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Runaway electrons, which are generated in a plasma where the induced electric field
exceeds a certain critical value, can reach very high energies in the MeV range. For
such energetic electrons, radiative losses will contribute significantly to the momentum
space dynamics. Under certain conditions, due to radiative momentum losses, a non-
monotonic feature – a ‘bump’ – can form in the runaway electron tail, creating a
potential for bump-on-tail-type instabilities to arise. Here, we study the conditions
for the existence of the bump. We derive an analytical threshold condition for bump
appearance and give an approximate expression for the minimum energy at which
the bump can appear. Numerical calculations are performed to support the analytical
derivations.

1. Introduction
In a plasma, the drag force from Coulomb collisions acting on fast electrons

decreases with the electron velocity. Thus, if the electric field E exceeds a threshold
value Ec, electrons with sufficient velocity will be indefinitely accelerated and are
called runaway electrons. The critical field Ec is defined as

Ec = nee3 lnΛ
4πε2

0mec2
, (1.1)

where ne is the electron density, me is the electron rest mass, c is the speed of light,
e is the elementary charge and lnΛ is the Coulomb logarithm.

Runaway electrons are generated in the presence of an induced electric field
parallel to the magnetic field. In a tokamak, the condition E> Ec can be met during
the plasma startup, during the flat-top phase of Ohmic plasmas if the density is
sufficiently low, or in plasma disruptions. Especially during disruption events, a beam
of runaways carrying a current of several MA and an energy of several MJ may form.
Such a runaway beam would pose a serious threat to the integrity of the first wall in
reactor-size fusion devices. Any mechanism that could possibly limit the formation
of a considerable runaway beam would be of importance.
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While the role of radiative momentum losses due to synchrotron emission was
studied previously in Andersson, Helander & Eriksson (2001), the possibility of
a non-monotonic feature in the energy distribution of runaways – which we will
henceforth refer to as a ‘bump’ – was not considered. The formulation of the
problem in Andersson et al. (2001) does not ensure particle conservation in the
presence of radiation reaction and neglects certain terms needed to describe the bump
(Hazeltine & Mahajan 2004; Stahl et al. 2015). The possibility of bump formation,
however, immediately raises the question of whether the non-monotonic behaviour
of the distribution could lead to kinetic instabilities, causing a redistribution of the
runaway particles, favourable for mitigating the potential threat to the machine. A
thorough investigation of conditions favouring bump formation is thus needed.

In the present paper, we use analytical calculations to investigate the runaway
electron distribution under the combined influence of Coulomb collisions, electric
field acceleration and radiative momentum losses. We show the existence of a
bump and derive both a threshold condition for the appearance of the bump and an
approximate expression for its location in parallel momentum space. The accuracy of
the analytical estimates is then tested against numerical simulations carried out using
CODE (Landreman, Stahl & Fülöp 2014; Stahl et al. 2015).

The paper is organized as follows. In § 2, we start by describing the particle phase-
space kinetic equation. We also discuss the transformation of the kinetic equation into
the guiding-centre phase space and give the corresponding expression in the case of a
uniform plasma. Analytical calculation of the condition for bump-on-tail appearance,
based on the guiding-centre dynamics, is presented in § 3. A comparison of the derived
conditions with numerical results is presented in § 4, before we conclude in § 5.

2. Kinetic equation
The kinetic equation describing the dynamics of charged particles in a plasma is

∂fa

∂t
+ ∂

∂x
· (ẋfa)+ ∂

∂ p
· ( ṗfa)=C[ fa, fb], (2.1)

where C[ fa, fb] is the collision operator for collisions between particle species a and
b, zα = (x, p) are the phase-space coordinates and żα = (ẋ, ṗ) are the equations of
motion. In the Fokker–Planck limit, the Coulomb collision operator is given by

C[ fa, fb] =− ∂

∂ p
·

(
Kab[ fb] fa − Dab[ fb] · ∂fa

∂ p

)
, (2.2)

where Kab[ fb] is the friction vector and Dab[ fb] is the diffusion tensor (see appendix A
for details). In this paper, we do not consider contributions from large-angle collisions.

The equations of motion for a particle with charge q and mass m combine the
Hamiltonian motion from the electric and magnetic fields E and B, and a force F
that accounts for non-Hamiltonian dynamics,

ẋ= v, (2.3)
ṗ= qE+ qv× B+ F. (2.4)

Here, p = γmv is the particle momentum and γ = 1/
√

1− v2/c2 =√1+ p2/(mc)2
is the relativistic factor. In the case considered here, the non-Hamiltonian force is
the radiation reaction (RR) force which was first described by Lorentz (1892) in the
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case of a classical non-relativistic point charge and was later generalized to relativistic
energies by Abraham (1905) and Dirac (1938). As such, the Lorentz–Abraham–Dirac
(LAD) force is (Pauli 1958)

FLAD = q2γ 2

6πε0c3

[
v̈+ 3γ 2

c2
(v · v̇)v̇+ γ

2

c2

(
v · v̈+ 3γ 2

c2
(v · v̇)2

)
v

]
. (2.5)

