
Journal of Clinical and
Translational Science

www.cambridge.org/cts

Review Article
Research Methods and
Technology

Cite this article: Smith B, Hermsen M, Lesser E,
Ravichandar D, and Kremers W. Developing
image analysis pipelines of whole-slide images:
Pre- and post-processing. Journal of Clinical
and Translational Science 5: e38, 1–11.
doi: 10.1017/cts.2020.531

Received: 17 March 2020
Revised: 11 August 2020
Accepted: 19 August 2020

Keywords:
Image analysis; data science; analysis pipeline;
deep learning; pathology; computer vision

Address for correspondence:
B. Smith, PhD, Department of Health Sciences
Research, Mayo Clinic, Rochester, MN, USA.
Email: smith.byron@mayo.edu

© The Association for Clinical and Translational
Science 2020. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and
reproduction in any medium, provided the
original work is properly cited.

Developing image analysis pipelines of
whole-slide images: Pre- and post-processing

Byron Smith1 , Meyke Hermsen2, Elizabeth Lesser3, Deepak Ravichandar4 and

Walter Kremers1,5

1Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; 2Department of Pathology, Radboud
University Medical Center, Nijmegen, The Netherlands; 3Department of Health Sciences Research, Mayo Clinic,
Jacksonville, FL, USA; 4Department of Management Engineering and Consulting, Mayo Clinic, Rochester, MN,
USA and 5William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester,
MN, USA

Abstract

Deep learning has pushed the scope of digital pathology beyond simple digitization and tele-
medicine. The incorporation of these algorithms in routine workflow is on the horizon and
maybe a disruptive technology, reducing processing time, and increasing detection of anoma-
lies. While the newest computational methods enjoy much of the press, incorporating deep
learning into standard laboratory workflow requires many more steps than simply training
and testing a model. Image analysis using deep learning methods often requires substantial
pre- and post-processing order to improve interpretation and prediction. Similar to any data
processing pipeline, images must be prepared for modeling and the resultant predictions need
further processing for interpretation. Examples include artifact detection, color normalization,
image subsampling or tiling, removal of errant predictions, etc. Once processed, predictions are
complicated by image file size – typically several gigabytes when unpacked. This forces images
to be tiled, meaning that a series of subsamples from the whole-slide image (WSI) are used in
modeling. Herein, we review many of these methods as they pertain to the analysis of biopsy
slides and discuss the multitude of unique issues that are part of the analysis of very large
images.

Introduction

Recent developments in hardware and software have expanded the opportunities for modeling
and analysis of whole-slide images (WSIs) in pathology. The possibility to train multi-layered
(deep) neural networks combined with the generation of multiresolution images (i.e., WSIs) has
generated entire new opportunities for the analysis of histopathologic tissue. Unfortunately,
many of the resulting models lack a generalizable workflow from whole-slide preparation to
results. This makes translation to clinical practice or application on large clinical trials a major
challenge [1, 2]. Construction of end-to-end WSI analysis pipelines requires many more steps
than model building in a controlled digital environment (Fig. 1). Tissue needs to be fixed, cut,
stained, and digitized and the resultant images need to be “ cleaned” so that clinically relevant
features can be selected and used in modeling. Because of the size of the images, subsamples of
images or tiles are used for training deep learning algorithms. The raw output of the algorithm is
post-processed and used to calculate possibly predictive data.

It is often said that 80% of an analyst’s time is spent on data cleaning rather than data analysis
and image data is no exception. First, digitized images in pathology represent an overabundance
of data (in terms of computational memory) and many of the pre- and post-processing steps
focus on data reduction. Second, tissue preparation and digitization can cause substantial vari-
ability in a dataset. Analyzing images generated from a single center’s lab on an individual scan-
ner may mitigate some of these issues, but variations may still exist across time as staining
protocols and hardware changes. To combat these sources of variability, preprocessing and
post-processing are used in tandem with complex modeling to create a reliable diagnostic tool
(Fig. 1).

Once pre- and post-processed, aggregating predictions from the subsample (tile) level to the
slide or patient level is another challenge as there may be multiple slides or tiles on a subject.
Standard statistical tools, such as themixed-effects model, that use random intercepts and slopes
to account for multiple observations per patient, are not used in the context of deep learning
although some alternatives have been considered [3–6]; these alternatives are described in more
detail in the prediction section below.

Although many methods described in this article can and have been used in standard image
analysis, we focus on how they augment the deep learning model development process.
Specifically, we use the term deep learning to refer to the application of convolutional neural

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://www.cambridge.org/cts
https://doi.org/10.1017/cts.2020.531
mailto:smith.byron@mayo.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9318-2437
https://doi.org/10.1017/cts.2020.531


networks (CNNs) to images as opposed to other machine learning
algorithms such as support vector machines or random forest pre-
dictions. To better understand this context, we briefly describe how
deep learning is applied to images before moving on to the pre- and
post-processing steps that improve output.

The exact steps used in the pre- and post-processing rely heavily
on the end goal of any image analysis pipeline. Herein, we review a
series of pre- and post-processing methods used in tandem with
standard modeling techniques while motivating why some meth-
ods may be preferable to others. Available functions in R and
Python are described throughout and summarized in Table 1 as
a quick reference.

Note that a general recommendation is to start with the simplest
solution and expand on this solution with increasing complexity;
examples of this will be included throughout.

