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DIMENSION-FREE UNIFORMITY WITH APPLICATIONS, I

JÓZSEF BECK

In memory of Klaus Roth, the father of discrepancy theory

Abstract. We prove a dimension-free strong uniformity theorem, and apply it in
the configuration space of a large system of non-interacting particles, to describe the
fast approach to equilibrium starting from off-equilibrium, and its long-term stability.

§1. Introduction. Why does the typical time evolution of a large (mechanical)
system (i.e. a system with many degrees of freedom, like gas in a container),
starting from off-equilibrium, approach equilibrium in a short time, and remain
in equilibrium for a very, very long time? Basically the same question was raised
in physics in the second half of the nineteenth century when Maxwell, Boltzmann
and Gibbs developed the foundations of statistical mechanics. In this paper, we
study the same general global question about large (i.e. many-particle) systems,
but our approach is completely different from the well-known probabilistic
machinery of statistical mechanics. We also use probability theory, but it is not
our primary tool. What we do is at the crossroads of uniform distribution (in the
high-dimensional configuration space) and (large) dynamical systems. It is pure
mathematics with rigorous proofs. Nevertheless, we borrow some motivations
and intuitions from physics.

Consider the following concrete (idealized) mechanical model that we may
call off-equilibrium ideal gas (or off-equilibrium Bernoulli model of gases).
Assume that there are N particles moving around in a cubic container, bouncing
back and forth on the walls like billiard balls. Let N be large (e.g. in the range of
the Avogadro number, roughly 1024), so that the system imitates the motion of
gas molecules in a box. Assume that the time evolution of the system starts from
an explicit far-from-equilibrium initial point configuration, say Big Bang, where
all particles start from the same point, or something similar to Big Bang. The
particles move on straight lines like point billiards until they hit a wall–elastic
collision. Two typical point-particles in the 3-space do not collide, so we assume
that there is no particle–particle interaction. To determine the time evolution of
the system, we have to say something about the initial velocities of the particles.
We consider the most important velocity distribution in physics. Assume that the
particles have three-dimensional Gaussian (normal) initial velocity distribution.
The initial point configuration is explicitly given (like Big Bang); the initial
velocities of different particles are chosen independently—this defines a measure
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(in fact, a product measure, due to independence) that makes it possible to talk
about the typical time evolution of this large billiards-in-a-box system.

We focus on the following global questions. In what precise sense does
the typical time evolution of this large system (i.e. off-equilibrium ideal gas)
approach equilibrium? How fast is the approach to equilibrium? Does the system
really remain in equilibrium for a very long time?

Here equilibrium means spatial equilibrium, since the Gaussian initial veloc-
ity distribution is already the equilibrium velocity distribution, as discovered by
Maxwell.

Statistical mechanics has a complete theory for the probabilistic model of
the equilibrium ideal gas, based on the partition function. Unfortunately it is
not clear at all, to say the least, how one can extend that theory for the non-
equilibrium case. Especially that our model is mainly deterministic, due to
the billiard orbits, and only partly random, due to the independent choice of
velocities. This is why we write this paper.

Here is a brief summary of Boltzmann’s answer to the basic questions.
According to Boltzmann, the first step is to switch from the three-dimensional
cubic container, that we like to call the particle space, to the 6N -dimensional
phase space (each particle has 3 space coordinates and 3 moments), where
a single point represents the microstate of the whole N -particle system at a
given time instant t . Boltzmann introduced the concept of macrostate, which are
the observable states; a macrostate is basically a large set of microstates that
look the same. Boltzmann’s key insight was that the equilibrium macrostate
must contain vastly more microstates than any off-equilibrium macrostate.
Thus it is reasonable to expect that a system starting from off-equilibrium,
which represents an atypical microstate, evolves through macrostates occupying
progressively larger volumes in phase space, and eventually reaches the
equilibrium macrostate. Boltzmann’s explanation why the system remains in
the equilibrium macrostate for a very long time was to combine the so-called
probability postulate with the fact that the equilibrium macrostate represents the
overwhelming majority of the phase space. Boltzmann’s probability postulate
states that the larger the macrostate, the greater the probability of finding a
microstate in it. And it complements with Boltzmann’s classical definition that
the entropy of the system is the logarithm of the probability of its macrostate,
carved on his gravestone.

Well, this is a great insight/intuition. Many physicists find Boltzmann’s
argument perfectly convincing and settles the issue. Mathematicians, on the
other hand, point out that Boltzmann’s argument is nowhere near a mathematical
proof, and call it a framework, a first step toward the solution.

The first logical difficulty in Boltzmann’s argument is that in physics
macrostates are well defined only in equilibrium. When the system is far from
equilibrium, it is not clear at all how one defines macrostates. Here we do not use
the vague concept of macrostate at all. In this paper, a state of a system always
means a microstate, which is simply all positions and all velocities at a time
instant.
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736 J. BECK

The second difficulty is that it basically ignores the dynamical aspect. To
put it in a nutshell, if a system is in an atypical microstate, then it does not
automatically evolve into an equilibrium macrostate just because the latter is
typical!

To solidify Boltzmann’s argument, we have to identify properties of the
dynamics of the system that guarantee the evolution of how atypical (i.e.
unlikely) microstates evolve into typical (i.e. very likely) microstates. We have
to answer the question why a probability argument works for the short-time
dynamics of the system? Thus we need to justify the probability postulate on
a realistic time scale, i.e. to justify the approximation “phase-space average” ≈
“short-time average” in a quantitative form. We may call it the short-time ergodic
problem.

We may summarize this paper in one sentence: to justify the probability
postulate, we solve the short-time ergodic problem by proving, and repeatedly
applying, a short-time ergodic theorem.

The reader is probably wondering why we need a short-time ergodic theorem,
and why traditional ergodic theory, in particular Birkhoff’s theorem, does
not solve the short-time ergodic problem. Indeed, the message of Birkhoff’s
well-known individual ergodic theorem is precisely the equality “phase-space
average” = “asymptotic time average”.

Well, the first problem with traditional ergodic theory is that asymptotic time
average entails taking the infinite time limit (i.e. t → ∞), and since Birkhoff’s
theorem does not give any estimation on the error term, it does not say anything
about realistic time. The second problem is that (traditional measure-theoretic)
ergodic theory ignores zero measure sets, and a fixed initial point configuration
(like Big Bang) represents a zero set in the phase space.

To solve the short-time ergodic problem, we do not use traditional ergodic
theory. Our tool is dimension-free strong uniformity in the configuration space.
In our model there is no particle–particle interaction, explaining why it suffices
to study the 3N -dimensional configuration space instead of the 6N -dimensional
phase space.

We start our rigorous discussion with strong uniformity, elaborating on
its three different aspects: start-free strong uniformity, complexity-free strong
uniformity, and dimension-free strong uniformity. The three different aspects are
all crucial to our goal of describing the fast approach to equilibrium in large
off-equilibrium systems.

The traditional theory of uniform distribution, which is built around Weyl’s
criterion and nice test sets such as axis-parallel rectangles and boxes, does not
go beyond Riemann integral; see [2]. Strong uniformity (in a broad sense) refers
to the extension from Riemann integral to Lebesgue measure/integral. It seems
a minor change, but it has surprisingly far-reaching consequences, as we explain
below.

The subject of strong uniformity started with an old conjecture of
Khinchin [4] from 1923: prove that, given a Lebesgue measurable set S ⊂ [0, 1),
the sequence α, 2α, 3α, . . . is uniformly distributed modulo 1 with respect to S
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for almost every α, i.e.

lim
n→∞

1
n

∑
16k6n
{kα}∈S

1 = length(S) for almost every α. (1.1)

Here, as usual, 0 6 {x} < 1 denotes the fractional part of a real number x , and
for simplicity length denotes the one-dimensional Lebesgue measure.