The LAD force does, however, contain third-order time derivatives of the particle
position, which allows for the existence of pathological solutions. For instance, the
particle velocity may grow exponentially in the absence of external forces (E = 0,
B = 0), see e.g. Rohrlich (2007). These issues have generated discussion regarding
which expression to use for the RR force. Landau & Lifshitz (1975) suggested a
perturbative approach in which the velocity derivatives in (2.5) are expressed in terms
of the external force only (here the Lorentz force). Ford & O’Connell (1993) argue
that this approach is in fact the correct one. In the paper by Spohn (2000), it is
shown that the non-physical solutions can be avoided if the LAD force is limited
on a so-called critical surface, and that the resulting expressions will be equivalent
to those of the perturbative approach. We have thus chosen to adopt the perturbative
approach. Furthermore, we neglect the electric field in the expressions for v̇ and v̈
in the RR force. This is justified since the motion of the particle is dominated by
the magnetic field in the strongly magnetized plasmas considered here. An excellent
discussion about the RR force can be found in a recent review paper by Di Piazza
et al. (2012).

2.1. Guiding-centre transformation
Because of the v× B term, the particle phase-space kinetic equation in a magnetized
plasma includes the rapid gyro-motion time scale which is often not interesting
and is expensive to resolve computationally. It can, however, be eliminated using
guiding-centre Lie-transform perturbation methods. The transformation of the
Hamiltonian equations of motion is one of the classical results in modern plasma
physics (see Littlejohn 1983; Cary & Brizard 2009), and the Fokker–Planck collision
operator has been considered in Brizard (2004), Decker et al. (2010) and Hirvijoki
et al. (2013). The final step necessary to formulate our problem, the transformation
of the RR force, was given recently in Hirvijoki et al. (2015).

After the transformation, the guiding-centre kinetic equation for a gyro-angle
averaged distribution function 〈Fa〉, including Hamiltonian motion in electromagnetic
fields, the RR force and Coulomb collisions in the Fokker–Planck limit, is given by

∂〈Fa〉
∂t
+ 1

J

∂

∂Zα
[J (Żα + 〈F α

gcRR〉)〈Fa〉] =CgcFP[〈Fa〉], (2.6)

where the Zα form the 5D guiding-centre phase space, J is the guiding-centre
phase-space Jacobian, Żα are the Hamiltonian guiding-centre equations of motion
and 〈F α

gcRR〉 is the contribution from the RR force to the guiding-centre motion.
Similarly to the particle phase-space operator in (2.2), we can write the guiding-centre
Fokker–Planck collision operator in phase-space divergence form,

CgcFP[〈Fa〉] =− 1
J

∂

∂Zα

[
J

(
〈K α

ab,gc〉〈Fa〉 − 〈Dαβ

ab,gc〉
∂〈Fa〉
∂Zβ

)]
, (2.7)

where 〈K α
ab,gc〉 and 〈Dαβ

ab,gc〉 are the guiding-centre Coulomb friction and diffusion
coefficients.
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2.2. Equations of motion
We solve (2.6) in a uniform plasma, using 2D guiding-centre velocity space
coordinates Zα= (p, ξ), where p is the absolute value of the guiding-centre momentum,
ξ = p‖/p is the pitch angle cosine (p‖ is the guiding-centre momentum parallel to the
magnetic field) and the guiding-centre Jacobian is given by J = p2. In this case, the
guiding-centre equations of motion take the simple forms

ṗ= qE‖ξ, (2.8)

ξ̇ = qE‖(1− ξ 2)/p, (2.9)

where E‖ is the electric field parallel to the magnetic field. The components of the
guiding-centre RR force in the limit corresponding to pure synchrotron emission are
(Hirvijoki et al. 2015)

〈F p
gcRR〉 =−

γ p(1− ξ 2)

τr
, (2.10)

〈F ξ
gcRR〉 =

ξ(1− ξ 2)

γ τr
, (2.11)

where the radiation reaction time scale is defined by

τr = 6πε0(mc)3

q4B2
= 3c

2rγ 2Ω2
, (2.12)

with r = q2/(4πε0mc2) the classical electron radius and Ω = qB/(γm) the gyro-
frequency.

2.3. Collision operator
The particle phase-space friction and diffusion coefficients, Kab[ fb] and Dab[ fb], are
expressed in terms of the five relativistic Braams–Karney potential functions, which
are weighted integrals of the background distribution functions fb (see Braams &
Karney 1989 and appendix A for details). If the particle species a and b coincide,
the self-collisions result in a nonlinear collision operator. In the present study, the
particle phase-space collision operator is transformed into the guiding-centre phase
space and linearized around a Maxwellian. The integral terms of the linearized
collision operator are neglected and only the test particle contribution is considered.
This choice, with some further simplifications, allows analytical solution of (2.6),
which will be discussed in § 3.