A Brief Overview of Deep Learning for Image Analysis

Deep learning is defined as the use of deep neural networks for fully
automatic discovery of patterns in (image) datasets. A specific type
of network, CNNs are commonly used for the analysis of medical
images throughout. In this article, we will focus on these types of
networks. CNNs are “deep” in the sense that they follow a hierar-
chical analysis where the output of one “layer” of the network feeds
into another layer and so on. In addition, these networks are differ-
entiated from other hierarchical modeling methods (e.g., hierar-
chical regression models and multilayer perceptrons) in that
they analyze an image by applying a filter to the image and feeding
that filtered output to the next layer. These filters are used to

identify local patterns. Filters are applied to an image by perform-
ing a convolution operation of the filter with the image. This effec-
tively slides the filter across the pixels of the image, evaluating the
product of the filter parameters with the image. Ultimately, this
technique known as parameter sharing saves memory because a
model is not applied to every pixel (such as a slope or parameter
for logistic fit), but rather the filter parameters for each filter
are shared across a neighborhood of pixels. Despite this, deep
learning models used in image analysis can often range from
1 to 100 million parameters.

Another consequence of filtering is that it reduces the size of an
image. One example is that a filter cannot sit on the edge of an
image. Either the image has to bemodified (i.e., padded) or the out-
put will be smaller than the input. A filtering method known as
pooling also reduces the image dimensions by taking windows
of pixels and reducing them to a single-pixel output. As a result,
output tile size post-filtering is almost always smaller than the
input size. Depending on the model at use, this fact may necessitate
the use of overlapping tiles when sampling from an image. More
details are given below in the preprocessing section.

The main elements of a deep learning model are as follows:

(1) The input of the model –Many images are too large to be ana-
lyzed directly and so sub-images are fed into the network.
Because filtering an image can change the image size, model
architecture can depend on input size.

(2) The architecture of the model – The number of filters, the num-
ber of layers, and the overall connections from input to output.

Fig. 1. Typical flow of a WSI processing pipeline. In several instances, one may have to step backwards or start a stage over due to suboptimal outputs.

2 Smith et al.

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2020.531


(3) The output of the model – Most commonly, a classification of
the input into one or more classes or a segmentation of the
image into separate classes (pixel-wise classification).
Almost always the output will be of dimensions smaller than
or equal to the input image.

As with any modeling processes, once these choices have been
made the problem is converted to an optimization problem by
defining a loss function to quantify how good or bad the fit was.
A loss function is identified based on the endpoint being used
and this is then optimized using an iterative approach. For exam-
ple, the cross-entropy (binomial loss) is frequently used in classi-
fication as it would be used for any logistic model.

Just as with many machine learning methods, the hierarchical
nature of deep learning models allows for complex relationships
between input and output; however, this creates a sort of “black-
box” model that does not carry the same rigorous statistical back-
ground that a logistic model might. More specifically, this means
that it can be challenging to understand how a single filter in a sin-
gle layer may play a role in the overall model; there is no direct
measure of association such as an odds ratio or p-value.

For the development and testing of deep learning algorithms,
the dataset is split into training, validation, and test sets. The net-
work is optimized using the training and validation set, while the
test set remains untouched. The optimization procedure in most
deep learning environments is unique to its field (Fig. 2). The
parameter settings are optimized iteratively, while the network
aims to achieve better performance on the training set. Given that
many CNN architectures have millions of parameters, modeling is

prone to overfitting. To overcome this issue, it is a common prac-
tice to stop the training procedure when the performance of the
model on the training and the validation set is optimized. This pro-
cedure is similar to optimization of hyperparameters in other
machine learning algorithms where models are trained on the
training set, hyper-parameter choices are evaluated on the valida-
tion set, and the final model performance is evaluated on the test
set [7].

Another critical issue is that models must be robust to color
shifts and geometric changes (translations and rotations). One
way to build a model that is robust to these sources of variation
is to apply the corresponding transformations during optimiza-
tion. This is known as data augmentation.

Results of the deep learning algorithm may depend on each
choice made during the model set up. Therefore, in order to find
the best solution for a problem, many models are often fit with a
series of different choices. This “guess and check” style is not
unique to deep learning – frequently statistical analysis is iterative,
based on model assumptions, checking interactions, model perfor-
mance, etc. However, a standard model may run in seconds while
deep learning models can take hours for a single optimization.
Given that pre- and post-processing of output results may impact
model performance, these steps act as additional choices that must
be made in order to find an optimal solution. The typical flow of a
project involving image analysis with deep learning can be seen
in Fig. 1.

The most common packages for deep learning include the
TensorFlow [8] and Keras [9] packages which are accessible in
Python with analogues in R (although these require an installation

Table 1. A summary of select useful functions in image processing in Python and R

Program Package/library Function Brief description

Python Py_wsi Sample_and_store_patches Sample tiles (patches) from a WSI

OpenCV Dilate, erosion, etc.

scikit-image Rgb2hed Color deconvolution for WSIs

Match_histograms Histogram matching for color normalization

Threshold_otsu Otsu thresholding

Scipy Center_of_mass() Calculate object location

Find_objects() Find objects in an array

Label() Label features in an array

pgmagick Image conversions

R EBImage computeFeatures Calculate sizes of objects

removeObjects Remove objects

Filter2D Apply a filter to an image

Dilate, erosion, etc. Morphological operations

Bwlabel() Label objects

Otsu() Otsu thresholding

Tiff, jpeg, png Read/write Read and write images of different file types

Magick Image conversions

Reticulate Compile Python code in R

Windows/Linux ImageMagick Command-line package for image manipulation

Journal of Clinical and Translational Science 3

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2020.531


of Python to run). Additionally, Caffe [10] and PyTorch [11] pro-
vide alternative frameworks for deep learning in Python.

