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ABSTRACT 
AR/VR applications are a valuable tool in product design and lifecycle. But the integration of AR/VR 
is not seamless, as CAD models need to be prepared for the AR/VR applications. One necessary data 
transformation is the tessellation of the analytically described geometry. To ensure the usability, visual 
quality and evaluability of the AR/VR application, time consuming optimisation is needed depending 
on the product complexity and the performance of the target device. 
 
Widespread approaches to this problem are based on iterative mesh decimation. This approach ignores 
the varying importance of geometries and the required visual quality in engineering applications. Our 
predictive approach is an alternative that enables optimisation without iterative process steps on the 
tessellated geometry. 
 
The contribution presents an approach that uses surface-based prediction and enables predictions of the 
perceived visual quality of the geometries. This contains the investigation of different geometric 
complexity metrics gathered from literature as basis for prediction models. The approach is implemented 
in a geometry preparation tool and the results are compared with other approaches. 
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1 INTRODUCTION 

AR/VR applications are a useful tool in product design. Applications reach from the improvement of 

product models in VR design reviews to the early inclusion of service in virtual maintenance planning. 

Product geometry plays an essential role in these 3D visualisations. The prevalent geometry 

representations for these visualisations are polygon meshes that are used with game engines like Unity 

or Unreal to create AR/VR applications. However, product geometry in engineering is described 

analytically in CAD systems. The CAD data (analytical geometry and product structure) needs to be 

transformed to AR/VR data (polygon meshes, product structure, metadata) in a geometry preparation 

process (Dammann et al., 2022b; Santos et al., 2021; Graf et al., 2002; Salonen et al., 2009). 

The main task in this process is the discretisation of the analytical geometry, which is called 

tessellation (Dammann et al., 2022b). Tessellation algorithms offer parameters to control the accuracy 

of the discretisation, for example linear deflection and angular deflection from the parametric 

geometry. The choice of tessellation parameters influences the visual quality of the AR/VR 

application. Furthermore, perception is determined by e.g.: lighting, reflections, materials, object 

count, draw calls and physics simulation. In theory the tessellation parameters can be derived from the 

complexity and importance of the geometry. As product models often contain thousands of 

components, all geometries are tessellated with the same parameters due to a lack of automated 

parameter choice (Lorenz et al., 2016; Dammann et al., 2022b). This approach often results in models 

with too many polygons (e.g.: insignificant components like screws or rivets claim an unreasonable 

amount of polygons) or with insufficient visual quality and a need for time-consuming manual rework. 

These problems are particularly evident on mobile devices (tablet, AR-HMD). 

The current approach to this problem in geometry preparation is an iterative decimation approach, see 

Figure 1. This approach relies on the reduction of quality in the polygon mesh by collapsing polygons 

until an optimisation criterion is satisfied - in most cases the polygon count. The varying importance 

of different geometries and the human perception of visual quality of the polygon mesh are not taken 

into account. The approach also requires a high quality of the initial tessellation to ensure good results 

of the decimation. 

 

Figure 1: Decimation approach vs. predictive approach for optimisation in geometry 
preparation (Dammann et al., 2022a) 

The predictive approach (Dammann et al., 2022a) is based on geometric complexity metrics (e.g. area, 

curvature), which are retrieved in an analysis of the CAD geometry. The metrics are used by a regression 

model to create predictions for the tessellation results of a parameter setting for the tessellation algorithm 

of choice. In this way the effects of the choice of different tessellation parameters can be quantified in 

advance. The regression models are created from datasets based on collected geometric complexity 

metrics and tessellation results (e.g. polygon count). A separate regression model is needed for each 

parameter setting. The predictive approach uses existing tessellation algorithms and offers a way to 

automatically adjust their parameters. The approach does not modify tessellation algorithms themselves. 

Through the choice of appropriate tessellation parameters for each geometry, iterative process steps in 

the geometry preparation can be reduced or avoided. In addition, geometric complexity metrics can be 

used to rate the visual importance of each geometry in the AR/VR application and identify potentially 

problematic components, which enables further automation of the geometry preparation. 

