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1. Introduction

It is known that the Unified Field Theories of Weyl [14] and of Ein-
stein [4] give no indication of how Relativity and Quantum Theories should
be connected into a comprehensive field theory of physics. Indeed, the only
determined attempt to establish such a theory, due to Eddington [3] and
[6], failed through lack of contact with the contemporary developments,
especially in quantum electrodynamics and elementary particles. Its author
tried to explain curvature of the space-time in terms of statistical fluctuations
partly of a physical origin defined within a mechanical system, and partly
of a geometrical origin of coordinates superimposed on the latter. It is clear
however that both the fluctuations of Eddington refer to purely mathematical
frames. The probabilistic nature of his theory takes no account of physical
objects, such as particles or energy distributions. It is the author's belief
that this is the cause of difficulties associated with the otherwise admirable
work of Eddington.

In this paper, we shall refrain from attempting to apply statistical
considerations to an a priori conceived geometry. In the absence of non-
gravitational fields only, we assume that the physical world is described by
a Riemann manifold F4 . As far as unified theory is concerned, we confine
ourselves to the case when such non-gravitational fields are electromagnetic,
that is when they are described by skew symmetric tensors W and f^,
satisfying respectively the first and second sets of Maxwell's equations.
Greek indices are assumed throughout to go from 1 to 4 and the usual sum-
mation convention is retained. The distinction between h'"' and f^ arises
from Mie's theory ([11], [8], [9] and [10]) and we shall find an occasion to
refer to it again in the sequel.

The most characteristic feature of General Relativity, which dis-
tinguishes it from other theories of physics, is contained in the Principle of
Geometrisation. The laws of nature are represented by measurable proper-
ties of the mathematical continuum which is the model of physical space-
time. We interpret this here as implying that the geodesies of the manifold
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should be the paths of test particles in the presence of an electromagnetic
field. For a charged particle, their differential equations are

d2x* I a | dx* dx" dx*

dlF
where g^ is a symmetric tensor used in raising and lowering of tensor in-
dices and in constructing Christoffel brackets [a, pv] and {Jfv}. It has been
shown (ref. 7) that the above equations arise from the extremal ("Fermat")
variational principle

djds = 0,

when the metric takes the form

ds* = g/lvdx»dx>+<j>llvdis'"',

and (frpy is skew symmetric. "d^s^" is a skew, two-dimensional area element.
It has been suggested that it represents a cross-section of a geodesic tube
arising from subjecting the theory of motion of test particles to the Un-
certainty Principle of Heisenberg. We seek in this paper to make this notion
geometrically precise.

The area element can be constructed with the help of Lie differentia-
tion. The geodesic tube itself is determined by introducing the concept
of a dragged coordinate system [15]. Finally, we consider a generalisation
of the electromagnetic action density of Mie [11] and of Infeld and Plebanski
[5], required by the present theory.

It is this generalisation which offers a hope that our approach may be
extended in a natural way to a unified field theory which would include
gravitational, electromagnetic and continuous quantum fields. It is hard
to see that a macroscopic field theory can be expected to do more. Purely
quantum phenomena, exchange relations, probabilistic interpretation of
wave functions, and so on, will take over somewhere in the passage to
microphysics and will force the use of different mathematics.

2. Uncertainty principle and geodesic motion

Newton's First Law of Motion in general relativity is equivalent to the
assertion that a free particle moves on a geodesic in a riemannian manifold
representing the physical space-time. Similarly, it is natural to expect that
in a unified field theory which describes, besides the gravitational field,
also other physical fields, the geodesies should represent the paths of the
particles in the presence of such fields. This requirement leads to non-
riemannian geometries which reduce to a riemannian F4 only in the absence
of non-gravitational fields. We shall investigate below the possibility of
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generating a suitable geometry of this kind by subjecting the F4 to es-
sentially quantal considerations.

It is self-evident that physical observations are necessary to determine
whether a given particle describes a geodesic or not. Let us consider the
conditions under which a relativistic observer (abbreviated to RO in the
sequel) will carry out the relevant observations.

We must distinguish carefully between such phrases as "what really
happens is • • •" and "what an RO says happens is • • •". What "really"
happens is that the test particle, as long as it is reasonably small, will be
subjected to Heisenberg's Uncertainty Principle because of the empirical
methods involved in the process of observation.