Data Acquisition

Before the development of an analysis pipeline is considered, one
should explore the plethora of hardware that may be involved. The
consequences of these choices can drive downstreammethodology.
First, there are several commercially available digital slide scanners
and many of these scanners use unique image file formats [12].
While many efforts exist to format images as Digital Imaging
and Communications in Medicine or another standard, similar
to radiological images, no standard has been adopted [13, 14].
Just as with any image file type, there is a trade-off between image

file size and resolution; image compression may save space, but
ultimately impact final model performance by blurring features
of interest. In the author’s experience, JPEG80 compression
reduces space significantly while having minimal effect on image
quality or network performance. Note that downstream modeling
is based solely on pixel values stored in the form of arrays and,
therefore, different file formats are more relevant to storage than
analysis if the resolution is similar. Proper control of these sources
of error can result in robust deep learning models that can process
data across scanners regardless of file format [15].

The incorporation of graphical processing units (GPUs) into
any analysis pipeline may be critical. While deep learning models
necessitate the use of GPUs during the training process, predic-
tions from these models can be performed in near real time on
a standard workstation or computational processing unit (CPU).
However, the repetitive calculations involved in most image analy-
sis processes can be dramatically improved by parallelization and
the inclusion of GPUs into any system used for high throughput
pipelines. To facilitate these hardware dependencies, Griffin and
Treanor recommends the inclusion of information technology
(IT) teams in the construction process [2].

In addition to file size differences, color profile differences arise
across laboratories and scanners. It is well known that differences in
core facility staining procedures can give rise to high variability in
image color profile, but so too can the digital scanning process [16].
The settings for all whole-slide scanners may determine the perfor-
mance and/or generalizability of any downstream modeling, espe-
cially when no color augmentation was applied during the training
of the model. One solution for this issue can be preprocessing to a
standard color distribution, i.e., color normalization, which will be
discussed below (preprocessing; color management) [17, 18].

Preprocessing

The general purpose of preprocessing image data is threefold: (1) to
discard data that is not informative or useful such as slide back-
ground or artifacts, (2) to create a consistent dataset, and (3) to
enable processing of large WSIs during downstream modeling.
The first stage is necessary to utilize computational resources in
the most efficient way and to prevent generation of noise by, e.g.,
pen markings or dust particles. The second stage of preprocessing
is used to reduce disturbing sources of image variability. The third
stage is achieved by tissue sampling (dividing the image into tiles and
feeding these batchwise to the network), because most deep learning
models cannot process gigapixel images at once. Below, we provide
more detail for each of these steps as well as suggestions for those
beginning to develop image analysis pipelines.

An important note is that many of the methods mentioned
within the post-processing section below may be useful in prepro-
cessing although the motivations may differ. In preprocessing,
morphological transformations are most often used to identify
artifacts on the slide whereas during post-processing they are used
to increase prediction interpretability.

Artifact Detection and Tissue Segmentation

An important element in training and prediction is to limit the
amount of non-informative data being analyzed. Non-informative
data lies not just in the background of the slide, but also in artifacts
on the slide that are not relevant to the histopathology of the indi-
vidual patient. Artifact detection can be considered a quality con-
trol step in the image analysis pipeline as a way to prevent

Fig. 2. A flowchart of the training process in deep learning. Note that data augmen-
tation is a step that is carried out during the training process.

4 Smith et al.

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2020.531


automated diagnostic errors based on uninterpretable image infor-
mation. In addition, artifact removal allows downstream image
normalization to proceed unhindered by pixel information that
has no clinical relevance.

The myriad of artifacts that plague digital pathology remains a
major hurdle in its application and these artifacts can arise during
each stage of the data acquisition. At the slide preparation level,
these often manifest as tissue fissures and folds, fingerprints,
and watermarks. During digitization, several areas of focus are
often declared in order to produce high-resolution WSIs. If these
are sparse or disparate, image quality may change spatially causing
focal artifacts or striations.

Removal of these artifacts is frequently an important step in the
downstream processing. A number of techniques exist to remove
artifacts with a relatively simple implementation [19, 20]. One
popular method focuses on Otsu thresholding [21] of the image
which splits a grayscale image into “foreground” and “back-
ground” based on maximizing between-class variance (similar to
clustering using the Ward’s minimum-variance method) or recur-
sive partitioning trees (an example is given in Fig. 3B). From a qual-
ity control perspective, thresholding can be combined with a
variety of other features such as edge detection filters or contrast
measurements to check quality prior to analysis [19, 20].

The use of thresholds provides a very quick method to identify
most artifacts, but not all. One elegant alternative is to use a deep
learning segmentation algorithm to specifically discriminate back-
ground or noise (such as dust particles or penmarkings) from fore-
ground (tissue) [22].

Color Management

Preprocessing of images is critical to normalizing image data prior
to downstream processing. While slide scanners capture the cur-
rent state of a biopsy slide, the history of the slide can play a major
role in the quality of the image. A common criticism of deep learn-
ing algorithms is that they do not generalize outside of an institu-
tion where the model is developed. Unfortunately, variations
within a single institution may prevent generalizability as well.
For example, an institution may decide to update its scanning
hardware, possibly resulting in a change in color profile that
may invalidate a trained model (Fig. 4).

More prevalent issues involve differences in stain intensity either
from the staining process or fading over time. Staining very often
varies from case to case even within the same lab, and dye fading
is also often expected, but adjusting for these effects can be a challenge.
The major issue is that histopathological dyes are often multi-
component and each component may fade at different rates.
Furthermore, these dyes may fade differentially depending on which
tissue is stained resulting in some features with higher variability than
others.

Color management refers to standardizing color distributions
across input images whether it is across sites or within a single center
and has been tackled by many groups using various different
methods [23]. As the vast majority of deep learning applications
for digital pathology lying in the realm of cancer, color normalization
has thus far focused on hematoxylin and eosin (H&E)-stained slides.
One popular method presented by Macenko et al. introduces the

Fig. 3. (A) Initial WSI, (B) tissue identified by thresholding (green), and (C) tissue identified by thresholding followed by filling hulls. By identifying tissue prior to analysis, slide
background can be removed from the analysis.