The advantages of the predictive approach as an alternative to the decimation approach has already been 

demonstrated for part-based predictions. The approach enables targeted polygon count and quality 

optimisations for large assembly models. This contribution presents an enhancement to the predictive 

approach by additional predictions of the perceived visual quality of the polygon meshes. Perceptual 
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visual quality metrics are typically not a part of the geometry preparation, as the calculation generally 

takes more time than the other steps of the geometry preparation combined.  

Furthermore, a transition from part-based to surface-based prediction is explored. In the original 

approach geometric complexity metrics are collected for each part and predictions for the tessellation 

results are also generated for each part. In this contribution the metrics are collected for each surface 

of a part and the predictions are in term calculated per surface, the accumulated surface predictions are 

then used to calculate e.g. the polygon count of a part. 

This contribution explores the following research question:  

How do the use of surface-based predictions and predictions of the visual quality affect the prediction 

accuracy and geometry preparation results of the predictive approach? 

 

We evaluate the following hypotheses (H1-H3): 

H1: Surface-based predictions improve the accuracy of the predictive approach. 

H2: Surface-based predictions are faster than part-based predictions. 

H3: Visual quality predictions enable the creation of polygon meshes with higher visual quality and a 

similar polygon count as the decimation approach. 

 

The content of this contribution is an important part in a framework for the automated and adaptive 

geometry preparation for AR/VR applications in engineering. Which, in turn, is essential for the broad 

and seamless use of AR/VR as a tool in product design. Engineers can focus on product development 

and design instead of spending time on the preparation and optimisation of content for the AR/VR 

application. 

2 RELATED RESEARCH 

Tessellation 

The tessellation is performed by the use of different tessellation methods. Direct triangulation 

approaches (Guo et al., 2019; Baker, 2005) like Delaunay triangulations (Cheng et al., 2013; Nguyen 

et al., 2009), Octree triangulations (Maréchal, 2009; Liang and Zhang, 2014; Ito et al., 2009) and the 

Advancing Front Technique (Ito et al., 2007) are common. To alleviate weaknesses of the different 

methods, the algorithms are often combined. The main focus of research of tessellation for AR/VR 

applications in engineering has been the complete transfer of the geometry without faults (Freeman et 

al., 2017; Han et al., 2019). Optimisation of the tessellation and parameter choice is mainly discussed 

for simulation applications such as FEM or CFD (Guo et al., 2019; Laug and Borouchaki, 2011). 

However, the tessellation results of these approaches are inadequate for high-fidelity real-time 

visualisations in AR/VR, as they contain unnecessary polygons that do not improve the perceived 

visual quality. 

The subsequent editing of polygon meshes in regards to polygon count and detail is possible (Santos et 

al., 2021; Han et al., 2019), with the main approaches of decimation (Tang and Gu, 2010) and 

remeshing (Panozzo et al., 2011). Decimation works by collapsing polygons and thus reducing the 

polygon count and visual quality of the mesh. For remeshing the outline of the mesh is reconstructed 

with new but fewer polygons, which leads to better results. Both methods are in principle avoidable in 

the geometry preparation, by choosing adequate tessellation parameters. 

Geometric Complexity 

Johnson et al. evaluate different approaches to describe the geometric complexity of CAD-models 

with regard to the needed modelling time (Johnson et al., 2018). Complexity metrics concerning 

geometric problems like the tessellation of analytical geometries are called geometric complexity 

metrics in literature. Examples for geometric complexity metrics are the number of polygons needed 

to represent a geometry with a polygon mesh (Rossignac, 2005), the ratio of volume to the volume of 

the bounding box of the geometry (Joshi and Ravi, 2010) or the number of surfaces of the geometry 

(Denkena et al., 2011). In earlier research we proposed the face weight factor (Dammann et al., 

2022a). 