The RO may have in mind a preconceived geodesic path LAB joining
two points A and B in an a priori imagined F4 . He wishes to test whether a
particle moves on LAB and in doing so makes successive observations of the
particles position and momentum (that is, of the coordinates x1* and the
vector^' related to the vector dx^jds tangent to the path). The observations
are made at what constitutes in the RO's opinion, sufficiently numerous
instants of time.

The errors Ax* and Apr in the measurements of the position and the
momentum, respectively, are related by

h
Ax?Apr ^ — .

It follows that all that the RO can actually observe is his particle
moving inside a bundle of geodesies surrounding LAB and described by
Heisenberg's relation. We seek a quantitative determination of this bundle.
To establish his conclusion that the test particle moves along LAB, the RO
is interested in what happens between A and B only. The measurement of
x'' at B is exact because RO ceases to be concerned with this particle
beyond B{ and allows the error in the momentum there to become infinite).
The existence of a limiting velocity (Urn V&44 < °°) Pu*s a n upper bound
to the error with which pi1 can be determined close to A and this value can
be taken as the initial momentum (or direction of motion at A). Hence
RO can regard the terminal points A and B of LAB as accurately fixed.
The uncertainty bundle or tube of geodesies thus issues from A and ends
at B.

It is still necessary to express mathematically the meaning of RO's
conclusion that his particle does in fact move on LAB. We show that this
brings in the notions of a dragged coordinate system and of a Lie derivative
([15], Chapter I).

We replace the relation between the momentum (tangent) vector
observed at some point P in the uncertainty tube (to within the error AP),
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and the momentum of the particle at "where it ought to be" on the geodesic
LAB, by an infinitesimal mapping of the tangent vector space at P onto a
neighbouring region of the manifold. Now the RO's assertion that his
particle describes LAB if it is free, corresponds to a transformation of coor-
dinates S -*• S' such that the vector in question has the same components
at a point on LAB, in S', as the original vector dx^jds had at P, in S.

The above interpretation allows us to describe the situation in terms
of Lie differentiation. We define the latter following Yano. Let Xn be an
M-dimensional space of class Cm, which is the class of functions defining
allowable coordinate transformation in the space

(1) x'* = x

A set of position functions

G*(x), a = 1 , 2 , ••;N, xeXn

is called a general geometric object G of class p ^ m if its components
Ga transforms under (1) as

G'<* = f«{G,x, x'),

where f are functions of Ga, x?, x'11 and of the first p derivatives of x'?
with respect to x?. Moreover, we require /a to satisfy the usual group
properties.

Let T be a mapping (possibly many valued) of a region R of X into
R and let T~l be its inverse. If P, Q e R and P e 5 , we may have

T : P -> P; T-X:P-+Q.

S is said to be dragged along by T, if S -> 5 ' so that the coordinates of Q
in S' are the same as those of P in S

(2) & = x'r.

Let the transformation (2) follow upon an infinitesimal mapping

(3) & = xr+drdr).

Let also a new object 0 at x (i.e. at P) be defined by

Q*(x) = G*(z)=f(&{x),x,x').

The Lie differential of Ga with respect to ^ is then

(4) £>&Gadrl = &(x)-G°'{x).

The Lie derivative of Ga is defined as
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where comma denotes ordinary partial differentiation with respect to the
coordinates, and

dfa

= o,

Lie derivative of G is a geometric object only if /"'s are linear functions,
tensors, spinors and affine connections being examples.

In a metric space a motion is defined as a mapping preserving distance
ds between neighbouring points and an affine motion preserves in addition
the property of parallelism. If JS? is the operator of Lie differentiation, and
V that of covariant differentiation, a motion is an affine motion if and only if