The guiding-centre friction and diffusion coefficients 〈K α
ab,gc〉 and〈Dαβ

ab,gc〉 that appear
in the guiding-centre Fokker–Planck operator in (2.7) are gyro-averaged projections of
their guiding-centre pushed-forward particle phase-space counterparts. For a detailed
definition of the guiding-centre friction and diffusion coefficients, we refer to Brizard
(2004), Decker et al. (2010) and Hirvijoki et al. (2013). The general expressions are
non-trivial but, in the limit of a uniform plasma, the test-particle operator assuming
isotropic background particle distributions becomes diagonal with reasonably simple
non-zero components

〈K p
ab,gc〉 ≡−νl,ab p, (2.13)
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〈Dpp
ab,gc〉 ≡Dl,ab, (2.14)

〈D ξξ
ab,gc〉 ≡ (1− ξ 2)

Dt,ab

p2
. (2.15)

The coefficients νl,ab, Dl,ab and Dt,ab, where the sub-indices l and t stand for
‘longitudinal’ and ‘transverse’ with respect to the guiding-centre momentum vector,
are expressed in terms of the five Braams–Karney potentials Ψn(u) with u = p/ma
and Γab = q2

aq2
b lnΛ/(4πε2

0) according to

νl,ab = 4π
ma

mb
Γab

γ

p

(
∂Ψ1

∂u
− 2

c2

∂Ψ2

∂u

)
, (2.16)

Dl,ab =−4πΓabγ

(
Ψ0 − 2γ 2

u
∂Ψ3

∂u
+ 8γ 2

uc2

∂Ψ4

∂u
− 8

c4
Ψ4

)
, (2.17)

Dt,ab =−4πΓabγ

(
1
u
∂Ψ3

∂u
+ 1

c2
Ψ3 − 4

uc2

∂Ψ4

∂u
+ 4

c4
Ψ4

)
. (2.18)

Our guiding-centre Fokker–Planck operator thus becomes

CgcFP[〈Fa〉] = 1
p2

∂

∂p

[
p2

(
νl,ab p〈Fa〉 +Dl,ab

∂〈Fa〉
∂p

)]
+ Dt,ab

p2

∂

∂ξ

[
(1− ξ 2)

∂〈Fa〉
∂ξ

]
,

(2.19)

where the first term with momentum derivatives is responsible for the slowing down
of fast particles and momentum diffusion, while the second term describes scattering
in pitch angle.

2.4. Final expression
For the rest of the paper, to streamline notation, we shall suppress the brackets that
denote the gyro-averaging and the sub-index from the expression for the parallel
electric field. We will also drop the particle species indices as we sum over all
the background species in the collision operator. Thus, we will have νl =

∑
b νl,ab,

Dl =
∑

b Dl,ab and Dt =
∑

b Dt,ab, and our kinetic equation in the continuity form
becomes

∂F
∂t
+ 1

p2

∂

∂p

[
p2

(
qEξ − γ p(1− ξ 2)

τr
− νlp

)
F− p2Dl

∂F
∂p

]
+ ∂

∂ξ

[
(1− ξ 2)

(
qE
p

F+ ξ

γ τr
F− Dt

p2

∂F
∂ξ

)]
= 0. (2.20)

In the following, we analyse this equation in detail. We describe the formation of
a bump-on-tail in the electron distribution function both analytically and numerically.
We also study the threshold conditions for the bump formation and the minimum
energy of the bump location.

3. Characteristics of a bump-on-tail feature
The RR force in a straight magnetic field system increases with the square of

the perpendicular momentum, s2
⊥ = s2(1 − ξ 2). As a consequence, the extent of
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the distribution function will, qualitatively, be limited in s⊥ to a region where the
parallel component of the total force acting on an electron is positive. Electrons
with higher perpendicular momenta are decelerated since the radiation reaction force
overcomes the acceleration due to the parallel electric field. Compared with the case
without the RR force, where the distribution function is continuously expanding in
s⊥ for increasing values of the parallel momentum s‖ = ξs, the limited extent of
the distribution in s⊥ when the RR force is included leads to qualitatively different
dynamics.

The width of the distribution in s⊥ is approximately constant, which means that
pitch angle scattering is increasingly more effective at higher s‖ in moving the
electrons to the region of phase space where they are decelerated. A consequence
of this is that a true steady-state solution of the kinetic equation exists and the
distribution function decays exponentially in the far tail, something that was also
observed in previous works, such as Andersson et al. (2001). Another new feature is
the possibility of non-monotonic behaviour in the tail of the steady-state distribution
function. It should be noted that this feature cannot be correctly described if the
RR force is not implemented in the phase-space divergence form that conserves the
phase-space density. Therefore, it is overlooked by some earlier studies. To understand
the properties of the bump, and its formation, we will start the following analysis by
assuming that a bump exists in the runaway tail, and make assumptions regarding
its properties. These assumptions will be justified a posteriori when our results are
compared with numerical results in § 4. For further numerical results and insights into
the dynamics of the bump, including its temporal development, we refer the reader
to Decker et al. (2015).

Considering a possible bump-on-tail scenario, we study (2.20) in a region where
the electrons have high velocities compared with the electron and ion thermal speeds,
v � vth,e, vth,i. Then, the slowing-down force is dominated by electron–electron
collisions and it overshadows momentum diffusion. For pitch angle scattering,
collisions with both ions and the electron bulk are important.