Curvature based metrics are frequently discussed. For example the total absolute curvature (Okano et 

al., 2019) or the approach to combine the curvature with the information theorem by Shannon as a 

way to measure the human perception of geometric complexity used by Page et al. (Page et al., 2003) 

and Sukumar et al. (Sreenivas R. Sukumar et al; Sukumar et al., 2008). 
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Mesh Quality 

The visual quality of the polygon mesh is an important factor in the geometry preparation for AR/VR-

applications. It can be influenced by the choice of parameters for the tessellation. Purely geometric 

quality metrics like the Euclidian distance, the Hausdorff distance or root mean squared error (Yildiz 

et al., 2020) are common in tasks that process polygon meshes. However, the correlation between 

these geometric criteria and the human perception of the visual quality is weak (Corsini et al., 2013; 

Lavoue and Corsini, 2010). 

Perceptual metrics are more suited to rate the visual quality. These metrics are based on the correlation 

between mesh properties and a quantification of the human perception. The visual quality is typically 

captured as Mean Opinion Score (MOS), which is calculated from comparative assessments of meshes 

by test subjects (Bulbul et al., 2011). This approach is based on established standards in the evaluation 

of image and video recordings and validated datasets do exist (Corsini et al., 2007). 

As the comparative assessment of meshes is not practical in most scenarios, most visual quality 

metrics use MOS datasets and the correlation between the MOS and geometric characteristics to 

estimate the visual quality. Common estimators for the visual quality are the roughness (Corsini et al., 

2007), the curvature (Dong et al., 2015) or dihedral angles of the mesh (Corsini et al., 2007). 

Established metrics like e.g. MSDM2 (Lavoué, 2011) use these estimators separately. Machine 

learning based approaches often combine different estimators to improve the correlation to the MOS 

(Abouelaziz et al., 2015; Feng et al., 2018; M Muzahid et al., 2018; Yildiz et al., 2020). 

3 APPROACH 

3.1 Geometric complexity metrics 

The evaluation procedure for different geometric complexity metrics in relation to the tessellation 

results consists of the extraction of existing metrics from literature, the BREP description and the 

calculation of ratios. The focus lies on metrics which describe the complexity of individual surfaces. 

The metrics are divided in three types: 

Basic Values 

Basic values are directly extracted from the BREP model. Examples are the area, the dimension of the 

bounding box, the memory size or the vertex count of the surface. The elementary surfaces of a BREP 

geometry are: Plane, Sphere, Cone, Toroid, Cylinder and B-Spline. These surface types are also 

gathered. Other basic values are the shortest and longest edge of a surface and the number of wires 

(contiguous edges), as well as the number of unique normal vector directions. 

Derived Values 

The derived values are different ratios. An example is the ratio of memory size to area, which 

expresses the memory density of the surface. Other examples are the ratios of mean curvature to the 

number of vertexes and the length of the edges to the number of vertexes of the surface. 

Calculated Values 

Calculated values describe complexity metrics that are defined by equations that require multiple 

calculation steps. Examples are the bounding box volume, the mean curvature or the curvature 

variation measure (CVM) according to Sukumar et al. (Sreenivas R. Sukumar et al.). The CVM 

measures the perceived geometric complexity and is defined as: 

𝐶𝑉𝑀 = −∑𝑝(𝜅)𝑙𝑜𝑔𝑛𝑝(𝜅) (1) 

with p as the probability density of curvature estimated by using kernel density estimators (KDE). The 

CVM is calculated for the mean curvature. The complete calculation of the CVM is described in 

Sukumar et al. (Sreenivas R. Sukumar et al.). 

The face weight factor (FWF) was proposed in (Dammann et al., 2022a). The FWF expresses the 

average polygonal degree of a surface of a geometry. The FWF of a plane is 1, while the FWF of a 

cylinder, cone, toroid or sphere is 2 and the FWF of a B-spline surface is the mean of the polygonal 

degree of the splines in UV-coordinates. In addition, the average edge length of each surface is 

calculated. 
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3.2 Evaluation of geometric complexity metrics 

Following our approach, the geometric complexity metrics are investigated in a statistical analysis. 

