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Abstract. We introduce a new kind of canonical variables that prove very useful when the order of 
a Hamiltonian system can be reduced by one, as in the case of isoenergetic reduction, and of what 
we call homogeneous reduction. The Kepler Problem, Geometrical Optics and McGehee Blow-up 
are discussed as examples. Finally we carry out the isoenergetic reduction of the general JV-Body 
Problem using the new variables, and briefly discuss its application to the problem of collision. 

1. The Definition of Canonical Variables of the Second Kind 

When we consider a Hamiltonian function written in the standard form H(pi, qi) ~ 
T{pi) — U(qi) (where the (pi, qi) are a set of 2n canonical variables), and we want 
to reduce the corresponding Hamiltonian system thanks to the energy integral H = 
constant = h, the question arises as to which variable we should choose to eliminate. 
The usual procedure is to eliminate one of the pi, and the reduced system in the 
remaining variables is then a non-autonomous Hamiltonian system (with the role 
of the "time" variable now being played by the corresponding qi). The drawback 
is that the individual pi as a rule do not have any intrinsic physical meaning (since 
they usually depend on the choice of reference frame). Instead of eliminating one 
of the Pi, it would clearly be more useful to eliminate the function T{pi) itself, 
considered as a single variable, and which generally does have a definite physical 
meaning that is independent of the choice of reference frame. This is especially 
true in problems like the iV-Body Problem, where T(pi) becomes infinite every 
time the system approaches a collision (since then U{qi) becomes infinite). 

In the second part of this paper, we will show how the elimination of T(jpi) 
in the iV-Body Problem can be accomplished. First of all we will consider the 
somewhat simpler case where T(pi) is written 

v2 

T(Pi) = — where p = \ t = i 

i.e. we consider the hypothetical motion of a particle with mass 1 in n-dimensional 
space. 

The basic idea is to incorporate p in a new set of variables that, while no longer 
canonical in the traditional sense, still presents some remarkable properties. More 
precisely, we want to define a transformation 

(Pt.9t) -»• (p,u,v,v\,w,w\) ; (A = !,-••, n - 2 ) 
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characterized by the property that the so-called Liouville 1-form (Libermann and 
Marie, 1987), T: = YA=I Pi^Q.%is written in the new variables 

ra-2 

7T = p(du + vdw + ^2 v\dw\) 
A = l 

where 

P = 
n 1 n 1 

\i=i P i=i P\ 
Z ) (PJQ* - QiPiV 
% ' 

Note that we have the relation u2 + v2 = J2Z=i Qi-
We call the new set of variables Canonical Variables of the Second Kind (CVSK). 

Since the above transformation is not a canonical transformation, the Hamiltonian 
system no longer has its usual form in the new variables. As we will see however, 
the new system can be easily computed, and will still be designated as Hamiltonian. 

We start with the simplest case n = 2. We want to define a transformation 
iPi,P2,Qi,Q2) —* (p,u,v,w) such that the 1-form n = p\dq\ + pidq2 can be 
written TT = p(du — vdw). The obvious choice is to define "polar coordinates" for 
the pi, i.e. we define w so that 

pi = pcosw ; p2 =psmw 

We can then write 

•K = pidqi +p2dq2 

= p(cos wdqi + sin wdq2) 
— p[d(qi cosw + q2 smw) + (qi sinw q2cosw)dw] 

Setting u = q\ cosw + q2sinw ; v = q\ sinw - q2cosw the transformation 
(Pi>P2,qi, 1i) -* (p, % v, w) is defined by the formulas 

P = \JP\+Pl > tenw 
Pi 

u = -(piqi +P2Q2) ; v = -(p2qi -p\q2) 
P P 

Note that it is always possible to have v > 0, if need be by changing the order 
of the (pi,qi) and the {p2,q2). To write the Hamiltonian equations in the new 
variables, we make use of the fact that, although the above transformation is not a 
canonical transformation, the transformation (p\, p2, q\, q2) —• {p, p' = pv, u, w) 
is canonical, so that the equations in these variables do have standard form. We 

https://doi.org/10.1017/S0252921100072626 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072626


CANONICAL VARIABLES OF THE SECOND KIND 271 

can thus easily deduce from the Hamiltonian system defined by the Hamiltonian 
H' = H'(p,p!,u,w) 

dp 
~dl 

dH' du dH' 

du dt dp 

the corresponding system in the (p, u, v, w): 

dt 

dH' 
dw 

dw _ dH' 
dt ~ dp1 

dp 
dt 
dv 
~dl ~ 

dH 
du 
1 (dH 
p\dw 

dH\ 
-V-du-) 

du 
' dt 

dw 
It 

dH vdH 
dp p dv 
IdH 
p dv 

where we set H(p,u,v,w) — H'(p,pv,u,w). Although the above system no 
longer has standard form we still call it Hamiltonian. Note that when dH/dw = 
0, dp'/dt = d(pv)/dt = 0 and pv = constant 

