponding to a stretching of the surface), but travel upward ‘bundled’ together
during the recovery stroke in a shock-like structure (corresponding to a compression
of the surface). This type of waveform is known as an antiplectic metachronal wave
(Knight-Jones 1954; Blake 1972). We note that this optimal ciliary motion produces an
efficiency higher than the 23 % efficiency obtained numerically by Michelin & Lauga
(2010, figure 11). This is owing to a larger maximum displacement �smax ≈ 0.45� in
our optimisations (translated to a maximum angle of 81◦ vs 53◦). Our optimisation
result aligns well with their results using the analytical ansatz (Michelin & Lauga 2010,
figure 14). Additionally, we found that increasing the number of Fourier mode n increases
the maximum displacement as well as the efficiency; the optimal ciliary motion of higher
n also exhibits a higher slope for the shock-like structures (results not shown here). This is
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Figure 2. Unconstrained optimisation history of a spherical swimmer and a prolate swimmer with a 2 : 1
aspect ratio. The optimal spherical swimmer has an efficiency ε ≈ 35 % and swim speed 〈U〉 ≈ 1.2. The
optimal prolate swimmer has an efficiency ε ≈ 69 % and swim speed 〈U〉 ≈ 1.5. The results for the spherical
and prolate swimmers are depicted in blue and green colours, respectively. (a) The efficiency is shown as a
function of iteration number. (b,c) The ciliary motions of the optimal swimmers. (d,e) The time-averaged slip
velocities (at Eulerian points) are shown in solid curves. Dashed curves are the time-independent optimal slip
velocities of the given shape scaled by the swim speed (Guo et al. 2021). Parameters used in the optimisation:
m = 25, n = 2. The number of panels Np = 20, number of sample points Ns = 80 and number of time steps
per period Nt = 50. We use the same in the remainder of the paper unless otherwise stated. Note that the
vertical axes of panels (b) and (c) are flipped so that the north pole (s = 0) appear on the top of the figure.
The corresponding waveforms are known as antiplectic metachronal waves (tips are spread out during the
effective stroke and close together during the recovery stroke). Videos of the optimal ciliary motions can be
found in the online supplementary material (Movies 1 and 2) available at https://doi.org/10.1017/jfm.2021.744.

again consistent with their analytical ansatz, which shows that the efficiency approaches
50 % at the limit of the maximum displacement approaches 90◦, and the corresponding
‘width’ of the shock in this limit is infinitely small. The mean slip velocity of the Eulerian
points within each period are almost identical to the optimal time-independent slip velocity
scaled by the swim speed, as shown in figure 2(d).

The optimal unconstrained prolate spheroidal microswimmer with a 2 : 1 aspect ratio
has an efficiency ε ≈ 69 %, about twice as high as the spherical microswimmer as shown
in figure 2(a). This roughly two-fold increase in efficiency is also observed in the optimal
time-independent microswimmers (Guo et al. 2021). The optimal ciliary motion is very
close to that of the spherical swimmer (figure 2b,c), while the mean slip velocity of the
Eulerian points are between the optimal time-independent slip velocity of the same shape
and those of a spherical swimmer, as shown in figure 2(e). As a check, swapping the ciliary
motions obtained from optimising the spherical swimmer and the prolate swimmer leads
in both cases to lower swimming efficiencies. Specifically, a spherical swimmer with the
ciliary motion shown in figure 2(c) has 34 % swimming efficiency and a prolate swimmer
with the ciliary motion shown in figure 2(b) has 65 % swimming efficiency (compared to
35 % and 69 % using the ‘true’ optimal ciliary motions, respectively).