Fig. 4. Color differences between an (A) Aperio ScanScope v1 and (B) Aperio AT2 slide scanner based on default color profiles using the same slide.

Journal of Clinical and Translational Science 5

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2020.531


concept of color deconvolution, i.e., separating hematoxylin from
eosin [24]. They use a singular value decomposition (SVD) of a color
space (hue, saturation, value) to establish color vectors that corre-
spond to particular dyes. Unfortunately, a similar method may not
generalize to a dye of three or more components because this no
longer corresponds to a reduction in dimensionality relative to the
color space. In order to overcome this limitation, methods have
focused on color decomposition stratified by tissue type [25–27].
Clustering has also been proposed to identify the tissue type and per-
form color normalization within each cluster [28].

Extending the concept of tissue-specific normalization, a deep
learning method has been adapted to recognize latent histologic
structures and normalize them correspondingly using generative
adversarial networks (GANs) [29, 30]. In a GAN, a generator net-
work is trained to create “fakes” of input data (i.e., normalized
slides) while an adversarial network identifies which images are
true and which have been normalized. In this way, the two net-
works train each other, getting incrementally better at stain nor-
malization so that the opposing network cannot distinguish
between the true stains and normalized stains. This application
allows for normalization that can be performed at the tile level
and integrated seamlessly with downstream networks.

Many of the color normalization algorithms have been hand
coded in languages such as Python and MATLAB, but could be
adapted for use in R. K-means clustering and SVD are part of
the base R package. K-means clustering is a standard clustering
function contained within the scikit-learn library [31] for
Python. Histogram matching from one image’s color distribution
to another’s can be performed with scikit-image in Python.

During the training phase, exposing a model to as much color
variation as possible can benefit the generalizability of the model.
The easiest way to accomplish this is through data augmentation
which should be the first step. However, for studies with larger
sources of error, i.e., multicenter studies, further methods may
be of value. Macenko’s method has been implemented in several
programming languages and provides an overall color normaliza-
tion that can be adopted quickly. Finally, if the color of a slide is
tissue-specific, methods that normalize a slide uniformly rather
than based on tissue composition may be of less utility. Here we
recommend using more complex methods summarized above.

Tissue Sampling

The size of WSIs not only lead to computational limitations, but
also necessitate additional steps in any analysis pipeline [12].

Most WSIs are on the gigapixel scale (on the order of 10,000 ×
10,000 pixels) while the input to most deep learning algorithms
analysis of images on the scale of 100-pixel squares (Fig. 5).
This discrepancy typically means that training or prediction from
a deep learningmodel requires tiling the image and reshaping these
tiles into an array useable by the algorithms.

For the purpose of training, regions of interest (ROIs) are often
annotated to curate a representative set of learning examples for
the network. Unfortunately, these ROIs are often chosen to classify
or segment ideal images, avoiding digital image flaws such as finger-
prints, markers, digital striations, or background. Doing so may limit
the generalizability of trained models to real-world datasets and clini-
cal applications. Nevertheless, sampling in this way under samples
slide background, sparing computational expense, and can be used
in multistep analysis pipelines where an initial model is used to iden-
tify large-scale ROIs followed by analysis within those regions [22,32].

Sampling tiles from the ROI can be done in several ways (Fig. 5).
First, a strict grid can be used although this may result in systematic
sampling errors such as structure cleaving where certain patterns
are cut into piecemeal. Overlapping grids can be used, but a choice
in overlap amount is critical to balance redundancy and computa-
tional efficiency. Finally, random sampling to cover the region of
interest can be used although this can result in high levels of redun-
dancy as well. Image tiling can be performed automatically with the
“py_wsi” package in Python.

For the purposes of prediction, random sampling is impractical
to predict over the full region of interest. Overlapping, regular grids
can be useful in the prediction of nominal class results. In the case
of segmentation, this is often necessary because the output classi-
fication mask can be smaller than the input image. This is a direct
result of the choice of using zero padding which adds zeros around
the border of an image to assure that the convolution of a function
within a neural network (filter) with the image results in an output
of the same size.

Each decision during the training process determines the con-
struct of the ground truth used to evaluate the loss function (like-
lihood) during optimization. Built into the loss function is the level
in an image size hierarchy that is of interest for prediction or infer-
ence. In the case of classification, every tile can be given a label and
this label may be chosen after the sampling process has been
declared. Alternatively, the class can be declared at the slide level
using the multiple instance learning (MIL) framework [33].
We discuss these choices more below. For segmentation, an image
“mask” defines the class of each pixel and is sampled in accordance
with the input image.

Fig. 5. Tissue tiling based on (A) a regular grid, (B) an overlapping grid, and (C) random tiles.

6 Smith et al.

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2020.531


The final issue in sampling arises from the imbalance in class
labels between good and bad pathology. This age-old statistical
problem means that training sets are frequently constructed using
amore balanced design to give networks exposure to bad pathology
in sharp contrast to a general population. Alternatively, an unbal-
anced dataset may result in a lower sensitivity to identifying ROIs
due to the fact that these regionsmay be confused with tissue that is
not of interest due to nuances in the texture or color of the tissue. In
order to overcome this, training can be followed by hard negative
mining wherein false positive predictions are oversampled or
added to the training set post hoc to prevent errors associated with
balancing an unbalanced class.