Chunk 1 of the ABC dataset (Koch et al., 2019) is analysed in the open source CAD program FreeCAD. 

This provides a data basis of approximately 150,000 individual parts (duplicates are sorted out) with 

around 2,500,000 surfaces from 10,000 STEP files. The python modules pandas and scikit-learn are used 

to collect and analyse the data. All results are created on an AMD Ryzen 7 2700X CPU with 16GB of 

RAM and a NVIDIA RTX 2080 GPU. 

Using the visualisation tessellation algorithm ("Standard Algorithm") of FreeCAD each surface of each 

individual part is tessellated. The algorithm can be controlled by the main parameters of the surface 

(linear) deflection and the angular deflection. The maximum linear deviation of a mesh segment from the 

parametric geometry is controlled by the surface deflection and the angular deflection controls the 

maximum angle between two mesh segments. Smaller values for both parameters lead to a finer mesh. 

The following descriptions are based on a surface deflection of 0.1 mm and an angular deflection of 30°. 

Subsequently to the tessellation the number of polygons and the MOS are calculated for each surface. 

The evaluation in (Dammann et al., 2022a) has already shown, that the relations between the complexity 

metrics and the target variables can be linearised by a logarithmic transformation on both the metrics and 

the variables. In addition, only the use of multiple metrics is suitable to create predictions with the 

needed accuracy. In a comparison of different machine learning algorithms (not shown here because of 

page restriction) for the addressed regression problem, random forest regression is identified as a suitable 

compromise between prediction accuracy and calculation time. The number of polygons and the MOS 

are used as target variables for the statistical analysis and regression, because of the use of random forest 

regression the aforementioned logarithmic transformation is not applied on the data for the following 

descriptions. For the calculation of the MOS the multi-attribute model after Lavoué et. al. is used. This 

metric uses a multiple linear regression based on - among others - the curvature, the dihedral angle and 

the geometric distance, for more information see (Lavoué et al., 2013). The metric is chosen, because it 

achieves a better correlation to the MOS than established metrics like MSDM2 and similar results to 

more recent machine learning approaches. In addition, it is easy to reproduce and implement. 

3.3 Statistical analysis of geometric complexity metrics 

Figure 2 shows a bar chart of the highest Pearson correlations and statistical significances between the 

geometric complexity metrics and the identified target variables. The first value of each bar is the 

Pearson correlation coefficient and the second value (in brackets) is the p-value. The p-value indicates a 

relation with statistical significance (<= 0.05) and is smaller than 0.01 for all metrics in Figure 2. 

 

Figure 2: Pearson correlations for polygon count (top) and MOS (bottom), p-value in 
brackets 
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For the polygon count the highest correlations (> |0.6|) are observed for the area and the bounding box 

volume. The highest correlations with the MOS (>|0.3|) are observed for the number of edges to 

memory size and vertexes to memory size ratios, as well as the number of unique normal directions, 

the surface type and the CVM of the mean curvature. 

The metrics show multicollinearity between a number of metrics. This is to be expected, as e.g. the 

complexity metrics of the derived values are calculated based on other metrics. An investigation into 

the reduction of the used metrics with automated feature selection techniques (e.g. step-wise and 

boruta feature selection) proves very time consuming and does not yield significant improvements to 

the prediction accuracy. Therefore, the following results are based on random forest regression models 

that use all metrics respectively. 