Khinchin’s conjecture remained for several decades among the most famous
open problems in uniform distribution, and everybody expected a positive
solution. It was thus a big surprise when Marstrand [5] disproved it in 1970
by constructing an open set S ⊂ [0, 1) with length(S) < 1 such that

lim sup
n→∞

1
n

∑
16k6n
{kα}∈S

1 = 1 for every α.

The fact that open sets are the simplest in the Borel hierarchy makes Marstrand’s
negative result even more surprising.

Marstrand’s result is the bad news that demonstrates that Khinchin was too
optimistic. The good news is that recently we succeeded in saving Khinchin’s
conjecture in the continuous case by replacing the unit interval [0, 1)modulo one
with the two-dimensional unit torus [0, 1)2 = I 2, and replacing the arithmetic
progression α, 2α, 3α, . . . , starting from 0, with the straight line (t cos θ, t sin θ),
t > 0, starting from the origin (0, 0) with angle θ .

Uniformity of the torus line (t cos θ, t sin θ) modulo one relative to a set S
means that the set TS(θ) = length{0 6 t 6 T : (t cos θ, t sin θ) ∈ S mod 1}
satisfies

lim
T→∞

TS(θ)− area(S)T
T

= 0.

We could in fact prove much more.

THEOREM A (Beck [1]). Let S ⊂ [0, 1)2 be an arbitrary Lebesgue
measurable set in the unit square with 0 < area(S) < 1. Then for every ε > 0,

lim
T→∞

TS(θ)− area(S)T
(log T )3+ε

= 0 (1.2)

for almost every angle θ , where area denotes the two-dimensional Lebesgue
measure.

The polylogarithmic error term in (1.2) is shockingly small compared to the
linear main term area(S)T . Thus we may call Theorem A a superuniformity
result.

In [1] we also studied the case of higher dimensions. Let S ⊂ [0, 1)d = I d

be an arbitrary Lebesgue measurable set in the unit cube of dimension d > 3,
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738 J. BECK

and assume that 0 < vold(S) < 1, where for simplicity vold denotes the d-
dimensional Lebesgue measure, and vol denotes the three-dimensional Lebesgue
measure. Let e ∈ Sd−1 be an arbitrary unit vector in the d-dimensional Euclidean
space Rd , where Sd−1 denotes the unit sphere in Rd . Consider the straight line
te, t > 0, starting from the origin 0 ∈ Rd . Let TS(e) denote the time the torus
line te (modulo one) spends in the given set S as 0 6 t 6 T .

Uniformity of the torus line te (modulo one) relative to S means that

lim
T→∞

TS(e)− vold(S)T
T

= 0.

We could prove much more.

THEOREM B (Beck [1]).
(i) Let S ⊂ [0, 1)3 be an arbitrary Lebesgue measurable set in the unit cube

with 0 < vol3(S) < 1. Then for every ε > 0,

lim
T→∞

TS(e)− vol(S)T
T 1/4(log T )3+ε

= 0 (1.3)

for almost every direction e ∈ S2 in the 3-space R3.
(ii) In the d-dimensional case S ⊂ [0, 1)d with d > 4, we have the

perfect analogue of (1.3) where the factor T 1/4 in (1.3) is replaced by
T 1/2−1/2(d−1) for almost every direction e ∈ Sd−1 in the d-space Rd .

In Theorems A and B, the upper bounds on the error do not depend on
the complexity (or ugliness) of the test set S. Also, the starting point can be
arbitrary, since the torus is translation invariant. We may call Theorems A and B
complexity-free and start-free strong uniformity results.

Our basic tool to describe the time evolution of a large system is strong
uniformity in the configuration space. For realistic gas models, the number
of particles N is in the range of the Avogadro number (around 1024), so the
corresponding configuration space has very high dimension 3N . Theorem B is
about arbitrary dimension d , but it does not help, because there is an unspecified
constant factor c0(d) in the upper bound for the discrepancy. Unfortunately our
proof of Theorem B in [1] gives a very weak exponential upper bound on c0(d),
which makes it totally useless in high-dimensional applications.

The optimal way to eliminate the dimension problem would be to prove
an upper bound on the discrepancy that does not depend on the dimension.
Surprisingly, we can actually do that. We formulate a result which is basically
such a dimension-free upper bound.

Note that the diameter of the d-dimensional unit cube [0, 1)d is
√

d .
Moreover, it is an easy exercise in probability theory to prove that the distance
between two randomly chosen points in [0, 1)d is

√
d/6+o(

√
d)with probability

close to one if d is large. These two facts explain why it is natural to modify the
time-discrepancy ∫ T

0
f (te) dt − T

∫
I d

f dV (1.4)
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of a test function f by replacing t with t
√

d , and to study∫ T

0
f (t
√

de) dt − T
∫

I d
f dV (1.5)

instead, where e ∈ Sd−1 is a d-dimensional unit vector. The effect of the switch
from (1.4) to (1.5) is modest in small dimensions, but becomes substantial in
very large dimensions.

In fact, we need the following slightly more general notation: for 0 6 T1 < T2
and v ∈ Rd

\ 0, consider the time discrepancy

D f (v; T1, T2) =

∫ T2

T1

f (tv) dt − (T2 − T1)

∫
I d

f dV. (1.6)

In Theorem 1.1 below we just consider the special case f = χS , where S ⊂
[0, 1)d , and write D f = DS .

Since 1/2−1/2(d−1) < 1/2, Theorem B immediately implies the following
soft qualitative result: let S ⊂ [0, 1)d be an arbitrary Lebesgue measurable
set with 0 < vold(S) < 1. Then for almost every direction e ∈ Sd−1 in the
d-space Rd ,

DS(
√

de; 0, T ) = O(T 1/2). (1.7)

We shall establish the following dimension-free hard quantitative version of
the soft qualitative estimate (1.7).

THEOREM 1.1. Let S ⊂ [0, 1)d be an arbitrary measurable test set in the unit
torus with d > 103. Let p = vold(S) be the d-dimensional Lebesgue measure
of S. Let T = T0 = T0(d) > 0 be the solution of the equation

100 dT e−π
2T 2/2

= 1.

Note that

T0 = T0(d) =

√
2
π

√
log d + od(1) as d →∞.

Given any 0 < ε < 1, there exists a measurable subset A = A(d; ε) ⊂ Sd−1

of the (hyper)sphere such that the normalized surface area of A is greater than
1− ε, and the inequality

|DS(
√

de; T0, T1)| 6
√

p(1− p)
(

50
√
ε

√
T1(2+ log2 T1)

3
+ 5

)
(1.8)

holds for every e ∈ A and every T1 > max{3T0, 10}.

Remark. It is easy to extend Theorem 1.1 to square-integrable test functions
f ∈ L2, and we leave it to the reader. The requirement d > 103 is purely
technical, and the result should be true for all dimensions less than 103.
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The crucial fact here is that the upper bound on the error in (1.8) does not
depend on the dimension d . This is why we call Theorem 1.1 a dimension-
free result, despite the fact that the threshold T0 = T0(d) does depend on the
dimension—we return to this issue below.

Also the upper bound on the error in (1.8) does not depend on the complexity
(or ugliness) of the test set S. The common starting point of the torus lines t

√
de,

t > 0, is the origin, but of course we could choose any other common starting
point, since the torus is translation invariant. The order of the error term√

T1(2+ log2 T1)
3
= T 1/2+o(1)

1

is nearly square-root size, which is basically best possible. Indeed, in [1] we
proved that the error term T 1/2−1/2(d−1) in Theorem B is best possible, apart
from a polylogarithmic factor, and the exponent converges to 1/2 as d → ∞.
Square-root size upper bound for the error term is very good, since uniformity
requires much less: any sublinear upper bound suffices. These facts justify the
claim that Theorem 1.1 is a dimension-free, start-free and complexity-free strong
uniformity result.

In fact, the only dependence on the dimension d in Theorem 1.1 is the
threshold T0 = T0(d), which exhibits an extremely weak dependence. Indeed,
T0(d) is shockingly small, only a square-root logarithmic function of d . For
example, if d = 101000 then T0 6 25.