We then turn to the case in which the cilia length is constrained by prescribing a bound
on the displacement variance (2.38). We control the maximum variance by tuning c in
(2.36), and the efficiencies are plotted against the maximum displacement�smax scaled by
the total arc length � in figure 3. Three different random initial guesses are used for each c.
The unconstrained optimisation results for the spherical and prolate spheroidal swimmers
are also shown in the figure for reference. Notably, for both the unconstrained swimmers,
the length of the cilia is roughly half the total arc length of the generating curve (�smax ≈
�/2). In other words, a cilium rooted at the equator would be able to get very close to
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Optimal ciliary locomotion of axisymmetric microswimmers
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Figure 3. Efficiency as a function of maximum displacement of ciliary tips. Blue and green symbols represent
spherical and prolate spheroidal swimmers (2 : 1 aspect ratio), respectively. Diamond symbols are the optimal
unconstrained case. Open symbols are optimisation results of spherical swimmers taken from Michelin &
Lauga (2010, figure 11).
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Figure 4. Ciliary motion (a) and mean slip velocity (b) for the optimal spherical swimmer with constraint
(�smax/� ≈ 5.0 %). The efficiency is ε ≈ 6.9 % and the swim speed is 〈U〉 ≈ 0.091. The swimmer forms
multiple waves in the equatorial region, leading to a high slip velocity at s ≈ 0.5�. The motion close to the poles
is nearly zero. The dashed curve in (b) is the time-independent optimal slip velocity of the spherical swimmer,
scaled by the swim speed. The video of the optimal ciliary motion can be found in the online supplementary
material (Movie 3).

both poles during the beating cycle. In general, a smaller variance (tighter constraint)
leads to a lower efficiency, as expected. The efficiency results of spherical microswimmers
closely match those reported by Michelin & Lauga (2010). The efficiencies of the prolate
spheroidal microswimmer under constraints are also shown in figure 3. Similar to the
spherical microswimmer, the efficiency increases roughly linearly with the scaled cilia
length�smax/�, and converges to the kinematically unconstrained optimal microswimmer
as the maximum variance c is increased.

It is noteworthy that adding a constraint in the cilia length not only limits the wave
amplitudes, but also breaks the single wave with larger amplitude into multiple waves
with smaller amplitudes (figure 4a), which resemble the metachronal waves of typical
ciliated microswimmers, such as Paramecium. More interestingly, the mean slip velocity
in the constrained case can be qualitatively different from the time-independent optimal
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Figure 5. Constrained optimisations could lead to more efficient ciliary motions for microswimmers with
a thin ‘neck’ on average. (a) Efficiencies of the microswimmers with various neck widths. The median
efficiencies of the time-dependent optimisations across 10 randomised initial conditions are shown for each
shape in cross symbols ‘×’. Unconstrained and constrained optimisations (c = 1) are depicted in blue and
green, respectively. Efficiencies of the microswimmers with time-independent slips are shown, using black
circle symbols ‘◦’, as a reference. (b,c) Ciliary motions of microswimmers with δ = 0.8 from unconstrained
and constrained optimisations from the same initial guess. The swimming efficiencies are 20 % and 29 %,
respectively. (d,e) Mean slip velocity corresponding to the ciliary motions in (b,c). Blue dashed curves are
the optimal time-independent slip velocities scaled by the swim speed. In these simulations, we increase the
number of panels Np = 40 to resolve the sharp shape change. The videos of the optimal ciliary motions can be
found in the online supplementary material (Movies 4 and 5).

slip velocity, as shown in figure 4(b). In particular, the mean slip velocity around the
equator is significantly higher than the time-independent slip velocity, while the mean slip
velocity near the poles are closer to zero. This can be inferred from the ciliary motions,
as the cilia only move slightly near the poles, whereas multiple waves with significant
amplitudes travel around the equator within one period.

3.3. Non-spheroidal swimmers
We then investigate the effects of shapes on the optimal ciliary motions and the swimming
efficiencies. In particular, we examine whether a single wave travelling between the
north and south poles always maximises the swimming efficiency, and whether adding
a constraint in the cilia length is always detrimental to the swimming efficiency.

We consider a family of shapes whose generating curves are given by: (x, z) =
(R(θ) sin θ,R(θ) cos θ), where R(θ) = (1 + δ cos 2θ) is a function that makes the radius
non-constant, and θ ∈ [0,π] is the parametric coordinate. For 0 < δ < 1, the radius is the
smallest at θ = π/2, corresponding to a ‘neck’ around the equator. In the limit δ = 0, the
generating curve reduces to a semicircle and the swimmer reduces to a spherical swimmer.