Any motion in Vn is an affine motion.
Returning to our description of the motion of a test particle, we require

that the mapping (3) should map geodesies into geodesies. We use the same
affine parameter u for all curves of the congruence. Then, if px is tangent
to LAB at some point P(xK) on it,

r*v being the affine connection. A similar equation holds at Pm. Define
a new vector field px, and a new connection Fx

v, by

P*(x)=P'(x),
and

r$,W = rfAx),
in a S' defined by (2). Then, we have, at P,

du

The dashes can be dropped on transforming back to S. Since (ref. 15) we
have

pp = pi1

everywhere on LAB, it follows that

= 0.
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Yano shows also, that

(5) J2%J* = V ^

where

Furthermore, we have

since LAB is a geodesic.
It follows that #A must satisfy the equation

(6) Vl^+R^^p^p' = 0,

with #A = 0 at A and B.
The equation (6) is a constraint on the Lie mappings permitted in our

description of geodesic motions. We may observe that when #A is itself
infinitesimal normal to LAB at P, (6) becomes the equation of geodesic
deviation. In our case, (6) defines the bundle of geodesies which we require
in our unified field theory.

3. Area element and equations of motion

The primary aim of this paper is to define the skew symmetric area
element mentioned in the Introduction and which was used in Ref. 7. Let,
for this purpose, <£,,„ be a skew symmetric tensor and •&>*, w* define two in-
finitesimal Lie mappings with parameters I and r\ respectively. The cross
section of the uncertainty tube of geodesies can be thought of as given by

We assume therefore, that the metric of our space time is

(7) ds* = gllvdx'idxv+<t>llv{wi>&''-w*ftii)d£dri.

The equation (6), defining the bundle, must be amended since its derivation
depended on the space time being a V4. We now have

where
,„, A . dx*>
(9) gx = gXx ~r f*n

ds
and
(10) L/> = Ux.fiK.a-X.an.fi)-
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We have written, for the sake of brevity

(11) n =

and

is a new scalar parameter. Definition (12) implies that | and r\ are to be
regarded as functions of the arc length s of the Riemannian geodesic LAB.
The latter will not be, necessarily, an extremal curve in a geometry based
on the metric (7). Since the Lie derivative of F^ in the new geometry is
unchanged, the deviation equation which V1 = •&**, w^, must satisfy, is

(13)

where B* = Rff/l/p^p"—Vffg\ and Ra/lv
x is the Riemann-Christoffel tensor

of the background F4 . When ds is given by (7), the equations of motion of
a charged test particle can be obtained in the usual way from the variation

rB

(14) d\ ds = O
J A

and take the form

The curve given by (15) is, of course, a geodesic of the space-time and in
this respect, our theory differs from that given in Ref. 12. Identifying f^
(given by equation 10) with an electromagnetic intensity tensor, the equa-
tions (15) are the Lorentz equations of motion of a charged particle moving
in a gravitational field g^. The electromagnetic potential A^ can be identi-
fied as either \i, ^ n or — \%n, fl, but it does not appear explicitly in the metric.
In this way we avoid criticism which has been raised against Mie's theory,
of assigning physical significance to a physically indeterminate object
([1] and [8]). We rely however, on Mie's work in our discussion of the action
principle. The latter gives the most general way of arriving at an expression
for the interaction between the gravitational and electromagnetic terms in
the field equations. The variation ensures also that the resulting equations
will have an invariant form.

4. Electromagnetic and U.F.T. action

We begin by considering electromagnetic action in general relativistic
case but without reference to a unified field theory. As mentioned before,
we retain some features of Mie's electrodynamics, namely, the formal in-
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dependence of the material tensor hf", satisfying

(16) hr.p = j " ,

where ]* = p^ is the current and a semicolon denotes covariant dif-
ferentiation and of the intensity tensor f^ describes an electromagnetic
field in vacuum. We make no assumption about /A>) apart from its skew
symmetry. This is in accordance with the ideas of Infeld and Plebanski
[5] and of [8]. The Lagrangian density function L is then on arbitrary
function of four quantities

Let

(17) 8L = %pi>vdf

Following Born [1], we have, for integration over adjacent volumes of the
manifold, mapped onto each other by (3)

f L'dx' = [ (L+8L)Jdr = f Ldr,
Jy> Jy Jv

where the Jacobian / is, to the first order in i

It follows that

(18)

where

The equation (18) is considerably simplified if we assume (Ref. 8) that
fp, and h?p appear in L, only in the combination

(19) U = f,vW.

Then

(20) ?

becomes the appropriate Lagrangian of Mie-Infeld-Plebanski theory. It
should be noted that ^ is here a vector density.