Perhaps the reader is wondering whether or not we need the strange threshold
T0 = T0(d) in Theorem 1.1. The answer is yes, and we shall prove it in part II in
the sequel.

We may call T0 = T0(d) in Theorem 1.1 the threshold for configuration space
equilibrium, when the typical time evolution of a system with N = d/3 particles
and Gaussian initial velocity distribution reaches equilibrium in the configuration
space.

We derive Theorem 1.1 from the rather complicated Theorem 1.2 below, and
carry out the routine deduction in part II in the sequel. Theorem 1.2 concerns the
Gaussian square-integral of (1.6), given by

12
f (Gauss; T1, T2) = (2π)−d/2

∫
Rd
|D f (v; T1, T2)|

2e−|v|
2/2 dv

=

∫
Sd−1

∫
∞

0
|D f (ρe; T1, T2)|

2ρ
d−1e−ρ

2/2

Cd
dρ dν∗d−1(e),

(1.9)

where dν∗d−1(e) denotes the integration with respect to the normalized surface
area on the sphere Sd−1, so that ν∗d−1(S

d−1) = 1, and where

Cd =

{
(d − 2)(d − 4) . . . 2 if d is even,
√
π/2(d − 2)(d − 4) . . . 1 if d is odd.

(1.10)
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Note that ρd−1/Cd in (1.9) is the surface area of the sphere of radius ρ in
the d-space, and the vector v = ρe has d-dimensional standard Gaussian normal
distribution. This explains the reference to Gauss in 12

f (Gauss; T1, T2).

THEOREM 1.2. Let 1 6 U < W be real numbers and d > 2 be an integer
such that

eπ
2U 2/2 > 3 dU. (1.11)

Then for every test function f ∈ L2([0, 1)d),

12
f (Gauss;U,W )

= (2π)−d/2
∫

Rd

(∫ W

U
f (tv) dt − (W −U )

∫
I d

f dV
)2

e−|v|
2/2 dv

6 10σ 2
0 ( f )

⌈
log2

W
U

⌉
(W −U + 1), (1.12)

where

σ 2
0 ( f ) =

∫
I d
| f |2 dV−

∣∣∣∣∫
I d

f dV
∣∣∣∣2 = ∫

I d

∣∣∣∣ f (y)−
∫

I d
f dV

∣∣∣∣2 dy.

Here dze denotes the upper integer part of a real number z.
Note that in the special case of a characteristic function f = χS , S ⊂ I d ,

the term σ 2
0 ( f ) reduces to σ 2

0 (χS) = vold(S)(1− vold(S)). Theorem 1.2 is also
dimension-free, complexity-free and start-free.

The next section is an applications of Theorem 1.2 in the very-high-
dimensional configuration space.

The value of the constant 10 is of course accidental, and it is basically
irrelevant in the applications. Note that 12

f (Gauss;U,W ) is the average square-
error and, intuitively speaking, we may refer to

(σ 2
0 ( f )(W −U ))1/2 = σ0( f )

√
W −U

as the inevitable random error.
Condition (1.11) is equivalent to

U >

√
2 log d
π

+ o(1). (1.13)

The square-root-logarithmic (1.13) is the (shockingly small) threshold for
configuration space equilibrium.

We apply Theorem 1.2 as a short-time ergodic theorem. It justifies the
approximation “configuration space average” ≈ “short-time average” in a
quantitative form.
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§2. Application in the high-dimensional configuration space: square-root
equilibrium: fast approach and long-term stability. In the off-equilibrium ideal
gas model, N point particles are moving around in a cubic container, say the
unit cube [0, 1)3, bouncing back and forth on the walls like billiard balls. To
study the time evolution of such a large billiard system, we use the well-known
geometric trick of unfolding that converts a (zigzag) billiard orbit into a torus
line. For illustration the figure below shows the square billiard. Then unfolding
simply means that we keep reflecting the square itself in the respective side and
unfold the piecewise linear billiard path to a straight line.

Unfolding defines four reflected copies S1, S2, S3, S4 of a test set S, where
each one of the four unit squares contains a reflected copy of the given test set
S. In the last step we shrink the underlying 2× 2 square to the unit square I 2

=

[0, 1)2. Of course, the test set S can be upgraded to any periodic test function f .
Note that the unfolding of the billiard path in the h-dimensional unit cube

[0, 1)h with h 6= 2 can be defined in an analogous way. Formally, unfolding
means the map

2
∥∥∥∥ x

2

∥∥∥∥→ {
x
2

}
applied to each coordinate, where ‖z‖ denotes the distance of a real number z
from a nearest integer and 0 6 {z} < 1 denotes the fractional part of z.

It follows from unfolding that a billiard path in the h-dimensional unit cube
[0, 1)h intersects a given test set S ⊂ [0, 1)h at time t precisely when the
corresponding torus line in the h-dimensional 2× · · · × 2 (hyper)cube intersects
the union of the 2h reflected copies of S. Note that each one of the 2h unit
(hyper)cubes contains a reflected copy of the given test set S. In the last step,
we shrink the h-dimensional 2 × · · · × 2 (hyper)cube to the unit (hyper)cube
I h
= [0, 1)h .
A constant speed piecewise linear point billiard motion in I h is defined by the

equation

x(t) = (x1(t), . . . , xh(t)), xi (t) = 2
∥∥∥∥ yi + tαi

2

∥∥∥∥, 1 6 i 6 h, 0 < t <∞.

(2.1)
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Here y = (y1, . . . , yh) is the starting point and the non-zero vector α = (α1, . . . ,

αk) is the initial direction.
Motivated by the central limit theorem, it is a natural intuition to visualize

snapshot equilibrium in the particle space (or gas container) as a state where the
system exhibits square-root size fluctuations in particle counting. More precisely,
let S ⊂ [0, 1)3 be an arbitrary but fixed Lebesgue measurable subset of the unit
cube with volume 0 < vol(S) < 1, and consider the particle-counting function

NS(t) =
∑

16k6N
xk(t)∈S

1, (2.2)

where xk(t) is the orbit of the kth billiard; see (2.1). The billiard system exhibits
square-root fluctuation if the particle-counting function (2.2) differs from the
expected value N vol(S) by O(

√
N ). In other words, it is a good intuition to

visualize snapshot equilibrium as a square-root fluctuation equilibrium in the
particle space, or simply square-root equilibrium.

Using square-root equilibrium as the definition of snapshot equilibrium, the
statement once the system reaches (snapshot) equilibrium (in the particle space),
it stays in (snapshot) equilibrium forever is certainly untrue for the unlimited
time evolution of a typical trajectory of the system, i.e. t →∞. Indeed, given an
arbitrary initial configuration of starting points, if the initial velocity coordinates
are linearly independent over the rationals (representing typical directions),
then by Kronecker’s well-known density theorem, the time evolution of this
individual trajectory of the system eventually violates square-root equilibrium
in the worst possible way infinitely many times. We will clarify this in part II in
the sequel.