The introduction of CVSK in the case n = 2 has several immediate applications. 
a) The Kepler Problem: In variables (pi,P2,Q\, Qi), the Hamiltonian of the 
Kepler Problem can be written 

a 
H(pi,P2,qi,qi) = P1+P2 

2 \Ai + Qi 
In variables (p, u, v, w), H is written 

(a = constant) 

H(p,u,v,w) p* a 
2 Vtt2 + v2 

Since H does not depend on w, we have the first integral pv — constant = C. 
Setting H = constant = h, and replacing p by C/v, we have the following 
relation between u and v 

C2 a 

2v2 y/u2 + v2 

For a given value of h, we have a one-parameter flow in the (n, v)-space (the 
parameter being C). In the case h < 0, this gives the following figure 
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The flow along the «-axis, corresponding to C = 0, represents rectilinear 
motion. We see that the flow near the origin (u = 0, v = 0), which corresponds 
to collision, is parallel to the w-axis, i.e., the flow is regular. The introduction 
of CVSK leads to "instant" regularization. 

b) Geometrical Optics: The propagation of a light ray in a medium with 
refractive index n(qi, q-i) is governed by Fermat's well-known Principle of 
Least Time. This is a variational principle and the paths of the ray are obtained 
from a Lagrangian system. It is not generally known that the paths of the light 
ray (as well as the motion in time) can also be obtained from the Hamiltonian 
system associated with the following homogeneous Hamiltonian 

C\fp\+Pz 

where c is the velocity of light in a vacuum. This is shown simply by comparing 
the two sets of Lagrangian and Hamiltonian equations. Introducing the CVSK 
and using the formulas q\ = u cos w + v sin w ; #2 = u sin w — v cos w, we 
set n(qi, <fe) = n(u, v, w) and H is written 

H(p, u, v, w) = cp/n(u, v, w) 

The corresponding Hamiltonian system is written 

dp cpdh du _ c cv On 
dt n2 du At n n2 dv 

dv c (dn dn\ dm c dn 
dt n2 \dw du) dt n2 dv 

We see that the last three equations do not contain p, i.e. the system separates. 
The equations in the (u, v, w) determine what is known as a 3 -order contact 
system (Arnold, 1978). It has the form 

du_K_ dK__df^__dKL dK dw _ dK 
dt dv ' dt dw du ' dt dv 

where K(u, v, w) = h/u
c
v w\ is known as the Contact Hamiltonian, and is 

equal in this case to the velocity of the light ray. This reduction by an order 
of one of a homogeneous Hamiltonian system is a general property (Bryant, 
1983) that becomes immediately apparent when we use CVSK. Note that this 
type of reduction, which we call homogeneous reduction is distinct from the 
standard isoenergetic reduction and does not involve any new first integral of 
the motion. 

c) McGehee Blow-up: This is a more elaborate case of homogeneous reduc­
tion. The starting point is the Generalized Kepler Problem. In a system of 
extended polar coordinates (pr,P(p, r, </?) defined by the formulas 

https://doi.org/10.1017/S0252921100072626 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072626


CANONICAL VARIABLES OF THE SECOND KIND 273 

r = \A i + <£; Pr = -(piQi + viqi); Pip = P2Qi - p \ q i ; tan<p = — 

we consider the Hamiltonian 

Depending on the form of the function fj,(ip), the above Hamiltonian can 
represent the anisotropic Kepler problem, the rectilinear 3-Body Problem, the 
Planar Isoceles 3-Body Problem, and, when p, = constant, the ordinary Kepler 
Problem. The homogeneous nature of the potential function can be interpreted 
geometrically thanks to the vector field 

Y' = -PVTT- + 2r— + ? v — 
dpr or r dpv 

for which we have 

, w TT dH „ dH dH 
Y'.H = -pr7r- + 2r— + Pv>-— = -2H . 