In the limit where the bulk populations are non-relativistic Maxwellians, we have
for the friction coefficient at high speeds

νl ≈ nee4 lnΛ
4πε2

0mev2

1
p
≡ eEc

β2p
, (3.1)

and similarly for the transverse diffusion coefficient

Dt ≈ 1+ Zeff

2
nee4 lnΛ

4πε2
0

1
v
≡ 1+ Zeff

2
eEcmec
β

, (3.2)

where Ec is the critical electric field (1.1), Zeff is the effective ion charge and
β = v/c. These estimates coincide with the expressions in Andersson et al. (2001).
We define the normalized momentum s = p/(mec), time τ = eEct/(mec), radiation
reaction time scale σ−1 = eEcτr/(mec) and electric field Ê = −E/Ec, and transform
the kinetic equation into a dimensionless form for further analysis,

∂F
∂τ
+ 1

s2

∂

∂s

[
s2

(
Êξ − σγ s(1− ξ 2)− γ

2

s2

)
F
]

+ ∂

∂ξ

[
(1− ξ 2)

(
Ê

F
s
+ σξ
γ

F− γ
s

1+ Zeff

2s2

∂F
∂ξ

)]
= 0. (3.3)
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Non-monotonic runaway tail 7

As the electric field affects only the parallel acceleration we expect the system to
be strongly biased about ξ = 1. The phase-space volume element in (s, ξ) coordinates
(J ∼ s2), however, scales nonlinearly close to ξ ≈ 1. A better choice for further
studies close to the ξ = 1 region is to use coordinates (s‖, s⊥) that have a Jacobian
J ∼ s⊥ that stays constant with respect to s‖. The new coordinates relate to (s, ξ)
according to

s‖ = sξ, (3.4)

s⊥ = s
√

1− ξ 2, (3.5)

and our kinetic equation expressed with (s‖, s⊥) becomes

∂F
∂τ
+ Ê

∂F
∂s‖
− 2F

s
− γ

2

s2

(
s‖
s
∂F
∂s‖
+ s⊥

s
∂F
∂s⊥

)
− γ (1+ Zeff )

2s

[
1
s⊥

∂

∂s⊥

(
s⊥
∂F
∂s⊥

)
+ s2

⊥
s2

(
∂2F
∂s2
‖
− ∂

2F
∂s2
⊥

)
− 2

s‖s⊥
s2

∂2F
∂s‖∂s⊥

− 2
s‖
s2

(
∂F
∂s‖
+ s⊥

s‖

∂F
∂s⊥

)]
− σ
γ

[
(2+ 4s2

⊥)F+ s⊥(1+ s2
⊥)
∂F
∂s⊥
+ s‖s2

⊥
∂F
∂s‖

]
= 0. (3.6)

Instead of attempting to solve (3.6), in the following we will concentrate on the
dynamics at s⊥= 0, which will be sufficient to prove the existence of a bump and to
estimate its location in the electron tail.

We assume the distribution to be a smooth function of s⊥, which allows us to create
a power series expansion around s⊥ = 0:

F(s‖, s⊥)=
∞∑

n=0

s2n
⊥

(2n)!
[
∂ (2n)F

∂s(2n)
⊥

]
(s‖,0)
+ s⊥

∞∑
n=0

s2n
⊥

(2n+ 1)!
[
∂ (2n+1)F

∂s(2n+1)
⊥

]
(s‖,0)

. (3.7)

Because the electric field is acting only in the parallel direction, F is ‘even’ in s⊥,
i.e. we can formally state that F(s‖, s⊥)= F(s‖,−s⊥) although our phase space does
not extend to s⊥ < 0. Thus, all the odd s⊥ derivatives at s⊥ = 0 must vanish, and we
find

F(s‖, s⊥)≡
∞∑

n=0

s2n
⊥

(2n)!
[
∂ (2n)F

∂s(2n)
⊥

]
(s‖,0)

. (3.8)

With the help of the expansion, we may accurately calculate the limit

lim
s⊥→0

1
s⊥

∂

∂s⊥

(
s⊥
∂F
∂s⊥

)
= 2

[
∂2F
∂s2
⊥

]
(s‖,0)

, (3.9)
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and write the s⊥ = 0 limit of the kinetic equation as

[
∂F
∂τ

]
(s‖,0)
+
Ê− 1+ s2

‖
s2
‖
+
(1+ Zeff )

√
1+ s2

‖

s2
‖

[ ∂F
∂s‖

]
(s‖,0)

−
(1+ Zeff )

√
1+ s2

‖

s‖

[
∂2F
∂s2
⊥

]
(s‖,0)
− 2

 σ√
1+ s2

‖
+ 1

s‖

 [F](s‖,0) = 0. (3.10)

Assuming that a steady-state solution exists, the possible extrema are characterized by
the condition [

∂F
∂s‖

]
(s‖,0)
= 0. (3.11)

We thus find an algebraic equation that defines the locations of these extrema:

2

 σ√
1+ s2

‖
+ 1

s‖

+ (1+ Zeff )

√
1+ s2

‖

s‖

[
1
F
∂2F
∂s2
⊥

]
(s‖,0)
= 0. (3.12)

3.1. Threshold condition for the appearance of the bump
Considering a steady-state solution to (3.10), in a situation where the bump is on the
verge of appearing, a single inflection point exists in the distribution function instead
of local maxima or minima. In this section we derive a threshold condition describing
the appearance of an inflection point, by requiring the first and second s‖ derivatives
of the distribution to vanish simultaneously.