We know that the N -point billiard model in the cube can be reduced to the
torus model via unfolding. We assume that the particles independently have
Gaussian initial velocity distribution in the 3-space. In other words, the set of
the N particles in I 3

= [0, 1)3 at time t is

Y(Gauss;ω; t) = Y(Gauss; ρ1, e1, . . . , ρN , eN ; t)
= {y1 + ρ1te1, . . . , yN + ρN teN } mod 1
= {{y1 + ρ1te1}, . . . , {yN + ρN teN }}, (2.3)

where Y = {y1, . . . , yN } ⊂ [0, 1)3 is the N -element set of initial point
configuration, and the initial velocities of the particles are independent random
variables having the same speed distribution with density

g(u) =

√
2
π

u2e−u2/2, 0 6 u <∞, (2.4)

which is the density of the speed of the three-dimensional Gaussian velocity
distribution. So the trajectory of the kth particle is yk + ρk tek ∈ R3 mod 1, 1 6
k 6 N , where

Pr[ρk 6 u] =

√
2
π

∫ u

0
z2e−z2/2 dz.

https://doi.org/10.1112/S002557931700016X Published online by Cambridge University Press

https://doi.org/10.1112/S002557931700016X


744 J. BECK

On the other hand, the curve in the configuration space I d
= [0, 1)d with

d = 3N , representing the time evolution of the system (2.3), is the straight line
modulo one in Rd given by

EY(Gauss;ω; t) = EY + tv(ω) mod 1, (2.5)

where

ω = (ρ1, e1, . . . , ρN , eN ) ∈ �Gauss = ([0,∞)× S2)N , (2.6)

and
v(ω) = (ρ1e1, . . . , ρN eN ). (2.7)

The product space �Gauss is equipped with the product measure µGauss, where
the half-line [0,∞) has the probability density function (2.4), and the sphere S2

has the normalized surface area. Here EY denotes the 3N -dimensional vector

EY = (y1, . . . , yN ) (2.8)

formed from the N -element set of starting points of the particles Y ⊂ [0, 1)3.
We need the well-known fact from probability theory that µGauss is

the d-dimensional standard Gaussian distribution with d = 3N , i.e. the
multidimensional Gaussian distribution is rotation invariant.

Let B ⊂ I 3
= [0, 1)3 be an arbitrary but fixed measurable test set in the

gas container, where vol(B) denotes the three-dimensional Lebesgue measure.
Assume that N is large. Is it then true that, once a typical time evolution of the
(Gaussian torus) system reaches square-root equilibrium in the particle space,
then it stays in that state in the quantitative sense, of factor 30 say,

||Y(Gauss;ω; t) ∩ B| − vol(B)N | 6 30
√

N ,

for an extremely long time (with the possible exception of a totally negligible set
of values of t)? The factor 30 is accidental, and square-root equilibrium is the
best that we can hope for.

By using Theorem 1.2, in particular (1.12), we give a positive answer to
this question. We use Theorem 1.2 as a short-time ergodic theorem in the
configuration space. Thus the configuration space average nearly equals the
short-term time average. The good news is that the configuration space average
can be easily computed with direct application of probability theory, since the
configuration space is a product space with product measure; see the application
of Bernstein’s large deviation inequality in (2.11) below. Note that Birkhoff’s
ergodic theorem does not have an explicit error term and works only for typical
initial condition, and a typical initial condition represents equilibrium, the trivial
case, since we are studying off-equilibrium dynamics. In contrast, Theorem 1.2
has the advantage that it works for arbitrary off-equilibrium initial configuration.
It also has an explicit error term, and we can use it to describe the time evolution
in realistic time. The details go as follows.
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The family of time evolutions Y(Gauss;ω; t), ω ∈ �Gauss, of the three-
dimensional Gaussian torus model (in the particle space I 3) is represented by
the family of torus lines (2.5) in the configuration space I d , all starting from the
same point EY ∈ I d ; see also (2.6)–(2.8).

For an arbitrary γ > 0, define the (extremely complicated) set

S(B; γ ) = { EZ ∈ I d
: ||Z ∩ B| − vol(B)N | > γ

√
N } (2.9)

in the configuration space, where

EZ = (z1, . . . , z3N ) and Z = {z1, . . . , zN}

with zk = (z3k−2, z3k−1, z3k), 1 6 k 6 N .
Recall the following large deviation inequality in probability theory; see [3].

BERNSTEIN’S INEQUALITY. Let X1, . . . , Xn be independent random varia-
bles with binomial distribution Pr[X i = 1] = p and Pr[X i = 0] = q = 1 − p.
Then for every positive γ ,

Pr
[∣∣∣∣ n∑

i=1

(X i − p)
∣∣∣∣ > γ√npq

]
=

∑
06k6n

|k−pn|>γ
√

pqn

(
n
k

)
pkqn−k

6 2 exp
(
−

γ 2/2
1+ γ /3

√
npq

)
, (2.10)

where
√

npq is the standard deviation of the binomial distribution.

Using (2.10) with p = vol(B), we have

vold(S(B; γ )) 6 2 exp
(
−

γ 2(2p(1− p))−1

1+ γ /3p(1− p)
√

N

)
6 2 exp

(
−

2γ 2

1+ 2γ /
√

N

)
, (2.11)

where the last inequality comes from the simple fact that p(1 − p) 6 1/4.
The reason why we could apply Bernstein’s inequality is that vold is a product
measure, and so the d = 3N -dimensional volume vold(S(B; γ )) represents a
large deviation probability for N independent random variables.

For example,

if γ = 30 and N > 106, then (2.11) gives 2 exp
(
−

2γ 2

1+ 2γ /
√

N

)
< 10−700,

(2.12)
which is extremely small. The long-term stability of, say, 30-square-root
equilibrium (in the particle space) is based on this striking numerical fact.
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Since the configuration space I d is translation invariant, we can apply
Theorem 1.2 with f = χS , where S = S(B; γ ) − EY is a translated copy of
S(B; γ ) in the torus I d . Clearly vold(S) = vold(S(B; γ )). Using (2.11) in
Theorem 1.2 with W = 2kU , we obtain

(2π)−d/2
∫

Rd

(∫ 2kU

U
χS(tv) dt − vold(S)(2k

− 1)U
)2

e−|v|
2/2 dv

= (2π)−d/2
∫

Rd
(DS(v;U, 2kU ))2e−|v|

2/2 dv

6 2 exp
(
−

2γ 2

1+ 2γ /
√

N

)
10k((2k

− 1)U + 1), (2.13)

assuming of course that U > 1 and eπ
2U 2/2 > 3 dU . By (2.6), (2.9) and using

S = S(B; γ )− EY , we have

(2π)−d/2
∫

Rd

(∫ 2kU

U
χS(tv) dt − vold(S)(2k

− 1)U
)2

e−|v|
2/2 dv

=

∫
�Gauss

(∫ 2kU

U
χS(tv(ω)) dt − vold(S)(2k

− 1)U
)2

dµGauss(ω)

=

∫
�Gauss

(length{U 6 t 6 2kU : ||Y(Gauss;ω; t)∩ B| − vol(B)N |>γ
√

N }

− vold(S(B; γ ))(2k
− 1)U

2
) dµGauss(ω). (2.14)

Combining (2.13) and (2.14), we obtain the following result.

THEOREM 2.1. Let Y(Gauss;ω; t), ω ∈ �Gauss, be the three-dimensional
Gaussian torus model, and let B ⊂ [0, 1)3 be a measurable test set with three-
dimensional Lebesgue measure vol(B). Assume that

U > 1 and eπ
2U 2/2 > 3 dU.

Then for every γ > 0 and every integer k > 1,∫
�Gauss

(length{U 6 t 6 2kU : ||Y(Gauss;ω; t) ∩ B| − vol(B)N | > γ
√

N }

− vold(S(B; γ ))(2k
− 1)U )

2
dµGauss(ω)

6 2 exp
(
−

2γ 2

1+ 2γ /
√

N

)
10k((2k

− 1)U + 1), (2.15)

where

vold(S(B; γ )) < 2 exp
(
−

2γ 2

1+ 2γ /
√

N

)
.
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Probably the reader does not find Theorem 2.1 very pretty, but it is an
extremely powerful result. To illustrate its power, let γ = 30, U = 4, k = 100
and N = 1027, so that d = 3N = 3 · 1027. Then by (2.12) and (2.15),∫
�Gauss

(length{4 6 t 6 4 · 2100
: ||Y(Gauss;ω; t) ∩ B| − vol(B)N | > 30

√
N }

− vold(S(B; 30))(2100
− 1)4)

2
dµGauss(ω)

6 10−700
· 400 · 2100

· 20 < 10−661. (2.16)

Let �(bad)
Gauss be the set of those ω ∈ �Gauss for which

length{4 6 t 6 4 ·2100
: ||Y(Gauss;ω; t)∩B|−vol(B)N | > 30

√
N } > 10−220.