4 RESULTS 

4.1 Polygon and MOS prediction 

The data sets used for training and evaluation of the prediction models contain the geometric complexity 

metrics and the respective target variable. The polygon count and the MOS both change depending on 

the selected tessellation parameters, while the complexity metrics are not affected. Therefore, the 

polygon count and the MOS are collected for different tessellation parameter sets, while the complexity 

metrics only have to be captured once. Collecting the metrics takes around 2 h for the dataset. For the 

polygon count and MOS the time depends on the tessellation settings (typically 2 h/ 24 h). The following 

results use a surface deflection of 0.1 mm and an angular deflection of 30°.  Each data set is randomly 

split into a training and a test data set (80%/20%) with scikit-learn (random seed=0), which is also used 

for the subsequent training and model creation (around 20 min per model). Figure 3 contains scatter plots 

of the prediction results for the test data set. Both models show heteroscedasticity, where a higher 

deviation of the predictions can be observed for higher values of the polygon count or the MOS (light 

blue range). The prediction accuracy is measured with the mean absolute percentage error (MAPE). The 

MAPE of the polygon count prediction for the model in Figure 3 is 6.66%, while the MAPE of the MOS 

is 4.26%. A MAPE <10% is typically considered as a highly accurate forecast (Montaño Moreno et al., 

2013). The prediction accuracy is therefore suitable for the intended use (see 4.2). 

 

Figure 3: Predicted vs. actual number of polygons (left, logarithmic axes) respectively MOS 
(right) scatter plots, darker blue indicates a higher concentration of points 

4.2 Implementation in the geometry preparation tool GeoPrep 

In addition to the prediction models in 4.1, models for the tessellation parameter settings of 1 mm/30° 

and 1 mm/50° are created. The prediction models are implemented in the developed geometry 

preparation tool GeoPrep, see (Dammann et al., 2022b). The tool is able to collect the complexity 

metrics for each CAD geometry from a STEP file. Table 1 contains polygon and MOS prediction 
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results for a test set of six CAD assemblies. On the assembly level the MAPE of the surface-based 

polygon predictions is 8.93 %, compared to 13.46 % of the part-based approach (H1 holds). For the 

MOS a pseudo MOS is calculated, where all parts are viewed as one connected geometry. This 

approach is chosen solely to investigate the accuracy of the predictions and should not be used in 

geometry preparation. The MAPE of the pseudo MOS is 15.44 %. As the MOS is calculated per 

vertex, the calculation of the pseudo MOS uses the polygon predictions to estimate the vertex count of 

each surface. This leads to higher deviations due to error propagation. 

From an engineering perspective the geometric complexity metrics and predictions enable the 

automated identification of problematic components or surfaces in the geometry preparation. 

Examples are geometries with a high complexity in a small space like screws or springs, which very 

often have no central importance in e.g., design reviews. The prediction of the MOS allows to identify 

components that would suffer a great loss in visual quality through the reduction of the tessellation 

quality. This can be used to identify possible required manual rework. 

Table 1: Prediction results on assembly level for polygon count (part-based approach in 
italic) and MOS 

Assembly 1 2 3 4 5 6 

Image 

 

 

  

 

 

Polygon Prediction Surface 38,799 153,604 196,692 983,696 1,327,602 2,534,811 

Polygon Prediction Part 52,550 181,306 185,049 856,517 969,838 1,874,084 

Polygon Actual 44,170 159,036 181,927 996,259 1,188,989 2,166,863 

Pseudo MOS Prediction 5.21 6.09 5.68 5.91 5.03 5.58 

Pseudo MOS Actual 4.24 6.98 5.09 6.14 5.37 8.63 

 

The performance of the predictive approach is evaluated in comparison to the decimation approach. 

To test a geometry preparation the assembly 6 from Table 1 has to be reduced to a polygon target of 

one million. Table 2 shows the results for the prediction approaches in GeoPrep which uses the OCCT 

kernel of FreeCAD and the decimation approach in different software tools. The tessellation 

parameters for the initial tessellation are chosen in each software to produce a polygon count similar to 

Table 1. In FreeCAD the decimation approach takes 16 s for the initial tessellation and 10 s for the 

decimation, producing 1,091,442 polygons. Pixyz Studio performs the fastest decimation with 19 s 

overall and a polygon count of 961,588. The decimation approaches are implemented in C/C++, while 

a large portion of the implementation of the predictive approach is currently written in python. 