Before we start the analysis, we note that the steady-state distribution function
represented by equation (12) of Andersson et al. (2001) is separable in s‖ and s⊥,
and it is of the form ∝exp[−W2

∞s2
⊥/2], where W2

∞ = 2σ/(Ê − 1). To find this result
they neglect f /s‖ corrections compared with ∂f /∂s‖ terms in the kinetic equation,
which is appropriate in the very far tail (s‖ corresponds to p‖ in the notation of
Andersson et al. 2001). Therefore, the quantity

W2(s‖)≡−
[

1
F
∂2F
∂s2
⊥

]
(s‖,0)

(3.13)

should approach W2
∞ in the s‖→∞ limit. Thus, it is useful to define κ(s‖), so that

W2(s‖)= κ(s‖)W2
∞ and κ→ 1 as s‖→∞. Numerical calculations tell us that 0<κ 6 1

for the regions of interest in the runaway tail, and κ is often a slowly varying function
of s‖. That is, the characteristic width of the distribution function in the s⊥ direction,
1/W2, decreases with increasing s‖, and slowly asymptotes to a constant value. For
now, we may simply use 0 < κ 6 1 as a working hypothesis to be verified through
numerical calculations later.

We start with (3.12) satisfied at extrema or inflection of the distribution function
and rewrite it as

L(s‖)≡ 2
(
σ s‖ +

√
1+ s2

‖

)
−K(s‖)(1+ s2

‖)= 0, (3.14)
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where K(s‖) = W2
∞(1 + Zeff )κ(s‖) = Ē−1σκ(s‖) with Ē = (Ê − 1)/[2(1 + Zeff )]. It is

useful to form
L′(s‖)/2≈ σ + s‖√

1+ s2
‖
−K(s‖)s‖, (3.15)

where the prime denotes a derivative with respect to s‖, and we neglected a term,
−K ′(s‖)(1+ s2

‖)/2, assuming κ to be a sufficiently slowly varying function of s‖. From
(3.15) we see that L′(s‖)→−∞ as s‖→∞, while L′|s‖=0 = 2σ > 0. It can also be
shown that L′ = 0 only has one root for positive values of s‖, which then has to
correspond to a single maximum of L.

If the distribution has an inflection point, both L and L′ should vanish there.
Assuming the slowly varying κ to be a constant, the system of (3.14) and (3.15) can
be solved for s‖ and K to find

K0 ≡K(s‖0) = (4
√

2σ)−1

[
8σ

√
4− 8

3+√1+ 8σ 2

+
(

1+ 4σ 2 −
√

1+ 8σ 2
)√

2− 8

3+√1+ 8σ 2

]
(3.16)

and

s‖0 =
√

1− 4

3+√1+ 8σ 2
, (3.17)

where the subscript 0 refers to values of quantities at the threshold of the bump
appearance. By inspecting the expressions (3.16) and (3.17) we find that both of them
increase with σ monotonically; K0 between 2 and ∞, and s‖0 between 0 and 1. This
means that an inflection point is always located below s‖ = 1. Note, that we assume
the inflection point to be sufficiently far from the bulk, and that κ ′ is small; violation
of these assumptions may move s‖0 above unity. However, since this problem cannot
be addressed until the more complete (2.20) is solved, we assume that the conditions
above are fulfilled in order to proceed analytically. Since s‖< 1, we can make use of
the expansion √

1+ s2
‖ = 1+ s2

‖
2
+O(s4

‖). (3.18)

By neglecting O(s4
‖) terms (which is a reasonably good approximation even when s‖

approaches unity), (3.14) becomes quadratic in s‖:

2(σ s‖ + 1+ s2
‖/2)−K(s‖)(1+ s2

‖)= 0. (3.19)

At the inflection point s‖0, (3.19) must have a single root, which requires the
discriminant to vanish. This determines the threshold value of K:

K0 =
(

3+
√

1+ 4σ 2
)/

2, (3.20)

which is positive. This can be substituted back into (3.19) to find

s‖0 = σ/(K0 − 1)= σ
[(

1+
√

1+ 4σ 2
)/

2
]−1

. (3.21)
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Combination of K(s‖) = Ē−1σκ(s‖) with (3.20) to solve for a positive σ that
corresponds to K > 2 yields σ as a function of Ē at the threshold for bump formation:

σ0 = 3κ/Ē+
√

8+ κ2/Ē2

2(κ2/Ē2 − 1)
, (3.22)

where κ = κ(s‖ = s‖0) 6 1 is treated as a parameter. When σ is increased above
σ0, L becomes negative and no bump appears. Reducing κ below unity increases the
threshold value of σ . Thus, (3.22) with κ = 1 represents an absolute lower threshold
in σ for a monotonic behaviour of the steady-state distribution function. Furthermore,
even at κ = 1 the threshold is limited to the region Ē< 1; thus a bump should always
appear when Ē > 1.

We have considered K(s‖ = 0) > 2, in which case L(s‖) = 0 can have zero (no
bump), one (threshold) or two (bump exists) positive real roots. When K(s‖ = 0) < 2
there is only a single positive root of L(s‖). Since the distribution function cannot
have a positive slope in the high-s‖ limit this root should also correspond to a bump.
That, however, requires the existence of a minimum in the distribution function along
the positive s‖ axis, which must then appear outside the domain of validity of (3.12).
In fact, this minimum will appear close to the bulk part of the electron distribution,
where neglected corrections to the collision operator become important.