(2.17)
We claim that (2.16) implies

µGauss(�
(bad)
Gauss) 6 10−220. (2.18)

Indeed, otherwise∫
�Gauss

(length{4 6 t 6 4 · 2100
: ||Y(Gauss;ω; t) ∩ B| − vol(B)N | > 30

√
N }

− vold(S(B; 30))(2100
− 1)4)

2
dµGauss(ω)

>
∫
�
(bad)
Gauss

(length{4 6 t 6 4 · 2100
: ||Y(Gauss;ω; t) ∩ B|

− vol(B)N | > 30
√

N }−vold(S(B; 30))(2100
− 1)4)

2
dµGauss(ω)

> 10−220(10−220
− 10−600)2 > 10−661,

which contradicts (2.16). In the last step we have used the fact that

vold(S(B; 30))(2100
− 1)4 6 10−700

· 1031 < 10−600.

Note that the choice of N = 1027 was realistic, in the sense that there are
roughly 1027 gas molecules in a cubic box of volume 1 m3. In the classical
Bernoulli gas model, the gas molecules are represented by point billiards. Using
unfolding, we can reduce the billiard model to the torus model. The threshold
U = 4 here represents, roughly speaking, the relaxation distance, i.e. the
necessary number of jumps per particle in the torus model, equal to half of the
number of bounces in the billiard model, to reach square-root equilibrium (in the
particle space) for the typical time evolution of the Gaussian system. Assume
that the gas molecules have average speed 103 m s−1. For this Gaussian system,
it takes only a few milliseconds to reach square-root equilibrium. Now (2.17)
and (2.18) have the following interpretation. Choosing an arbitrary (measurable)
test set B ⊂ [0, 1)3 in the gas container (or particle space) and an arbitrary N -
element initial point configuration Y , for the totally overwhelming majority of
the initial velocities (Gaussian distribution), the number of particles in B remains
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very close to the expected value vol(B)N for an extremely long time, with the
possible exception of a totally negligible set of times t .

Indeed, for every (measurable) test set B ⊂ [0, 1)3 and every N = 1027-
element initial point configuration Y ⊂ [0, 1)3, there exists a subset �(good)

Gauss ,
where

�
(good)
Gauss = �Gauss \�

(bad)
Gauss

with
µGauss(�

(good)
Gauss ) > 1− 10−220,

noting (2.18), representing a totally overwhelming majority such that for every
ω ∈ �

(good)
Gauss , the inequality

||Y(Gauss;ω; t) ∩ B| − vol(B)1027
| 6 30 · 1013.5 (2.19)

holds for every 4 6 t 6 4 · 2100 with the possible exception of a set of times t of
total length less than 10−220; see (2.17). The latter actually represents less than
10−223 seconds, which is a ridiculously short time.

Note that 4 6 t 6 4 · 2100 represents a time interval of about 1027 seconds,
which is an incredibly long time, being roughly a billion times the age of the
universe.

Finally, by (2.19),

1
N
||Y(Gauss;ω; t) ∩ B| − vol(B)| 6 3 · 10−12.5 < 10−12,

which can be interpreted as almost constant density for an incredibly long time.
What happens if we want to prove long-term stability of square-root

equilibrium with respect to a whole family of nice sets instead of a fixed
measurable test set? Of course we cannot expect that a system stays in square-
root equilibrium with respect to all measurable test sets simultaneously. What
we may expect, however, is that, starting from an arbitrary but fixed initial
configuration Y , and after reaching configuration space equilibrium, the typical
time evolution of the system stays in square-root equilibrium in the particle
space with respect to all nice test sets simultaneously for a very, very long time,
without any violator time instant t . And indeed, again by using Theorem 1.2,
we are going to prove such a result in part II in the sequel. In fact, this paper
is the first in a series of papers devoted to the applications of Theorem 1.2, and
its extensions beyond the Gaussian case, to describe the time evolution of large
off-equilibrium systems.

§3. Proof of Theorem 1.2. For technical reasons, it is convenient to prove first
a special case with an upper bound on the ratio W/U .

THEOREM 3.1. Let f ∈ L2([0, 1)d) be a test function. If 1 6 U < V 6 2U
and eπ

2U 2/2 > 3 dU, then

12
f (Gauss;U, V ) 6 σ 2

0 ( f )(9(V −U )+ 1).
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The technical restriction U < V 6 2U in Theorem 3.1 can be easily
eliminated by a routine application of the Cauchy–Schwarz inequality; see the
end of §3.

To prove Theorem 3.1, we shall use Fourier analysis in the configuration
space I d

= [0, 1)d . For high dimension d , this leads to technical difficulties
that are combinatorial in nature.

Let f ∈ L2(I d) be a Lebesgue square-integrable function in the d-
dimensional unit torus, i.e. we extend f over the whole d-space Rd periodically,
and consider the Fourier expansion

f (u) =
∑
n∈Zd

ane2π in·u, (3.1)

where
an =

∫
I d

f (y)e−2π in·y dy, n ∈ Zd , (3.2)

are the Fourier coefficients. Here v · w denotes the dot product of v and w.
Clearly

a0 =

∫
I d

f (y) dy and so
∑

n∈Zd\0

|an|
2
= σ 2

0 ( f ), (3.3)

where we have used Parseval’s formula.
By (3.1), (3.2) and noting that e ∈ Sd−1 is a unit vector in the d-space, we

have
f (t
√

de)−
∫

I d
f dV =

∑
n∈Zd\0

ane2π it
√

dn·e. (3.4)

Remark. Notice that (3.4) is an informal equality. The infinite sum on the
right-hand side may be divergent for some unit vector e ∈ Sd−1 in the d-
space. To avoid this kind of technical nuisance, we use the well-known fact
that the trigonometric polynomials are dense in the L2-space. We proceed in
two steps. The first step is to prove the theorem in the special case where f
is a trigonometric polynomial (in d variables). Then it is trivial to carry out the
usual manipulations, e.g. changing the order of finite summation and integration.
The second step is the routine limiting process. The class of trigonometric
polynomials forms a dense subset of the Hilbert space L2(I d), and we can
complete the proof in the general case with an application of Lebesgue’s
dominated convergence theorem.

Recall (1.9) and (1.10). Using (1.6) and (3.4), we have

D f (ρe; T1, T2) =

∫ T2

T1

f (tρe) dt − (T2 − T1)

∫
I d

f dV

=

∫ T2

T1

∑
n∈Zd\0

ane2π itn·ρe dt. (3.5)

We need a simple estimate.
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LEMMA 3.1. For every d-dimensional vector w = (w1, . . . , wd), we have∫
Sd−1

∫
∞

0
eiw·ρeρ

d−1e−ρ
2/2

Cd
dρ dν∗d−1(e) = e−|w|

2/2.

Proof. For simplicity, denote the integral under investigation by I . Note that
the vector ρe = v = (v1, . . . , vd) has d-dimensional standard Gaussian (normal)
distribution. Thus

I = (2π)−d/2
∫

Rd
eiw·ve−|v|

2/2 dv =
d∏

j=1

(
1
√

2π

∫
∞

−∞

eiw jv j e−v
2
j /2 dv j

)

=

d∏
j=1

e−w
2
j/2 = e−|w|

2/2,

where in the argument, we have used the well-known facts that the coordinates
v1, . . . , vd of v are independent random variables, each having standard normal
distribution, and that the Fourier transform of e−x2/2 is itself. �

Let us return to (1.9) and (3.5). Applying Lemma 3.1, it is easy to establish
the following result.

LEMMA 3.2. For every −∞ 6 W ′ < W ′′ 6∞, we have

12
f (Gauss;W ′,W ′′) =

∑
n1,n2∈Zd\0

an1an2

∫ W ′′

W ′

∫ W ′′

W ′
e−2π2

|t1n1−t2n2|
2

dt1 dt2.

Proof. It is easy to see that

|D f (ρe;W ′,W ′′)|2 =
∫ W ′′

W ′

∫ W ′′

W ′

∑
n1,n2∈Zd\0

an1an2e2π i(t1n1−t2n2)·ρe dt1 dt2.