The optimisation results are depicted in figure 5 for 0 ≤ δ ≤ 0.8. Some corresponding
shapes are shown as insets. The median efficiencies of 10 Monte Carlo simulations are
plotted for each δ value, and compared against the time-independent efficiencies. For all
three cases (constrained, unconstrained and time-independent), the efficiencies increase
as δ increases from 0 to 0.3. This is because increasing δ in this regime makes the shape
more elongated. Increasing δ further reduces the efficiencies as the neck at the equator
becomes more and more pronounced. Additionally, the unconstrained microswimmers, on
average, have better efficiencies than the microswimmers with kinematic constraints for
0 ≤ δ ≤ 0.6.
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Figure 6. Statistical results of thin neck microswimmer of δ = 0.8 with various constraint c for 10 Monte Carlo
simulations. The unconstrained simulation is denoted by c = ∞. (a) Efficiencies grouped by the constraint c.
For each box, the central mark indicates the median of the 10 random simulations, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively. The outliers are denoted by red + symbols. (b)
Efficiencies plotted against the maximum displacement �smax/�. The numerical parameter Λ2 is set to be
104 by default. Occasionally the optimisation might stop within merely a few iterations, making the ciliary
motion stuck in a very inefficient local minimum. SettingΛ2 to 103 for these cases (most of the time) cures the
problem.

Interestingly, unconstrained optimisation may result in worse ciliary motions on average
when the shape is highly curved, compared to its kinematically constrained counterpart.
Specifically, the constrained microswimmers have higher median efficiencies for δ ≥ 0.7.
We note that the unconstrained optimisations are likely to be trapped in local optima where
the ciliary motion forms a single wave (figure 5b), whereas the constrained optimisations
are ‘forced’ to find the ciliary motion with multiple waves split at the equator (figure 5c),
because of the constrained cilia length. Additionally, our numerical results show that a
single wave travelling between the north and south poles is not as efficient as two separate
waves travelling within each hemisphere for this shape. Figure 5(d,e) shows that the single
wave generates a high mean slip velocity at the position where the generating curve bends
inward (the equator), whereas the two separate waves generate a mean slip velocity similar
to that obtained from the time-independent optimisation. In a way, the constraint in cilia
length is helping the optimiser to navigate the parameter space.

To better understand the effects of constraints on the highly curved shapes, we present
the statistical results of the thin neck microswimmer (δ = 0.8) with various constraints in
figure 6. In general, the highest efficiency from the Monte Carlo simulations increases with
the constraint for c ≤ 0.8, similar to the case of spheroidal swimmers (figure 3). Further
increasing c has limited effect on the highest efficiencies, indicating that the constraint
is no longer limiting the optimal ciliary motion. The median efficiencies (red horizontal
lines), on the other hand, decreases with the constraint if c ≥ 0.8, consistent with the
observation from figure 5. It is worth noting that the constrained optimisation is more
likely to get stuck in very low efficiencies (e.g. the lowest outlier for c = 0.8), possibly
owing to the secondary bump of the penalty function C mentioned earlier.

All data points from the optimisation are plotted in figure 6(b) as function of the
maximum displacement �smax. The efficiencies grow almost linearly until �smax ≈
0.25�, as in the case of spheroidal swimmers, and decrease for larger�smax. This is further
evidence that the optimal ciliary motion for this shape consists of two separate waves
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travelling within each hemisphere. We want to emphasise that unconstrained optimisation
can still reach the optimal ciliary motion, as shown in the box of c = ∞. However, it is
more likely to reach the suboptimal ciliary motion compared with the constrained cases.