Post-Processing

Many post-processing steps are more in line with the problem of
segmentation rather than of classification. When predictions are at
the pixel level rather than at the patch orWSI level, interpretability
can be diminished by errant pixel predictions (Fig. 6A). This can
occur as small areas of rare tissue types are often contained in large
swaths of common tissue. Alternatively, several tissue subtypes
may look similar and, therefore, any algorithmmay be able to iden-
tify the larger structure, but fail to further characterize that struc-
ture. Post-processing, therefore, provides a set of tools to fix the
smaller errors that a model makes.

In addition to errant pixel predictions, algorithms may predict
gaps in an object (Fig. 6A). In order to improve interpretability, these
gaps can be filled in using an operation known as “hull filling”.

Most post-processing steps are morphological in nature and
have been reviewed in detail previously [34]. Available functions
in R come chiefly through the “EBImage” package developed by
Bioconductor [35] although the ImageR package offers very sim-
ilar functionality (https://dahtah.github.io/imager/imager.html).
A detailed set of examples is provided by Bioconductor as a vignette
with code and sample data for many of the methods provided below
(https://www.bioconductor.org/packages/release/bioc/vignettes/
EBImage/inst/doc/EBImage-introduction.html). In Python, tools
are available through the OpenCV [36] and SciPy packages [37].

Hull Filling

A common occurrence in segmentation output is objects for which
the circumferential predictions are of one class, but the interior
predictions are of a different class. Intuitively, identification of

the boundary of an object may be easier than identification of
the interior. For this reason, the closed object prediction may form
a “hull” (Fig. 6A). In order to improve the interpretability of seg-
mentation output, hull filling is a quickly applied method of assign
pixels in the interior of a hull to those of the bounding area. The
hull-filling operation then converts all pixels within the closed
object to the pixel classification that defines the closure
(Fig. 6B). In order to perform this operation, pixels must be defined
as a binary classification such as one versus all.

Morphological Operations

Although hull filling can increase the interpretability of bounded
objects, this does not overcome the fact that objects may be “open”
with boundary pixels predicted less consistently than internal pix-
els of an object. To combat this issue, themorphological operations
known as dilation and erosion may be used. These methods slide
windows across the image, assigning the maximum (dilation) or
minimum (erosion) pixel values within each window to the pixel
at the center of the window, respectively. The resultant image can
join disconnected boundaries due to the fact that they are within
the same neighborhood of a pixel that defines the object. Using a
dilation followed by an erosion results in a closurewhile the inverse
results in an opening. This allows an analyst to programmatically
join pixels of a similar type without expanding overall regions.
Although these operations can be abstract, the difference in their
results can be dramatic; a juxtaposition is provided in Fig. 7.

Instance Segmentation

In medical images, it is often seen that structures lay close together,
such as glands in prostate tissue and tubuli in kidney tissue. It can
be useful to separate these structures after segmentation by a CNN
to perform better post-processing or more accurate quantification.
A way to identify individual objects is instance segmentation.With
instance segmentation, the boundaries of an object are detected at
pixel level by including an additional “boundary” class during
training. This class can also be used to train a separate, binary net-
work that is applied prior to the network aimed at the true struc-
tures of interest. The boundary class can subsequently be used to
identify individual objects to which post-processing rules can then
be applied. This method is more computationally expensive than
simple segmentation and may provide more benefits for tightly-
packed structures.

Fig. 6. Hypothetical predictions of the presence of a glomerulus on a renal transplant biopsy from a deep learning algorithm either (A) by pixel (segmentation) prior to post-
processing, (B) by pixel after post-processing, and (C) by tile. Note that raw output from a segmentation model may leave errant pixel predictions as well as hulls within objects of
interest.

Journal of Clinical and Translational Science 7

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://dahtah.github.io/imager/imager.html
https://www.bioconductor.org/packages/release/bioc/vignettes/EBImage/inst/doc/EBImage-introduction.html
https://www.bioconductor.org/packages/release/bioc/vignettes/EBImage/inst/doc/EBImage-introduction.html
https://doi.org/10.1017/cts.2020.531


Object Removal

Frequently small objects are identified errantly throughout a WSI.
This can occur due to a variety of reasons such as random local
patterns. A more challenging problem occurs due to the nature
of slide preparation. Slides are prepared based on slicing tissue with
a microtome, whichmeans that objects of interest can be cleaved at
their “tips” leaving little informative data, but a feature nonethe-
less. Prediction of these objects results in a true positive, but a clini-
cal pathologist may deem the object too small to be used
diagnostically. For these reasons it may be important to remove
objects less than a specific size because they are likely to be incor-
rectly predicted or not useable in the clinical application.

The motivation behind these methods is to clean predictions
that are not perfect. The exact choice in methods is generally
unique to each image analysis project. Instead one should look
at this set of methods as a toolbox where a combination of methods
should be used to complete the cleaning task.

Object removal by object size requires a morphometric assess-
ment of size for each object. The computeObjects() function in the
EBImage package from Bioconductor [35] for R can quickly assess
the size of every object identified in an image, but is limited in the
scope of calculation in that it will calculate other features which
may be less useful. The OpenCV [36] and SciPy [37] packages
in python have similar functionality.

Prediction

The tools used in any pipeline should be selected in the context of
the final goals of the analysis pipeline.Much of the infrastructure in

digital pathology is to augment the role of a pathologist, i.e., to
make their decision-making process more accurate and timely.
To this end, we present several scenarios similar to the work of
Dimitriou et al. focusing on which level of experimental unit infer-
ence is being drawn: tile level or slide level [38]. In other words, is
the researcher more interested drawn a conclusion about a small
piece of the tissue or the slide as a whole?

Note that themajority of methods have been developed for clas-
sification although the concepts may be generalized to other end-
points by choice of the loss function during the model building
process. In some cases, normal likelihoods (or other continuous
measures) have been incorporated as well as partial likelihoods
for survival analysis [6, 39]. Conventional analysis via deep learn-
ing is often not feasible due to image size.