Applying this in (3.5), we obtain

12
f (Gauss;W ′,W ′′)

=

∫
Sd−1

∫
∞

0

(∫ W ′′

W ′

∫ W ′′

W ′

∑
n1,n2∈Zd\0

an1an2e2π i(t1n1−t2n2)·ρe dt1 dt2

)

·
ρd−1e−ρ

2/2

Cd
dρ dν∗d−1(e)

=

∑
n1,n2∈Zd\0

an1an2

·

∫ W ′′

W ′

∫ W ′′

W ′

(∫
Sd−1

∫
∞

0
e2π i(t1n1−t2n2)·ρeρ

d−1e−ρ
2/2

Cd
dρ dν∗d−1(e)

)
dt1 dt2.

(3.6)

https://doi.org/10.1112/S002557931700016X Published online by Cambridge University Press

https://doi.org/10.1112/S002557931700016X


DIMENSION-FREE UNIFORMITY WITH APPLICATIONS, I 751

Lemma 3.1 applied to the inner integral on the right-hand side of (3.6) now gives∫
Sd−1

∫
∞

0
e2π i(t1n1−t2n2)·ρeρ

d−1e−ρ
2/2

Cd
dρ dν∗d−1(e) = e−2π2

|t1n1−t2n2|
2
.

Substituting this into (3.6) completes the proof. �

We are now ready to prove Theorem 3.1. The proof is an elementary brute
force combinatorial argument. For every n = (n1, . . . , nd) ∈ Zd

\ 0, write

L(n) = {1 6 i 6 d : ni 6= 0}.

Applying the inequality |an1an2 || 6 (|an1 |
2
+ |an2 |

2)/2 in Lemma 3.2, we have

|12
f (Gauss;U, V )|

6
∑

n1,n2∈Zd\0

1
2
(|an1 |

2
+ |an2 |

2)

∫ V

U

∫ V

U
e−2π2

|t1n1−t2n2|
2

dt1 dt2

=

∑
n1∈Zd\0

|an1 |
2
∑

n2∈Zd\0

∫ V

U

∫ V

U
e−2π2

|t1n1−t2n2|
2

dt1 dt2

=

∫ V

U

∑
n1∈Zd\0

|an1 |
2
(∫ V

U

∑
n2∈Zd\0

e−2π2
|t1n1−t2n2|

2
dt2

)
dt1

=

d∑
λ1=1

∫ V

U

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2

·

( ∑
L1,2⊆L(n1)

d∑
λ2=max{|L1,2|,1}

∫ V

U

∑
n2∈Zd

\0
|L(n2)|=λ2

L(n2)∩L(n1)=L1,2

e−2π2
|t1n1−t2n2|

2
dt2

)
dt1.

(3.7)

We fix t1 ∈ [U, V ], n1 ∈ Zd
\ 0, L1,2 ⊆ L(n1) and λ2, and focus on the inner

integral on the right-hand side of (3.7).
Write

λ1,2 = |L1,2| = |{1 6 i 6 d : n1,i 6= 0 and n2,i 6= 0}|.

Let ki (n2), i = 1, 2, 3 . . . , denote the number of coordinates n2,i = ±i of n2
which also satisfy n1,i = 0. Note that

k1(n2)+ k2(n2)+ k3(n2)+ · · · = λ2 − λ1,2. (3.8)

Let h0(t2;n2) denote the number of coordinates j ∈ L1,2 such that

|t1n1, j − t2n2, j | <
U
2
.
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Let hi (t2;n2), i = 1, 2, 3 . . . , denote the number of coordinates j ∈ L1,2 such
that

(2i − 1)U
2

6 |t1n1, j − t2n2, j | <
(2i + 1)U

2
.

Note that

h0(t2;n2)+ h1(t2;n2)+ h2(t2;n2)+ h3(t2;n2)+ · · · = λ1,2. (3.9)

By definition,

|t1n1 − t2n2|
2
=

∑
j∈L1,2

(t1n1, j − t2n2, j )
2

+

∑
j∈L(n1)\L1,2

(t1n1, j )
2
+

∑
j∈L(n2)\L1,2

(t2n2, j )
2.

Using this and the definitions of ki (n2) and hi (t2;n2), we have∫ V

U

∑
n2∈Zd

\0
|L(n2)|=λ2

L(n2)∩L(n1)=L1,2

e−2π2
|t1n1−t2n2|

2
dt2

6 exp
(
−2π2

∑
j∈L(n1)\L1,2

|n1, j |
2U 2

)

·

∫ V

U

∑
n2∈Zd

\0
|L(n2)|=λ2

L(n2)∩L(n1)=L1,2

K(t2;n2)H(t2;n2;U ) dt2, (3.10)

where
K(t2;n2) =

∏
i>1

e−2π2ki (n2)i2t2
2

and
H(t2;n2;U ) =

∏
i>1

e−π
2hi (t2;n2)((2i−1)U )2/2.

We estimate the last sum on the right-hand side of (3.10). Again, using the
definitions of ki (n2) and hi (t2;n2), and noting (3.8) and (3.9), we obtain the
upper bound ∑

n2∈Zd
\0

|L(n2)|=λ2
L(n2)∩L(n1)=L1,2

K(t2;n2)H(t2;n2;U ) 6 K(d;U )H(U ), (3.11)

where

K(d;U ) =
∑
r>1

k1,...,kr−1>0
kr>1

k1+···+kr=λ2−λ1,2

r∏
i=1

(
d − λ1 − k1 − · · · − ki−1

ki

)
2ki e−2π2ki i2U 2
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and

H(U ) =
∑
r>0

h0,...,hr−1>0
hr>1

h0+···+rr=λ1,2

(
λ1,2

h0

) r∏
i=1

(
λ1,2 − h0 − · · · − hi−1

hi

)

× 2hi e−π
2hi ((2i−1)U )2/2.

Note that (3.11) includes the pathological case λ2−λ1,2 = 0, with the convention
that the summation means the single term (k1, . . . , kr ) = (0), and similarly, if
λ1,2 = 0, then (h0, h1, . . . , hr ) is just the single term (0).

We have the trivial bound

K(d;U ) 6
∑
r>1

k1,...,kr−1>0
kr>1

k1+···+kr=λ2−λ1,2

r∏
i=1

(2d)ki e−2π2ki i2U 2
6

(∑
i>1

2de−2π2i2U 2
)λ2−λ1,2

.

(3.12)
On the other hand, using the multinomial theorem, we obtain

H(U ) =
(

1+
∑
i>1

2e−π
2((2i−1)U )2/2

)λ1,2

. (3.13)

Combining (3.11)–(3.13), we deduce that

∑
n2∈Zd

\0
|L(n2)|=λ2

L(n2)∩L(n1)=L1,2

K(t2;n2)H(t2;n2;U ) 6 (3de−2π2U 2
)λ2−λ1,2(1+3e−π

2U 2/2)λ1,2 .