4. Conclusions and discussions

In this paper, we extended the work of Michelin & Lauga (2010) and studied the optimal
ciliary motion for a microswimmer with an arbitrary axisymmetric shape. In particular,
the forward problem is solved using a BIM and the sensitivities are derived using
an adjoint-based method. The auxiliary function ψ is parametrised using high-order
B-spline basis functions in space and a trigonometric polynomial in time. We studied the
constrained and unconstrained optimal ciliary motions of microswimmers with a variety
of shapes, including spherical, prolate spheroidal and concave shapes which are narrow
around the equator. In all cases, the optimal swimmer displays (one or multiple) travelling
waves, reminiscent of the typical metachronal waves observed in ciliated microswimmers.
Specifically, for the spherical swimmer with limited cilia length (figure 4a), the ratio
between the metachronal wavelength close to the equator and the cilia length could be
estimated as λMW/�smax ≈ 0.2�/0.05� = 4. This ratio lies in the higher end of the data
collected in Velho Rodrigues, Lisicki & Lauga (2021, table 9) for biological ciliates, which
reports a ratio ranging between 0.5 to 4. Our slightly high ratio estimate may not be
surprising after all, as the envelope model prohibits the crossing between neighbouring
cilia.

We showed that the optimal ciliary motions of prolate microswimmer with a 2 : 1 aspect
ratio are very close to the ones of spherical microswimmer, while the swimming efficiency
can increase two-fold. The mean slip velocity of unconstrained microswimmers also tend
to follow the optimal time-independent slip velocity, which can be easily computed using
our recent work (Guo et al. 2021).

Most interestingly, we found that constraining the cilia length for some shapes may
lead to a better efficiency on average, compared with the unconstrained optimisation.
It is our conjecture that this counterintuitive result is because the constraint effectively
reduces the size of the parameter space, hence lowering the probability of being trapped
in local optima during the optimisation. Although the concave shapes studied in § 3.3 are
somewhat non-standard, they allow us to gain insights into the effect of local curvature on
optimal waveform. Incidentally, these shapes are also observed for ciliates in nature (e.g.
during the cell division process).

It is worth pointing out that works on sublayer models (explicitly modelling individual
cilia motions) have reported swimming or transport efficiencies in the orders of 0.1 ∼ 1 %
(see, e.g. Elgeti & Gompper 2013; Ito et al. 2019; Omori et al. 2020), much lower than
the optimal efficiency reported here and others using the envelope models. This large
difference can possibly be attributed to the fact that the envelope model we adopted here
considers only the energy dissipation outside the ciliary layer (into the ambient fluid),
while sublayer models in general consider energy dissipation both inside and outside the
ciliary layer. Research has shown that the energy dissipation inside the layer could be as
high as 90 ∼ 95 % of the total energy dissipation, owing to the large shear rate inside the
layer (see e.g. Keller & Wu 1977; Ito et al. 2019). We note that it is possible to incorporate
energy dissipation inside the ciliary layer in the envelope model, as previously done in
Vilfan (2012), albeit for a time-independent slip profile. Additionally, the difference could
also be due to modelling assumptions on the cilia length and the number of cilia. In
particular, the cilia length considered in sublayer models is usually below 1/10 of the
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body length. Omori et al. (2020) showed that swimming efficiency increases with the
cilia length as fast as powers of three in the short cilia limit, and the number of cilia
also has a significant positive effect on the swimming efficiency (the envelope model
assumes a ciliary continuum). Factoring all three variables (energy inside/outside, cilia
length, number of cilia) could bridge the gap between the results obtained from these two
types of models.

Clearly, maximising the hydrodynamic swimming efficiency is not the sole objective for
biological microswimmers. Other functions such as generating feeding currents (Riisgård
& Larsen 2010; Pepper et al. 2013) and creating flow environment to accelerate mixing for
chemical sensing (Supatto, Fraser & Vermot 2008; Shields et al. 2010; Ding et al. 2014;
Nawroth et al. 2017) are also important factors to consider as a microswimmer. The effect
of such multitasking on the ciliary dynamics is not well understood. Nevertheless, our
work provides an efficient framework to investigate the hydrodynamically optimal ciliary
motions for microswimmers of any axisymmetric shape, and could provide insights into
designing artificial microswimmers.