Tiling an image results in multiple observations per slide. In
general, the mixed-effects model which serves as the standard tool
of statisticians in the case of multiple readings per experimental
unit is not applied in deep learning. A standard log likelihood in
the case of a mixed-effects model is a balance between regression
components and variance components that are a combination of
model error and random effects [40]. These are typically optimized
using iterative methods such as Newton–Raphson stepping or the
estimation–maximization (EM) algorithm [40].

Because the log likelihood is convex and differentiable conver-
gence is theoretically guaranteed under gradient descent. However,
estimates of the variance can be more challenging to incorporate
into gradient descent algorithms using subsets of the data (mini
batches) which are the gold standard in deep learning. This limi-
tation renders the use of conventional mixed-effects modeling

Fig. 7. Morphological operations using an 11 × 11 filter size followed by hull filling. (A) Dilation, (B) Erosion, (C) Opening, and (D) Closing. Note that in this case, the dilation and
closing with small differences in how close the segmentation is to the tissue boundaries.

8 Smith et al.

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2020.531


unusable. Instead, a close analogue known as MIL is frequently
applied [33]. Below, we provide some examples of prediction at
the tile level and then extensions to slide-level prediction similar
to Dimitriou et al [38].

Tile-Level Predictions

The simplest level of prediction is to treat each tile of theWSI as an
independent entity (Fig. 6C). Tile-level predictions can be moti-
vated by evidence of severity from even a single positive prediction.
For example, a small region of cancer is still cancer at the slide level
and patient level. However, some predictions may require a
broader context which means that prediction at the tile level still
requires information from other tiles or slides [41, 42]. An example
is the CAMELYON17 challenge, where participants were asked not
only to detect metastases in lymph nodes, but also to report
whether this concerned isolated tumor cells, a micro-metastases,
or macro-metastases on a patient level [43]. Only two participants
actually measured the size of the largest region. More typically used
measures were the number of detected metastases, mean detection
size and standard deviation, mean detection likelihood, and stan-
dard deviation. Alternatively, the use of gradient boosting may
provide a way to oversample borderline cases by weighting. This
technique is more common in machine learning and utilizes
sequential fits of a model followed by up-weighting of observations
that were misclassified [17].

Slide-Level Predictions

Due to the fact that the information contained within slides is
dense, annotation of WSIs on a large scale has been a challenge.
Data reduction is often required as a preprocessing step to focus
on areas of interest. Popular strategies often involve one of two
methods: (1) MIL [3, 44, 45] or (2) unsupervised methods with
the goal of reducing the amount of input data prior to an analysis.
MIL is chiefly used in classification problems by using “bags”
(slides) of instances (tiles) to predict the class of a slide, iteratively
selecting features from these tiles that would improve the classifi-
cation. More specifically, a slide may be labeled as “positive” for
some condition although the tiles composing the slide may be a
mixture of positive and negative. An example would be declaring
a full slide as cancer positive while only local regions of that slide
(and therefore a few of the tiles belonging to the slide) as positive.
On the other hand, a slide is only considered cancer negative if all
tiles are considered negative. At each iteration of the modeling
process, features of those tiles that result in a slide being declared
positive are selected to improve the model. More details of these
methods are provided in Carbonneau et al [33].

Unsupervisedmethods focus on twoobjects: (1) using a subset of
the tiles to make a prediction over the full slide or (2) reduce the
information containedwithin a single tile to a single value or a small
set of valueswhich couldbeused indownstreamanalysis.Themeth-
ods range frommore standardmachine learningmethods such as k-
means clustering or principal component analysis (PCA) [5, 6].
Alternatively, deep learning has been applied to perform tile-level
prediction followed by more standard analysis. Criticisms of these
methods are that the two processes (tile compression followed by
prediction) are performed independently and therefore improve-
ments are iterative rather than simultaneous [38].

In an attempt to marry data reduction and prediction, several
strategies have been proposed. The EM algorithm has been imple-
mented to give more weight to slides that are more discriminatory

when generating prediction estimates from these slides [44].
Noting that weighting is equivalent to differential sampling,
Monte Carlo sampling has been implemented as well [4].
Simplifying tiles to single values as part of the modeling process
has also been proposed [46].

Discussion

The last decade’s evolutions in machine learning and whole-slide
tissue scanners have changed the conversation around digital path-
ology and provided opportunities for increased accuracy and effi-
ciency by the incorporation of computational pathology.While the
promise of robust, novel models that are capable of assisting physi-
cians in the decision-making process is exciting, the barrier to
translate models to clinical practice cannot be overstated. Unlike
conventional statistical models, image analysis frequently requires
pre- and post-processing in order to achieve optimal solutions.

Digital pathology distinguishes itself from other medical image
analysis scenarios in a large part due to the image size. Standard
images, unpacked for the purpose of analysis, prevent full-scale
modeling. This requires subsampling small tiles from a very large
WSI, whether systematic using a grid or selecting at random.

The application of these systems can be complicated if the intent
is to use modeling predictions in the framework of clinical trials. In
order to meet regulatory demands, end-to-end system validation
must be performed as each step creates a source of variation that
could destabilize any results [47, 48]. While the Food and Drug
Administration has taken a stance on this [49], the Digital
Pathology Association (DPA) has provided detailed information
on what steps need to be taken for validation [47].