We can conclude that for Ē > 1, there should always be a bump in the steady-
state distribution function as long as there is a finite magnetic field. This, perhaps
somewhat counterintuitive, result needs some clarification to accommodate the well-
known σ=0 limit. When no loss mechanisms are considered (in this case when σ=0),
the electron distribution has no steady-state solution, and the runaway tail at s⊥ = 0
should converge to a 1/s‖ decay. When σ is small, the bump location moves to high
values in s‖, as will be shown in the next section. The runaway tail always builds up
starting from the bulk, and, for a tiny σ , the process may take such a long time that
the distribution never becomes non-monotonic in practice. In this scenario the steady-
state distribution and the bump have no relevance. Moreover, other loss mechanisms
may limit the distribution function to momenta below s‖0 in realistic cases.

3.2. An estimate for the bump location in the far tail
In order to proceed and estimate the location of the bump and the shape of the
distribution function, we look for a steady-state solution in a region where the
guiding-centre parallel momentum is large. Using the expansion√

1+ s2
‖ = s‖ +O(s−1

‖ ), (3.23)

(3.10) gives

(Ê− 1+O(s−1
‖ ))

[
∂F
∂s‖

]
(s‖,0)
− (1+ Zeff )

[
∂2F
∂s2
⊥

]
(s‖,0)
− 2

1+ σ
s‖
[F](s‖,0) = 0. (3.24)

We neglect the O(s−1
‖ ) term, which is valid if Ê − 1 is not very small, and assume

that the width of the distribution function in the s⊥ direction, and thus W2 =
−F−1(∂2F/∂s2

⊥)|(s‖,0), stays approximately constant close to the bump. This essentially
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means that we are looking for a separable solution of the form F ∼ h(s‖)g(s⊥). We
obtain an ordinary differential equation

(Ê− 1)s‖h′ − 2(1+ σ)h=−(1+ Zeff )W2s‖h, (3.25)

which is solved by

h(s‖)∼ s2(1+σ)/(Ê−1)
‖ exp [−W2(1+ Zeff )/(Ê− 1)s‖], (3.26)

and the location of the bump-on-tail is given by

s‖ = 1+ σ
1+ Zeff

2
W2∞κ

. (3.27)

If we again assume that κ does not exceed unity, recalling W2
∞= 2σ/(Ê− 1), we find

a lower bound for the parallel momentum at the bump,

s‖,min = 1+ σ
σ

Ê− 1
1+ Zeff

= 1+ σ
σ

2Ē. (3.28)

We see that for small values of σ , the bump would appear at high parallel momenta.
By setting s‖,min to some upper limit of physical interest, s‖,L, (3.28) may be used to
find an estimate for a lower ‘practical limit’ in σ for the appearance of the bump.
Namely, if σ is smaller than

σL = 1
(s‖,Lκ)/(2Ē)− 1

, (3.29)

for κ=1, then a bump would only appear at some large parallel momentum above s‖,L,
which is then deemed physically irrelevant. It should be noted that if the bump is in
the far tail, κ can be significantly less than unity, as will be shown in the next section,
using numerical simulations. Letting κ < 1 increases the practical limit in σ . Another
implication of (3.29) is that for a normalized electric field higher than Ē= s‖,L/2, the
bump always appears above s‖,L for any value of σ .

4. Comparison with numerical results
The numerical results shown in this section were performed with the continuum

simulation tool CODE used in its time-independent mode. CODE solves the
two-dimensional momentum space kinetic equation in a homogeneous plasma, using a
linearized Fokker–Planck operator valid for arbitrary electron energies. For a detailed
description of the tool, see Landreman et al. (2014).

First, we provide a typical example of a non-monotonic runaway distribution
function in the presence of radiation reaction. Figure 1(a) shows the momentum
dependence of the pitch angle averaged runaway electron distribution with (B= 2.5 T)
and without (B= 0 T) radiation reaction force, plotted with solid and dashed curves
respectively. Technically, the pitch angle averaged distribution is the lowest mode
in a Legendre polynomial expansion of F in ξ , normalized so that F is unity at
its maximum. The simulations were performed with the parameters Te = 5 keV,
ne = 2 × 1019 m−3, Zeff = 1.2 and Ê = 2. It should be noted that the distribution
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FIGURE 1. Typical examples of non-monotonic runaway electron distribution functions.
(a) The pitch angle average of the distribution function with (solid curve) and without
(dashed) synchrotron radiation reaction. A Maxwellian distribution is also indicated (dash-
dotted). (b) Contour plot of the distribution function corresponding to the solid curve in
(a), as a function of s‖ and s⊥.