A straightforward extension of our work is to allow more general ciliary motions, e.g.
including deformations normal to the surface. Such a swimmer will display time-periodic
shape changes and the optimisation will require the derivation of shape sensitivities.
Additionally, the computational cost would also increase significantly because the matrix
in (2.12) needs to be updated at every time step. Our framework is also open to many
generalisations and could, for example, help in accounting for the multiple factors
mentioned previously, such as mixing for chemical sensing, in the study of optimal ciliary
dynamics.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.744.
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Appendix A. Derivations of sensitivities

Here, we include the detail derivations that lead to (2.33) and the explicit expressions of
the terms therein.

Recall that the power loss and the swim speed can be written as functionals of ψ , as
shown in (2.30). The sensitivities of 〈P〉 and 〈U〉 can thus be formulated by considering
perturbed versions of ψ as in

ψη(x, t) = ψ(x, t)+ ηψ̂(x, t), i.e. ψη = ψ + ηψ̂, (A1)

so that the perturbed location sη at time t of the material particle initially located at s0 is
given by

sη = α(s0, ψη), (A2)
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with the functional α unchanged. Similar to (2.29), the perturbed slip velocity uS
η(s, t)

satisfies
uS
η(s, t) = ∂ψα

(
β(s, ψη), ψη; ψ̇η

) = υS(s, ψη), (A3)

where β, the inverse function of α, is also unchanged.
Notice that uS and uS

η given by (2.29) and (A3) are evaluated at the same time t and
current location s (the latter being thus reached from different initial positions β(s, ψ)
and β(s, ψη)). This allows us to define the directional derivative υS′(s, ψ; ψ̂) of uS with
respect to ψ in the direction ψ̂ , as a total derivative with respect to η:

υS′(s, ψ; ψ̂) := lim
η→0

1
η

[
uS
η(s, t)− uS(s, t)

]
= d

dη
∂ψα

(
β(s, ψη), ψη; ψ̇η

)∣∣
η=0 . (A4)

Carrying out the above differentiation in a straightforward way, we find

υS′(s, ψ; ψ̂) = ∂ψsα
(
β(s, ψ), ψ; ψ̇)

∂ψβ
(

s, ψ; ψ̂
)

+∂ψψα
(
β(s, ψ), ψ; ψ̇ , ψ̂

)
+ ∂ψα

(
β(s, ψ), ψ; ˙̂

ψ
)
. (A5)

Moreover, for any ψ , the functions α and β are linked through

s = α (β(s, ψ), ψ) , (A6)

which, upon taking the directional derivative in the direction ψ̂ and using the chain rule,
yields

0 = ∂sα (β(s, ψ), ψ) ∂ψβ
(

s, ψ; ψ̂
)

+ ∂ψα
(
β(s, ψ), ψ; ψ̂

)
. (A7)

The above equality allows us to eliminate ∂ψβ from (A5), to obtain

υS′(s, ψ; ψ̂) = −∂ψsα
(
β(s, ψ), ψ; ψ̇) ∂ψα

(
β(s, ψ), ψ; ψ̂

)
∂sα (β(s, ψ), ψ)

+∂ψψα
(
β(s, ψ), ψ ; ψ̇ , ψ̂

)
+ ∂ψα

(
β(s, ψ), ψ; ˙̂

ψ
)
. (A8)

In practice, the slip velocity derivative υS′ given by (A8) is more conveniently expressed
in the initial arc length variable s0 = β(s, ψ). Moreover, in the event that ψ(s0, t) = 0 for
some s0 and t, υS′ given by (A8) blows up because ∂sα(β(s, ψ), ψ) = 0 in this case,
whereas υS′ ds remains finite if expressed in terms of s0 (because ds = ∂sα(s0, ψ) ds0).
Upon effecting the change of variable s = α(s0, ψ) in the integrals (2.26) and (2.28), we
obtain

〈P〉′(ψ; ψ̂) = 4π

〈∫
γ

R(α(s0, ψ)) f (α(s0, ψ), t) · τ (α(s0, ψ)) υ
S′(s, ψ; ψ̂) ∂sα(s0, ψ) ds0

〉
,

(A9)