Many of the methods in image pre- and post-processing may be
familiar to statisticians such as data and dimensional reduction
methods as well as linear and nonlinear transforms. However,
some aspects of the process are unique to image processing. For
example, the fact that image data is unstructured allows us to gen-
erate a nearly infinite number of predictors based on the intensity
of a pixel’s intensity as well as the intensities of that pixel’s neigh-
bors. Furthermore, most linear statistical models fit through the
mean of the data. In this case, adding noise in an augmentation
step does not impact predictions, but will inflate the model error.
Thismay not be the case when implementing deep learningmodels
that are highly nonlinear and hierarchical.

Throughout this manuscript, we provide a variety of options for
processing images along with recommendations of where to begin.
It is important to note that many image analysis projects are
unique and our recommendations may not be valid or ideal.
Trying different combinations of these tools will often be of benefit
to any project. Also, note that the perspective taken for many of
these processing steps is during the model training stage, but
pre- and post-processing are just as useful in prediction.

Regardless of the methodology, analysis of WSIs is distin-
guished by unusually large datasets which are often analyzed piece-
meal and clinically relevant predictions at the slide or patient level
require some degree of reconstruction. While the standard meth-
odology of mixed-effects modeling is unavailable, alternatives such
as MIL provide a method to enforce similar conditions during the
training process. By focusing on image cleaning, pre- and
post-processing and predictive modeling, improvements in image
classification and prediction are likely to aid the pathologist in
improving the detection of important pathology and in reducing
pathologist burden by automating many tasks.

Journal of Clinical and Translational Science 9

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2020.531


Disclosures. WK received grant funding from AstraZeneca, Biogen, and
Roche. There are no additional disclosures.

Data Deposit. Images from the manuscript, as well as the code used to
create the images, have been uploaded here: https://github.com/BHSmith3/
Image-Cleaning.

References

1. Pell R, et al. The use of digital pathology and image analysis in clinical tri-
als. The Journal of Pathology: Clinical Research 2019; 5(2): 81–90.

2. Griffin J, Treanor D. Digital pathology in clinical use: where are we now
and what is holding us back? Histopathology 2017; 70(1): 134–145.

3. Zhou Z-H. A brief introduction to weakly supervised learning. National
Science Review 2018; 5(1): 44–53.

4. Combalia M, Vilaplana V. Monte-Carlo sampling applied to multiple
instance learning for histological image classification. In Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support. Granada; 2018. 274–281.

5. Yue X, et al. Colorectal cancer outcome prediction from H&E whole slide
images using machine learning and automatically inferred phenotype pro-
files. In Conference on Bioinformatics and Computational Biology.
Honolulu, HI; 2019.

6. Zhu X, et al. WSISA: making survival prediction from whole slide histo-
pathological images. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Honolulu, HI; 2017. 6855–6863.

7. Chicco D. Ten quick tips for machine learning in computational biology.
BioData Mining 2017; 10: 35.

8. Abadi M, et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015. Software available from tensorflow.org.

9. Chollet F. Keras. San Francisco, CA: Github, 2015.
10. Jia Y, et al. Caffe: Convolutional architecture for fast feature embedding.

arXiv:14085093, 2014.
11. Paszke A, et al. PyTorch: an imperative style, high-performance deep

learning library. In: Wallach H, Larochelle H, Beygelzimer A, de-Buc F,
Fox E, Garnett R, eds. Advances in Neural Information Processing
Systems. Vol. 32. Red Hook, NY: Curran Associates, Inc.; 2019, pp.
8024–8035.

12. Webster JD, Dunstan RW. Whole-slide imaging and automated image
analysis: considerations and opportunities in the practice of pathology.
Veterinary Pathology 2014; 51(1): 211–223.

13. HerrmannMD, et al. Implementing the DICOM standard for digital path-
ology. Journal of Pathology Informatics 2018; 9: 37.

14. Clunie DA. Dual-personality DICOM-TIFF for whole slide images: a
migration technique for legacy software. Journal of Pathology
Informatics 2019; 10: 12.

15. HermsenM, et al.Deep learning-based histopathologic assessment of kid-
ney tissue. Journal of the American Society of Nephrology 2019; 30(10):
1968–1979.

16. Ciompi F, et al. The importance of stain normalization in colorectal tissue
classification with convolutional networks. In IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017); 2017.

17. Komura D, Ishikawa S. Machine learning methods for histopathological
image analysis. Computational and Structural Biotechnology Journal 2018;
16: 34–42.

18. Tellez D, et al. Neural image compression for gigapixel histopathology
image analysis. IEEE Trans Pattern Anal Mach Intell 2019. doi: 10.1109/
TPAMI.2019.2936841

19. JanowczykA, et al.HistoQC: an open-source quality control tool for digital
pathology slides. JCO Clinical Cancer Informatics 2019; 3: 1–7.

20. Shrestha P, et al. A quantitative approach to evaluate image quality of
whole slide imaging scanners. Journal of Pathology Informatics 2016; 7: 56.

21. Otsu N. Threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics 1979; 9(1): 62–66.

22. Bandi P, et al. Resolution-agnostic tissue segmentation in whole-slide
histopathology images with convolutional neural networks. PeerJ 2019;
7: e8242.

23. Fernandez-Carrobles MM, et al. Automatic quantification of IHC stain in
breast TMA using colour analysis. Computerized Medical Imaging and
Graphics 2017; 61: 14–27.

24. Macenko M, et al. A method for normalizing histology slides for quanti-
tative analysis. In IEEE International Symposium on Biomedical Imaging.
Boston, MA; 2009. 1107–1110.

25. Kothari S, et al. Removing batch effects from histopathological images for
enhanced cancer diagnosis. IEEE Journal of Biomedical and Health
Informatics 2014; 18(3): 765–772.

26. Khan AM, et al. A nonlinear mapping approach to stain normalization in
digital histopathology images using image-specific color deconvolution.
IEEE Transactions on Biomedical Engineering 2014; 61(6): 1729–1738.