In the theory of Mie's electrodynamics without potential (Ref. 8),

L = \fllvh^-<f>^-\T,
where

£2 dQ

p dp
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Q is an arbitrary function of U and of the density p of charged matter, given
by

p2 = kPjpji1, k = const,

and g is the determinant of g^. In a Minkowski space g is constant and we
obtain the usual expression for f^ as a curl of the potential <^.

We must take account now of gravitation. This can be done in the same
way as in [7]. We assume that

(21) Q = Q(R, U, P)

where R is the gravitational scalar

R = £"*„ .
and we have the identity

If we assume, following Mie's electrodynamics without potentials [8], that

8Qr — SQ r , 8Q

J V~g 8U f<»8h'"'dr = J ̂ ^ w h""8f'irdr'
a lengthy, but standard calculation shows that the action principle

leads to the field equations

(22) A/tv = 0,

and

(23) M^ = 0.

Here

. w ( y )-\gr [j~)
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/am /aox ^ /ao\ ( r . r . _ -

and
dQ

M 2

If we let dQ/dU = \, and identify — ̂ A as the potential four vector, the
equations (23) reduce to the second set of Maxwell's equations. Since,
further, the velocity of light is dimensionless in our choice of units and
p, U and R are all of dimensions of a density, we can require Q to be a
homogeneous function of these invariants. The simplest choice is

Q = R+U+p,
in which case

p = -2(i?+6*7).

If independent means of measuring the electromagnetic energy content
of the universe, such relations should be verifiable on a cosmic scale.

5 Conclusions

We have developed in the preceding sections of this paper the principles
on which a unified field theory of gravitation and electromagnetism may
be founded. Its initial axiom is the requirement that the geodesies of the
space time should be the equations of motion of a charged particle. This
results in associating with every pair of neighbouring points of the manifold
a skew symmetric area element. The latter can be regarded as the carrier
of radiation energy of the field. In this way, the distance measure between
any two points is subjected to the explicit influence of electromagnetism.
The area element is related to the uncertainty of physical measurements by
means of which an RO determines empirically whether a test particle is
free, that is whether it describes a geodesic path in the world. The resulting
"uncertainty tube of geodesies" is determined with the help of Lie dif-
ferentiation by equation 13. The background manifold of the present theory,
that is the world of uncharged gravitating particles is still the standard
Riemannian Vi.

Summary

Starting with a Riemannian space F4, we develop with the help of
Lie differentiation the basic principles of a unified field theory of gravi-
tation and electromagretism. It is founded on the axiom that the geodesies
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of space time should give the equation of motion of charged particles in
the presence of electromagnetic fields. The metric is made to depend ex-
plicitly on the latter by involving Heisenberg's Uncertainty Principle.

References

[1] M. Born, Ann. Inst. H. Poincare, 7 (1937), 155.
[2] P. A. M. Dirac, Proc. Roy. Soc. A257 (1960).
[3] A. S. Eddington, Fundamental Theory, (Cambridge, 1946).
[4] A. Einstein, Meaning of Relativity, App. II, (London, 1954).
[5] L. Infeld and J. Plebanski, Proc. Roy. Soc, A224 (1954), 222.
[6] C. W. Kilmister and B. O. J. Tupper, Eddington's Statistical Theory, (Oxford, 1962).
[7] A. H. Klotz, Nuovo Cim., 14 (1959), 135.
[8] A. H. Klotz, Nuovo Cim., 23 (1962), 697.
[9] A. H. Klotz, Thesis, (1963, London).

[10] A. H. Klotz, Journ. Maths. ± Mech., 14 (1965), 365.
[11] G. Mie, Ann. d. Phys. 37, 39, 40 (1912, 1913).
[12] G. Stephenson and C. W. Kilmister, Nuovo Cim., 10 (1953), 230.
[13] J. L. Synge, Theory of Relativity (General Theory), (Amsterdam, 1960).
[14] H. Weyl, Space Time Matter, (London, 1922).
[15] K. Yano, Theory of Lie Derivatives, (Amsterdam, 1955).

University of Western Australia
Perth, W.A.

https://doi.org/10.1017/S1446788700004456 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004456