function without radiation reaction represents a quasi-steady state. The lack of loss
mechanisms leads to a slow but steady depletion of the bulk electron population,
as more and more electrons run away and leave the computational domain. This
outflow must be balanced by an artificial source of thermal (Maxwellian) electrons to
maintain the quasi-steady state. In the presence of radiation reaction, the distribution
is a true steady state. When the radiation reaction is included, the non-monotonic
feature is present when the distribution is averaged over pitch angles in the present
example. However, we note that for less pronounced bumps, the pitch angle averaged
distribution can have a monotonic tail, or it may exhibit a bump at some values
of s that are appreciably lower than those where the bump is observed in the full
2D distribution. This may have an impact on the possibility for bump-on-tail-type
instabilities to arise. Figure 1(b) shows a contour plot in s‖–s⊥ momentum space of
the distribution function corresponding to the solid curve in figure 1(a). Although
this example is representative of a typical runaway electron distribution, the location
and height of the bump, and the width of the distribution in s⊥ can vary significantly
depending on the plasma parameters. The relation between the location s‖ and the
local ‘width’ (∼1/W2 = 1/(W2

∞κ)) of the distribution given by (3.27) is accurate as
long as the location of the bump is not close to unity, i.e. sufficiently far from the
no-bump threshold (3.22). This justifies the approximations applied to the collision
operator in our analysis. In particular, energy diffusion can be neglected since no
sharp features of the distribution function in s‖ are present, as seen in figure 1(b).

In order to investigate the validity of our analytical calculations, we have performed
a numerical analysis of the appearance of the bump by scanning the parameter space
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FIGURE 2. Parameter scan of CODE simulations yielding steady-state solutions with
(coloured circles) or without (black crosses) a bump in the runaway tail. Good correlation
is found with the analytical threshold condition given in (3.22) for κ = 1 (solid line). The
dashed line represents the ‘practical threshold’ in (3.29) for s‖,L = 27 and κ = 0.3. The
colour coding shows the location of the bump relative to s‖ = 34.

with CODE. The electron temperature and density were held constant at the values
Te = 1 keV and ne = 5× 1018 m−3 respectively, while the magnetic field, the induced
electric field and the effective ion charge were varied over the ranges B ∈ [1, 6] T,
Ê ∈ [2, 14] and Zeff ∈ [1, 3]. The numerical calculations used 950 momentum grid
points, 130 Legendre modes for the decomposition in ξ , and a highest resolved
momentum of s= 34, providing well-converged solutions.

The results of the scan are presented in figure 2, where circles and crosses
correspond to distributions with and without a bump respectively. The colour
coding of the circles reflects the location of the bump, with 100 % in the colour bar
corresponding to s‖ = 34. Simulations with a bump appearing above 80 % (s‖ = 27)
are excluded from the figure, since those results may be affected by the bump being
too close to the highest resolved momentum. As expected from (3.28), increasing Ē
or decreasing σ moves the bump towards larger momenta.

A reasonably good agreement is found between the numerical calculations and the
analytical threshold for the bump to exist. The solid curve shows this threshold, (3.22),
for κ=1. Above σ ≈0.5 the ‘no bump’ solutions obey the analytical threshold and fall
to the left of the threshold curve. There are some solutions with a bump in this region
as well. However, this is not surprising, since κ at the bump is allowed to be less than
unity, in which case the threshold moves towards lower values of Ē. The threshold
begins to fail for lower values of σ , showing that the approximation K ′ � {σ , s‖}
used in (3.15) breaks down. Nevertheless, the qualitative behaviour of the threshold
is still captured by (3.22). The lower right corner of the plot (high Ē and small σ )
is not populated, since some simulations where the bump would have appeared at too
high s‖ were excluded. With s‖,L = 27, a κ value as low as 0.3 is needed in order
for the limit given by (3.29) (dashed line) to correspond well to the boundary of the
region of excluded points. Thus, κ can be significantly lower than unity at a bump
with large momentum.

From the parameter scan used to generate figure 2, the simulations exhibiting bumps
were compared with the theoretical lower bound for the location of the bump (3.28).
As shown in figure 3, we find that, indeed, the parallel momenta at the bumps (shown
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FIGURE 3. Parallel momentum of the bump. Circles denote the locations of the bumps
according to numerical solutions, while the solid line represents a theoretical lower limit,
(3.28). In the simulations, all bumps appear above the analytical threshold condition.

with green circles) are all higher than the lower bound (solid line). In fact, most of
the s‖ values are well above this limit. This merely confirms our finding that κ at the
bump is typically less than unity, especially for parameters sufficiently exceeding the
no-bump threshold.

5. Conclusions
We have analysed the runaway electron distribution function, accounting for the

radiation reaction force, and have shown that the steady-state runaway distribution
can become non-monotonic. Furthermore, a threshold condition for the appearance of
the bump, as well as a lower limit to its location in momentum space, was derived.
While slowing down and pitch angle scattering due to Coulomb collisions are taken
into account in our analysis, we do not consider the effect of large-angle collisions,
and we restrict the study to a straight magnetic field geometry. Our analytical results
show good agreement with numerical simulations obtained using the CODE solver.

We find that for a normalized electric field larger than unity, Ē > 1, the steady-
state electron distribution always exhibits a bump, independently of the value of the
σ parameter quantifying the strength of the radiation reaction, as long as the magnetic
field is non-vanishing (σ > 0). For a smaller electric field, the appearance of the bump
is well correlated with the σ threshold given by (3.22). Although above this threshold
there must always be a bump in the steady-state distribution function, it may not have
a practical relevance in some cases. When σ is small and/or Ē is large, the bump
would be located at a very large parallel momentum, but the forefront of the electron
distribution can require a long time to reach that far. This motivates the introduction
of another ‘practical’ threshold condition, (3.29). If σ is lower than this threshold, the
bump will appear at a momentum above some specified limit, s‖,L, and can then be
considered unimportant. In particular, above a normalized electric field of Ē= s‖,L/2,
this criterion is satisfied for any σ .