(3.14)
Combining this with (3.10), we conclude that

∫ V

U

∑
n2∈Zd

\0
|L(n2)|=λ2

L(n2)∩L(n1)=L1,2

e−2π2
|t1n1−t2n2|

2
dt2

6 e−2π2(λ1−λ1,2)U 2
(V −U )(3de−2π2U 2

)λ2−λ1,2(1+ 3e−π
2U 2/2)λ1,2 . (3.15)

Let us now return to (3.7). We have the decomposition

|12
f (Gauss;U, V )| 6 41 +42 +43 +44, (3.16)
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where

41 =

d−1∑
λ1=1

∫ V

U

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2

·

( ∑
L1,2⊆L(n1)

d∑
λ2=λ1+1

∫ V

U

∑
n2∈Zd

\0
|L(n2)|=λ2

L(n2)∩L(n1)=L1,2

e−2π2
|t1n1−t2n2|

2
dt2

)
dt1

(3.17)

is characterized by the property λ1 < λ2, and

42 =

d∑
λ1=1

∫ V

U

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2

·

( ∑
L1,2⊆L(n1)

λ1−1∑
λ2=max{|L1,2|,1}

∫ V

U

∑
n2∈Zd

\0
|L(n2)|=λ2

L(n2)∩L(n1)=L1,2

e−2π2
|t1n1−t2n2|

2
dt2

)
dt1

(3.18)

is characterized by the property λ1 > λ2. Furthermore, we split the case λ1 = λ2
into two subcases according as L(n1) 6= L(n2) or L(n1) = L(n2), thus

43 =

d∑
λ1=1

∫ V

U

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2

·

( ∑
L1,2⊂L(n1)
L1,2 6=L(n1)

∫ V

U

∑
n2∈Zd

\0
|L(n2)|=λ1

L(n2)∩L(n1)=L1,2

e−2π2
|t1n1−t2n2|

2
dt2

)
dt1 (3.19)

and

44 =

∫ V

U

∑
n1∈Zd\0

|an1 |
2
(∫ V

U

∑
n2∈Zd

\0
L(n2)=L(n1)

e−2π2
|t1n1−t2n2|

2
dt2

)
dt1. (3.20)

To estimate the last term (3.20), we need a simple but important lemma. To
state this, we first need a definition. Given real numbers C and C ′, consider the
set

BU (C;C ′) = {t ∈ [U, 2U ] : there exists n ∈ Z \ {0} such that |C − tn| 6 C ′}.

We give an upper bound on the one-dimensional Lebesgue measure, i.e. length,
of the set BU (C;C ′).
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LEMMA 3.3. For arbitrary real numbers C,C ′ with |C | > U > 1 and 0 <
C ′ < U/2, we have

length(BU (C;C ′)) < 6C ′.

Proof. We can assume without loss of generality that C > 0. Clearly

|C − tn| 6 C ′ if and only if
C − C ′

n
6 t 6

C + C ′

n
,

so

length(BU (C;C ′)) =
∗∑
n

2C ′

n
,

where the summation
∑
∗

n is extended over all integers n such that

C
t
−

C ′

t
6 n 6

C
t
+

C ′

t
.

Note that

C + C ′

t
6

3C
2t
6

3C
2U

and
C − C ′

t
>

C
2t
>

C
4U

.

Thus we have

length(BU (C;C ′)) 6
∑

C/4U6n63C/2U

2C ′

n

6 2C ′
(

1+ log
3C/2U
C/4U

)
= 2C ′(1+ log 6),

where we have used the well-known fact that
∑

A6n6B 1/n 6 1+ log(B/A) for
all 0 < A < B. Since log 6 < 2, the proof is complete. �

Applying (3.15) in (3.17), we obtain

41 6 (V −U )2 max
λ1,26d

(1+ 3e−π
2U 2/2)λ1,2

d∑
λ2=1

(3de−2π2U 2
)λ2

·

λ2−1∑
λ1=1

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2

λ1∑
λ1,2=0

(
λ1

λ1,2

)
(3de−2π2U 2

)−λ1,2e−2π2(λ1−λ1,2)U 2

= (V −U )2(1+ 3e−π
2U 2/2)d

d∑
λ2=1

(3de−2π2U 2
)λ2

·

λ2−1∑
λ1=1

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2((3de−2π2U 2

)−1
+ e−2π2U 2

)λ1 . (3.21)

By hypothesis,
dUe−π

2U 2/2 6 1
3 . (3.22)
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It follows that

((3de−2π2U 2
)−1
+ e−2π2U 2

)λ1

= (3de−2π2U 2
)−λ1(1+ 3de−2π2U 2/2e−2π2U 2

)λ1

6 (3de−2π2U 2
)−λ1

(
1+

1
2d

)d

< 2(3de−2π2U 2
)−λ1 . (3.23)

Using (3.22) and (3.23) in (3.21), we have

41 6 2(V −U )2
(

1+
1

2d

)d d∑
λ2=1

λ2−1∑
λ1=1

(3de−2π2U 2
)λ2−λ1

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2

6 4(V −U )2 d
∞∑
j=1

(3de−2π2U 2
) j

∑
n∈Zd\0

|an|
2

= 12(V −U )2
d2e−2π2U 2

1− 3de−2π2U 2

∑
n∈Zd\0

|an|
2,

where we have used the substitution j = λ2 − λ1. Thus

41 6 12(V −U )2
3−4U−2

1− 3de−2π2U 2

∑
n∈Zd\0

|an|
2 6

1
6

∑
n∈Zd\0

|an|
2, (3.24)

since V −U 6 U .
Next, applying (3.15) in (3.18), we obtain

42 6 (V −U )2 max
λ1,26d

(1+ 3e−π
2U 2/2)λ1,2

d∑
λ1=1

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2

·

λ1−1∑
λ2=1

λ2∑
λ1,2=0

(
λ1

λ1,2

)
(3de−2π2U 2

)λ2−λ1,2e−2π2(λ1−λ1,2)U 2

6 (V −U )2
(

1+
1

2d

)d

·

d∑
λ1=1

λ1−1∑
λ2=1

λ2∑
λ1,2=0

(3de−2π2U 2
)λ2−λ1,2(de−2π2U 2

)λ1−λ1,2
∑

n∈Zd\0

|an|
2

6 2(V −U )2
d∑

λ1=1

λ1−1∑
λ2=1

λ2∑
λ1,2=0

(3de−2π2U 2
)λ1+λ2−2λ1,2

∑
n∈Zd\0

|an|
2, (3.25)

where in the last steps we have used (3.22) and the trivial upper bound(
λ1

λ1,2

)
=

(
λ1

λ1 − λ1,2

)
6 λ

λ1−λ1,2
1 6 dλ1−λ1,2 . (3.26)
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Using (3.22) in (3.25), we have

42 6 2(V −U )2
d∑

λ1=1

λ1−1∑
λ2=1

λ2∑
λ1,2=0

(3−3d−1U−2)λ1+λ2−2λ1,2
∑

n∈Zd\0

|an|
2

6 2(V −U )2
∞∑
j=1

d( j + 1) j (3−3d−1U−2) j
∑

n∈Zd\0

|an|
2

= 4(V −U )2
3−3U−2

(1− 3−3d−1U−2)3

∑
n∈Zd\0

|an|
2

=
4
27
(V −U )2U−2(1− 3−3d−1U−2)−3

∑
n∈Zd\0

|an|
2

6
1
4

∑
n∈Zd\0

|an|
2, (3.27)

where we have used the substitution j = λ1 + λ2 − 2λ1,2, the assumption
V −U 6 U , and the simple fact that

∞∑
j=1

j ( j + 1)x j
=

2x
(1− x)3

for all |x | < 1.

Next, applying (3.15) in (3.19), we obtain

43 6 (V −U )2 max
λ1,26d

(1+ 3e−π
2U 2/2)λ1,2

·

d∑
λ1=1

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2
λ1−1∑
λ1,2=0

(
λ1

λ1,2

)
(3de−(2+2)π2U 2

)λ1−λ1,2 .

Using (3.26) in this, we have

43 6 (V −U )2 max
λ1,26d

(1+ 3e−π
2U 2/2)λ1,2

·

d∑
λ1=1

∑
n1∈Zd

\0
|L(n1)|=λ1

|an1 |
2
λ1−1∑
λ1,2=0

(3d2e−4π2U 2
)λ1−λ1,2 .