The runtime of the surface-based predictive approach is 13 s and produces a polygon count of 

1,051,842. The collection of the geometric complexity metrics and the prediction take 8 s, while the 

tessellation takes only 5 s. This is an improvement over the part-based prediction which takes 22 s (H2 

holds). If the geometry preparation requires an even lower polygon count or a preparation for different 

target platforms (e.g. tablet, AR HMD or CAVE) the advantages of the predictive approach increase. 

Table 2: Time for geometry preparation and time for decimation/prediction in a selection of 
software tools (prediction approach bold) 

Software Total 

Time (s) 

Thereof Prediction 

Time (s) 

Thereof Decimation 

Time (s) 

Polygons 

FreeCAD 0.20 (surface-based) 13 8 - 1,051,842 

Pixyz Studio 2022 19 - 11 961,588 

FreeCAD 0.20 (part-based) 22 17 - 1,051,842 

FreeCAD 0.20 26 - 10 1,091,442 

FreeCAD 0.20 + Blender 3.1.2 28 - 12 1,012,299 

Autodesk 3ds Max 2023 38 - 28 1,011,590 

SolidWorks 2022-2023 240 - 212 1,017,978 

FreeCad 0.20 + Simplygon 10 448 - 432 990,293 
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Through the use of the predictive approach, produced polygon models with similar polygon count 

have a higher visual quality than the decimation approaches in comparison. In figure 4 this is 

visualised through a colour grading of the visual distortions of the models. Warmer colours indicate 

high distortion values, which will be noticeable to the observer. The decimation approaches show a 

higher global distortion and also areas with very high distortion values. In practical application, the 

predictive approach can either achieve a higher visual quality with a similar number of polygons, or a 

similar visual quality with a lower number of polygons (H3 holds). The addition of predictions for the 

visual quality allows to use this advantage of the approach in an automated way. This is particularly 

beneficial when visualising very complex assemblies or when using low-performance hardware (AR-

HMD, tablet). In addition, the prediction of the MOS is faster than the calculation of the MOS. Thus, 

the MOS prediction (for Figure 4) takes only 0.2 s, while the MOS calculation takes 3 s (for 

comparison: the tessellation takes 0.8 s). 

 

Figure 4: Visualisation of the visual perception of mesh distortions for models with similar 
polygon count (~12.000), warmer colours represent higher distortion values. 

As the predictive approach relies on statistics, predictions might show high deviations for outliers. 

Therefore, the decimation approach may be used as a fallback method for these cases. 

5 SUMMARY 

The use of geometric complexity metrics for the control of the geometry preparation enables the 

prediction of the polygon count and the MOS as measures for the visual quality before the tessellation. 

With the surface-based approach and the use of the ABC dataset, the prediction accuracy has been 

improved in comparison to the part-based approach. Iterative mesh operations in the geometry 

preparation can be reduced or avoided in this way. 

The surface-based prediction enables new possibilities in the automated geometry preparation in 

design. This includes the targeted and well-founded simplification of geometries by the removal of 

features like holes, fillets or interior geometry (e.g., interior of cast components). The use of the MOS 

allows a stronger alignment of the geometry preparation with human perception. Here, the predictive 

approach is particularly valuable, as the prediction is significantly faster than the calculation of the 

MOS. Again, the surface-based prediction allows a targeted and grounded choice of tessellation 

parameters based on the visual importance of the individual surfaces. The improvements to the 

predictive approach enable the creation of models with higher visual quality than the compared 

decimation approaches, while also being faster. 

In future research the aim lies on enabling predictions for arbitrary tessellation parameters and the 

application of the predictive approach in a framework for the automated and adaptive geometry 

preparation for AR/VR applications on different target platforms in design. The results can also be 

used to make the preparation of CAD data for other visualisation purposes more efficient. 
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