Nevertheless, when the radiation reaction is strong enough and/or the parallel
electric field is not too high, there is a possibility for a bump to form in the
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runaway tail. This non-monotonic feature presents a potential source of bump-on-tail
instabilities, which can play a role in limiting the formation of large runaway beams.
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Appendix A. The relativistic collision operator
The relativistic particle phase-space Beliaev–Budker collision operator in the Landau

form is defined as

C[ fa, fb] =−Γab

2
∂

∂ p
·

∫
d p′ U(u, u′) ·

(
fa
∂fb

∂ p′
− fb

∂fa

∂ p

)
, (A 1)

where Γab= e2
ae2

b lnΛ/(4πε2
0), u= p/ma, u′= p′/mb, and the collision kernel is given

by

U(u, u′)= r2

γ γ ′w3
[w2I − uu− u′u′ + r(uu′ + u′u)], (A 2)

with the coefficients

γ =√1+ (u/c)2, (A 3)

γ ′ =√1+ (u′/c)2, (A 4)
r= γ γ ′ − u · u′/c2, (A 5)

w= c
√

r2 − 1. (A 6)

Braams & Karney (1989) found a corresponding differential form for the collision
operator,

C[ fa, fb] =− ∂

∂ p
·

(
Kab[ fb] fa − Dab[ fb] · ∂fa

∂ p

)
, (A 7)

where Kab[ fb] is the friction vector and Dab[ fb] is the diffusion tensor which are
defined with differential operations on Braams–Karney potentials Ψn(u) according to

Kab[ fb] =−4π
ma

mb

Γab

γ
K

(
Ψ1 − 2

Ψ2

c2

)
, (A 8)

Dab[ fb] =−4π
Γab

γ

[
L

(
Ψ3 − 4

Ψ4

c2

)
+ 1

c2

(
I + uu

c2

)(
Ψ3 + 4

Ψ4

c2

)]
. (A 9)

The differential operators K and L are defined as

KΨ (u)=
(

I + uu
c2

)
·
∂Ψ

∂u
, (A 10)

LΨ (u)=
(

I + uu
c2

)
·
∂2Ψ

∂u∂u
·

(
I + uu

c2

)
+ 1

c2

(
I + uu

c2

)(
u ·
∂Ψ

∂u

)
, (A 11)
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and the potential functions are given by the integrals

Ψ0(u)=− 1
4π

∫
du′

fb(u′)
γ ′w

, (A 12)

Ψ1(u)=− 1
4π

∫
du′

rfb(u′)
γ ′w

, (A 13)

Ψ2(u)=− 1
8π

∫
du′ sinh−1(w/c)

c fb(u′)
γ ′

, (A 14)

Ψ3(u)=− 1
8π

∫
du′

w fb(u′)
γ ′

, (A 15)

Ψ4(u)=− 1
32π

∫
du′

c3

γ
(r sinh−1(w/c)− (w/c))fb(u′). (A 16)

Furthermore, the potential functions satisfy the differential relations

L0Ψ0 = fb, (A 17)
L1Ψ1 = fb, (A 18)
L1Ψ2 =Ψ1, (A 19)
L2Ψ3 =Ψ0, (A 20)
L2Ψ4 =Ψ3, (A 21)

where the operator Lk is defined as

LkΨ =
(

I + uu
c2

)
: ∂

2Ψ

∂u∂u
+ 3u

c2
·
∂Ψ

∂u
+ 1− k2

c2
Ψ. (A 22)

In the case of isotropic background distributions fb(u), the potentials become functions
of u only, and the friction vector and diffusion tensor can be simplified into

Kab = −4π
ma

mb
Γabγ

(
∂Ψ1

∂u
− 2

c2

∂Ψ2

∂u

)
p
p
≡−νl,ab p, (A 23)

Dab = −4πΓabγ

(
Ψ0 − 2γ 2

u
∂Ψ3

∂u
+ 8γ 2

uc2

∂Ψ4

∂u
− 8

c4
Ψ4

)
pp
p2

− 4πΓabγ

(
1
u
∂Ψ3

∂u
+ 1

c2
Ψ3 − 4

uc2

∂Ψ4

∂u
+ 4

c4
Ψ4

)(
I − pp

p2

)
≡ Dl,ab

pp
p2
+Dt,ab

(
I − pp

p2

)
. (A 24)

The guiding-centre transformation of the Fokker–Planck operator presented in
Brizard (2004) gave explicit expressions for the guiding-centre friction and diffusion
coefficients, 〈K α

ab,gc〉 and 〈Dαβ

ab,gc〉, in the case of isotropic background distributions
and a non-relativistic collision kernel. Generalization of that work to a relativistic
collision kernel is straightforward in the case of isotropic field–particle distributions
because the forms of the particle phase-space friction and diffusion coefficients do
not change. Only the expressions for νl,ab, Dl,ab, and Dt,ab are different, but that
will not affect the guiding-centre transformation, as they are functions only of the
guiding-centre kinetic momentum.
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