〈U〉′(ψ; ψ̂) = −2π

F0

〈∫
γ

R(α(s0, ψ)) f̂ (α(s0, ψ)) · τ (α(s0, ψ)) υ
S′(s, ψ; ψ̂) ∂sα(s0, ψ) ds0

〉
,

(A10)
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Figure 7. Sensitivity to the initial Fourier coefficient. (a) Optimised efficiencies for the unconstrained
spherical swimmer with the initial first Fourier mode chosen from [0, 0.01] (blue), [0, 0.1] (black), [0, 1] (red),
respectively. (b,d) The initial and final waveforms of the case where the range is [0, 0.01]. (c,e) The initial and
final waveforms of the case where the range is [0, 1]. Results with different initial conditions are highlighted
by their corresponding colours.

where, thanks to (A8), we have used

υS′(s, ψ; ψ̂) ds = υS′(s, ψ; ψ̂) ∂sα(s0, ψ) ds0,

=
{
∂sα(s0, ψ)

[
∂2
ψα

(
s0, ψ; ψ̂, ψ̇

)
+ ∂ψα

(
s0, ψ; ˙̂

ψ
) ]

−∂ψsα
(
s0, ψ; ψ̇)

∂ψα
(

s0, ψ; ψ̂
)}

ds0. (A11)

This completes our derivation of (2.33).
For the ciliary motion (2.14) used here, introducing the shorthand notation I( f , g; s) :=∫ s

0 f (x)g(x) dx, we have

α(s0, ψ) = �I(ψ,ψ; s0)

I(ψ,ψ; �) , (A12)

∂sα(s0, ψ) = �ψ2(s0)

I(ψ,ψ; �), (A13)

∂ψα
(

s0, ψ; ψ̂
)

= 2�I(ψ, ψ̂; s0)

I(ψ,ψ; �) − 2α(s0, ψ)
I(ψ, ψ̂; �)
I(ψ,ψ; �), (A14)

∂sψα
(
s0, ψ; ψ̇) = 2�ψ(s0)ψ̇(s0)

I(ψ,ψ; �) − 2�
I(ψ, ψ̇; �)ψ2(s0)

(I(ψ,ψ; �))2 , (A15)

∂2
ψα

(
s0, ψ ; ψ̂, ψ̇

)
= 2�I(ψ̂, ψ̇; s0)

I(ψ,ψ; �) − 2α(s0, ψ)
I(ψ̂, ψ̇; �)
I(ψ,ψ; �)

− 2I(ψ, ψ̂; �)
I(ψ,ψ; �) ∂ψα

(
s0, ψ; ψ̇) − 2I(ψ, ψ̇; �)

I(ψ,ψ; �) ∂ψα
(

s0, ψ; ψ̂
)
.

(A16)

Appendix B. Initial coefficient sensitivity

In our optimisations, the initial guesses are chosen to be low-frequency waves with small
wave amplitudes. These are obtained by choosing the coefficients of the first Fourier
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modes from a uniform distribution within [0, 0.01] (to restrict the initial wave amplitudes),
and setting the coefficients of the higher modes to 0 (to discourage high-frequency
waves).

Restricting our attention to low-frequency waves effectively sets a time scale in our
problem. That is, it helps us to focus on the ciliary motion within sone beating cycle
which is given by the base Fourier mode. Note that there is a danger of confusing the
(spatial) Legendre modes used in Blake (1971) and the (temporal) Fourier modes studied
here. While the swim speed is determined by the first Legendre mode, introducing higher
order Fourier modes would affect the swim speed. Specifically, cilia beating twice as fast
(beating two cycles in the same time span) could double the swim speed. However, the
efficiency would remain unchanged because of the simultaneous increase of the power
loss.

Owing to the high-dimensional nature of the problem (hundreds of degrees of freedom),
many local optima exist. As shown in figure 7(a), a large initial range of the Fourier
coefficient (e.g. [0, 1]) increases the risk of the optimiser getting stuck close to an
unsuitable local optimum. For example, an initial waveform as shown in figure 7(c) can
only be optimised to a waveform shown in figure 7(e), which has a swimming efficiency
as low as 2 %. On the other hand, the initial wave with small amplitudes (as shown in
figure 7b) could almost always be optimised to the waveform with swimming efficiency
ε ≈ 35 %.
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