Then using (3.22) in this, we have

43 6 (V −U )2(1+ 3(dU )−1)d
d∑

λ1=1

λ1−1∑
λ1,2=0

(3(34 dU )−2)λ1−λ1,2
∑

n∈Zd\0

|an|
2

6 (V −U )2
(

1+
1

2d

)d

d
∞∑
j=1

(37d2U 2)− j
∑

n∈Zd\0

|an|
2
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6 2d(V −U )2
(37d2U 2)−1

1− (37d2U 2)−1

∑
n∈Zd\0

|an|
2

= 2(V −U )2U−2 (37d)−1

1− (37d2U 2)−1

∑
n∈Zd\0

|an|
2

6
1

100d

∑
n∈Zd\0

|an|
2, (3.28)

where we have used the substitution j = λ1−λ1,2 and the hypothesis V−U 6U .
Finally we estimate (3.20). We have

44 = 4
(1)
4 +4

(2)
4 , (3.29)

where

4
(1)
4 =

∫ V

U

∑
n1∈Zd\0

|an1 |
2
(∫ V

U

∑
n2∈Zd

\0
L(n2)=L(n1)

h0(t2;n2)<|L(n1)|

e−2π2
|t1n1−t2n2|

2
dt2

)
dt1,

(3.30)
and where

4
(2)
4 =

∫ V

U

∑
n1∈Zd\0

|an1 |
2
(∫ V

U

∑
n2∈Zd

\0
L(n2)=L(n1)

h0(t2;n2)=|L(n1)|

e−2π2
|t1n1−t2n2|

2
dt2

)
dt1.

(3.31)
We start with the term4

(1)
4 given by (3.30), and use the notation λ1 = |L(n1)|.

Note that here λ1 = λ2 = λ1,2. Write

H(1)(U ) =
∑
r>0

h0,...,hr−1>0
hr>1

h0+···+rr=λ1

(
λ1

h0

) r∏
i=1

(
λ1 − h0 − · · · − hi−1

hi

)
2hi e−π

2hi ((2i−1)U )2/2.

In this special case the argument of (3.10)–(3.15) simplifies to the upper bound

4
(1)
4 6

∫ V

U

∑
n1∈Zd\0

|an1 |
2(V −U )H(1)(U ) dt1

=

∫ V

U

∑
n1∈Zd\0

|an1 |
2(V −U )

· ((1+ 2e−π
2U 2/2

+ 2e−π
232U 2/2

+ 2e−π
252U 2/2

+ · · ·)λ1 − 1) dt1,

where the term −1 at the end is explained by the restriction h0 < λ1, i.e. the
term −1 is due to the fact that in the application of the multinomial theorem we
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have an almost complete sum, where the single missing case is h0 = λ1. It now
follows that

4
(1)
4 6

∑
n1∈Zd\0

|an1 |
2(V −U )2((1+ 3e−π

2U 2/2)d − 1)

6 σ 2
0 ( f )(V −U )2(exp(3de−π

2U 2/2)− 1)

6 σ 2
0 ( f )(V −U )26 de−π

2U 2/2 (3.32)

since
de−π

2U 2/2 6 1
3 . (3.33)

Note that in (3.32), we have used Parseval’s formula and the simple inequalities
1 + x 6 ex 6 1 + 2x for 0 6 x 6 1; and of course (3.33) follows from (3.22).
If we now apply (3.22) in (3.32), then we conclude that

4
(1)
4 6 σ

2
0 ( f )(V −U )2

6
3U
6 2σ 2

0 ( f )(V −U ), (3.34)

since V −U 6 U .
To estimate 4(2)4 given by (3.31), we make use of the fact that for every given

triple (t1,n1, t2) with t1, t2 ∈ [U, V ] and n1 ∈ Zd
\ 0, there is at most one term

in the sum ∑
n2∈Zd

\0
L(n2)=L(n1)

h0(t2;n2)=|L(n1)|

e−2π2
|t1n1−t2n2|

2
.

Indeed, it follows easily from the definition of h0(t2;n2) that for every given
triple (t1,n1, t2), the inequality |t1n1, j − t2n2, j | < U/2 has at most one integer
solution n2, j , and since h0(t2;n2) = |L(n1)| and L(n2) = L(n1), there is
therefore at most one n2 ∈ Zd

\ 0 satisfying the requirements.
Let n∗2 ∈ Zd

\ 0, n∗2 = n∗2(t1,n1, t2), denote this single integer lattice point,
if it exists. Then (3.31) can be rewritten in the form

4
(2)
4 =

∫ V

U

∑
n1∈Zd\0

|an1 |
2
(∫ V

U
e−2π2

|t1n1−t2n∗2|
2

dt2

)
dt1

if n∗2 = n∗2(t1,n1, t2) exists, and vanishes otherwise. Let j0 = j0(n1) be an
arbitrary but fixed element of the set L(n1). Then we have trivially

4
(2)
4 6

∫ V

U

∑
n1∈Zd\0

|an1 |
2
(∫ V

U
e−2π2

|t1n1, j0−t2n∗2, j0
|
2

dt2

)
dt1. (3.35)

Given (t1,n1), we decompose the interval U 6 t2 6 V , where V 6 2U , into sets

I`(t1,n1) = {t2 ∈ [U, V ] : `− 1 6 |t1n1, j0 − t2n∗2, j0 | < `}, ` = 1, 2, 3, . . . ,
(3.36)
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where j0 = j0(n1) and n∗2 = n∗2(t1,n1, t2). Using the decomposition (3.36) in
(3.35), we obtain the upper bound

4
(2)
4 6

∫ V

U

∑
n1∈Zd\0

|an1 |
2
( ∞∑
`=1

length(I`)e−2π2(`−1)2
)

dt1, (3.37)

where I` = I`(t1,n1). Applying Lemma 3.3 with C = t1n1, j0 and C ′ = `, we
obtain the upper bound length(I`) < 6`. Using this in (3.37), we conclude that

4
(2)
4 6

∫ V

U

∑
n∈Zd\0

|an|
2
( ∞∑
`=1

6`e−2π2(`−1)2
)

dt1 6 7(V −U )
∑

n∈Zd\0

|an|
2.

(3.38)
Finally, combining (3.3), (3.24), (3.27)–(3.29), (3.34) and (3.38) with (3.16),

we conclude that

|12
f (Gauss;U, V )| 6

(
1
6
+

1
4
+

1
100d

+ 2(V −U )+ 7(V −U )
)
σ 2

0 ( f )

6 (9(V −U )+ 1)σ 2
0 ( f ).

This completes the proof of Theorem 3.1.
To prove Theorem 1.2, we have to eliminate the technical restriction

U < V 6 2U in Theorem 3.1.
Given 1 6 U < W , let k > 1 denote the integer such that 2k−1U < W 6 2kU .

It is easy to find a sequence 1 6 W0 = U < W1 < · · · < Wk = W such that
Wi < Wi+1 6 2Wi for all 0 6 i < k. By using the Cauchy–Schwarz inequality
and Theorem 3.1, we have

12
f (Gauss;U,W )

= (2π)−d/2
∫

Rd
(D f (v;U,W ))2e−|v|

2/2 dv

= (2π)−d/2
∫

Rd

(k−1∑
j=0

D f (v;W j ,W j+1)

)2

e−|v|
2/2 dv

6 (2π)−d/2
∫

Rd

(k−1∑
j=0

(D f (v;W j ,W j+1))
2
)(k−1∑

j=0

1
)

e−|v|
2/2 dv

= k
k−1∑
j=0

(2π)−d/2
∫

Rd
(D f (v;W j ,W j+1))

2e−|v|
2/2 dv

6 kσ 2
0 ( f )

k−1∑
j=0

(9(W j+1 −W j )+ 1) 6 kσ 2
0 ( f )(10(W −U )+ 10).

Since k = dlog2(W/U )e, the proof of Theorem 1.2 is complete.

https://doi.org/10.1112/S002557931700016X Published online by Cambridge University Press

https://doi.org/10.1112/S002557931700016X


DIMENSION-FREE UNIFORMITY WITH APPLICATIONS, I 761

References

1. J. Beck, From Khinchin’s conjecture on strong uniformity to superuniform motions. Mathematika 61
(2015), 591–707.

2. M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications (Lecture Notes in
Mathematics 1651), Springer (1997).

3. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 2nd edn, Wiley (1971).
4. A. Khinchin, Ein Satz über Kettenbrüche mit arithmetischen Anwendungen. Math. Z. 18 (1923),

289–306.
5. J. M. Marstrand, On Khinchin’s conjecture about strong uniform distribution. Proc. Lond. Math. Soc.

(3) 21 (1970), 540–556.
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