27. Bejnordi BE, et al. Quantitative Analysis of Stain Variability in
Histology Slides and an Algorithm for Standardization. Bellingham, WA:
SPIE; 2014.

28. Vicory J, et al.Appearance normalization of histology slides.Computerized
Medical Imaging and Graphics 2015; 43: 89–98.

29. Janowczyk A, Basavanhally A, Madabhushi A. Stain Normalization using
Sparse AutoEncoders (StalloSA): application to digital pathology.
Computerized Medical Imaging and Graphics 2017; 57: 50–61.

30. Zanjani FG, et al. Stain normalization of histopathology images using gen-
erative adversarial networks. In 2018 IEEE International Symposium on
Biomedical Imaging (ISBI 2018); Washington, DC: Institute of Electrical
and Electronics Engineering (IEEE); 2018. 573–577.

31. Pedregosa F, et al. Scikit-learn: matching learning in python. Journal of
Machine Learning Research 2011; 12: 2825–2830.

32. Khoshdeli M, Parvin B. Feature-based representation improves
color decomposition and nuclear detection using a convolutional neural
network. IEEE Transactions on Biomedical Engineering 2018; 65(3):
625–634.

33. Carbonneau M-C, et al. Multiple instance learning: A survey of problem
characteristics and applications. ArXiv 2016.

34. Arganda-Carreras I, Andrey P.Designing image analysis pipelines in light
microscopy: a rational approach.Methods in Molecular Biology 2017; 1563:
185–207.

35. Pau G, et al. EBImage – an R package for image processing with applica-
tions to cellular phenotypes. Bioinformatics 2010; 26(7): 979–981.

36. Bradski G. The OpenCV Library. 2000. Software available from https://
github.com/itseez/opencv

37. Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific comput-
ing in Python. Nature Methods 2020; 17(3): 261–272.

38. Dimitriou N, Arandjelovic O, Caie PD. Deep learning for whole slide
image analysis: an overview. Frontiers of Medicine 2019; 6: 264.

39. Zhu X, Yao J, Huang J. Deep convolutional neural network for survival
analysis with pathological images. In 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). Shenzhen,
China; 2016. 544–547.

40. LindstromMJ, Bates DM.Newton—Raphson and EM algorithms for lin-
ear mixed-effects models for repeated-measures data. Journal of the
American Statistical Association 1988; 83(404): 1014–1022.

41. Bejnordi BE, et al. Deep learning-based assessment of tumor-associated
stroma for diagnosis breast cancer in histopathology images. In: IEEE,
ed. 14th International Symposium on Biomedical Imaging; 2017.
929–932.

42. Bejnordi BE, et al. Context-aware stacked convolutional neural networks
for classification of breast carcinomas in whole-slide histopathology
images. Journal of Medical Imaging 2017; 4(4): 044504.

43. Bandi P, et al. From detection of individual metastases to classification of
lymph node status at the patient level: The CAMELYON17 challenge. IEEE
Transactions on Medical Imaging 2019; 38(2): 550–560.

44. Hou L, et al. Patch-based convolutional neural network for whole slide tis-
sue image classification. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition 2016; 2016:
2424–2433.

45. Jia Z, et al. Constrained deep weak supervision for histopathology
image segmentation. IEEE Transactions on Medical Imaging 2017;
36(11): 2376–2388.

10 Smith et al.

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://github.com/BHSmith3/Image-Cleaning
https://github.com/BHSmith3/Image-Cleaning
https://tensorflow.org
https://arXiv:14085093
https://doi.org/10.1109/TPAMI.2019.2936841
https://doi.org/10.1109/TPAMI.2019.2936841
https://github.com/itseez/opencv
https://github.com/itseez/opencv
https://doi.org/10.1017/cts.2020.531


46. Courtiol P, et al. Classification and disease localization in histopathology
using only global labels: a weakly-supervised approach. arXiv:1802.02212v2
[cs.CV], 2018.

47. Lowe A, et al. Validation of Digital Pathology in a Healthcare
Environment. Digital Pathology Association, 2011. https://
digitalpathologyassociation.org/_data/cms_files/files/DPA-Healthcare-
White-Paper–FINAL_v1.0.pdf.

48. Pantanowitz L, et al. Validating whole slide imaging for diagnostic pur-
poses in pathology: guideline from the College of American Pathologists
Pathology and Laboratory Quality Center. Archives of Pathology &
Laboratory Medicine 2013; 137(12): 1710–1722.

49. United States Food and Drug Administration. Technical performance
assessment of digital pathology whole slide imaging devices. Silver
Spring, MD: Center for Devices and Radiological Health; 2016.

Journal of Clinical and Translational Science 11

https://doi.org/10.1017/cts.2020.531 Published online by Cambridge University Press

https://digitalpathologyassociation.org/_data/cms_files/files/DPA-Healthcare-White-Paper--FINAL_v1.0.pdf
https://digitalpathologyassociation.org/_data/cms_files/files/DPA-Healthcare-White-Paper--FINAL_v1.0.pdf
https://digitalpathologyassociation.org/_data/cms_files/files/DPA-Healthcare-White-Paper--FINAL_v1.0.pdf
https://doi.org/10.1017/cts.2020.531

	Developing image analysis pipelines of whole-slide images: Pre- and post-processing
	Introduction
	A Brief Overview of Deep Learning for Image Analysis
	Data Acquisition
	Preprocessing
	Artifact Detection and Tissue Segmentation
	Color Management
	Tissue Sampling

	Post-Processing
	Hull Filling
	Morphological Operations
	Instance Segmentation
	Object Removal

	Prediction
	Tile-Level Predictions
	Slide-Level Predictions

	Discussion
	References