dpr dr dpp 

Associated with Y' is the 1—form 

n' = —prdr — 2rdpr + pvdkp 

which, like the standard Liouville 1 —form (whose expression in polar coordi­
nates is 7r = prdr + pipdip), verifies dn' = u, where w = dpr Adr + dp^ A dip 
is the symplectic 2-form. The idea is to have n' play the role that IT has played 
up till now. The first step is to choose a set of variables {p'x,p'2, Qi, #2) such 
that 7r' has the form ir' = p'ldq'l + p^dq^. We can choose (Bryant, 1980) 

p'\ = 2Vr ". Pi = Pip ; q[ = ~Pr\fr \ q2 = V 

In these variables Y' is written Y' = p\-^- + p 2 ^7 and y' .ff = p[^- + 

P2 § 4 = -2 i f means that if is homogeneous of degree -2 in the (p[ ,p'2). The 

second step is to define CVSK for it', and for this we set 

rj 

p' = p[ = 2y/r ; u' = gj = -prVr ; v' = ^ = ^ = ; w' = <h = ip 
P\ ^\r 

so that TT' = p'(du' + v'dw'). Note that in these variables, Y' — p'-gp-, and 

Y'.H = p'fp- = —2H means that if is homogeneous of degree -2 in p'. We 
now in fact have 

H(p', v>, v', w') = ± (^ + 2v'2 - M O ) 

The Hamiltonian equations are written 
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dtf_ 
dt 

dt/ 
dt 

dH 
' du' 

Au' 

P2 

duf_ 
dt 

dH v' dH A , /, 0 ,2 „ , ,,N 

p' \<9w' chi'/ M S + , V 
d u / _ J_d# _ 16t/ 
dt p' 9?/ p'3 

After the time change dt' = 8p'-3di(= r_3/2dt), the equations in u',«', to', 
which no longer depend on p1, are equivalent to McGehee's equations (McGe-
hee, 1974). We see that they result from the homogeneous reduction of the 
Generalized Kepler Problem, obtained by the introduction of a system of 
CVSK adapted to the 1-form TT'. 
In the case of the ordinary Kepler Problem (p, = constant), an interesting 
comparison can be made with the isoenergetic reduction given beforehand. 
As before, the problem can be reduced to a 2-dimensional flow, this time in 
the (u', v') space. Using the first integrals H = h; p'v' = C to eliminate p', 
we obtain a 1-parameter family of curves given by the equation v'2(2u'2 + 
8v'2 — Ap) = k(= hC2). When k < 0, we have the following figure 

4 v'= pe/ 2Vr" 

collision manifold 

u' = - p r V r 

A near-collision orbit remains close to the n'-axis until it is near point C 
when it follows the "collision manifold", i.e. the limiting curve 2u'2 + 8i/2 -
Ap, = 0, and reaches closest approach at point M on the w'-axis. McGehee 
variables entail a "blow-up" of the origin of physical space and allow a detailed 
description of near-collision orbits. They do not however supply us with a 
"natural" extension of actual collision orbits, which correspond to the flow 
on the ti'-axis. Note that the flow near the origin (w' = 0 ; v' — 0) now 
corresponds to the maximum value of r, and no longer has anything to do 
with collision. 

We now consider the case n = 3. In order to define a system of CVSK, 
we make use of an intermediate set of canonical variables. These are obtained 
thanks to the well-known Andoyer transformation (Boigey, 1981). This trans­
formation goes from the variables (pi,P2,P3,qi,Q2,93) to the Andoyer variables 
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(PiiP'iiP'p, Qi> Qa.i ft) ̂ d i s defined by the formulas 

Pi = p[ cos ft - j/2 sin ft cos i' q\ = q[ cos ft - 4i sin ft cos i' 
P2 = p[ sin /?' + p'2 cos /?' cos i' q2 = q[ sin /?' + q'2 cos /?' cos l' 

P3 = j?2 s m *' 93 — 92 s i n *' 

where by definition cos i' = p^/(p29i — P i^) - I I *s easily checked that the trans­
formation verifies n = p\dq\ + pidqi + £>3<% = p\dq[ + p^dq^ + p'pdft, i.e. it is 
a canonical transformation. We have the following geometrical interpretation 

P <P1/P2/P3) 

M ( q i ^ ^ ) 

q2 

The O^-axis lies on the intersection of the horizontal Ogi^-plane with the 
so-called plane of instantaneous motion determined by aOM(qi,q2,q3) and 
P(Pi)P2,P3). The 0</2-axis is perpendicular to the Og'raxis in the plane of in­
stantaneous motion. We immediately verify that 

i = l 
IIPII2 = P2 = £ PI = P'I +P2 ; O M . P = J2 Pi<n = PWI +PW2 

t = i 

3 

|OM||2 = ^ ? , 2 = q[2 + q2
2 ; ||OM x p|| = 

i = l 
£ (Pi* _ QiPi)2 = P2Q1 ~ M 

> i<j 

All we now have to do is apply to the (p^,p2, q[, q'2) the transformation defined in 
the case n = 2, i.e. 

P = \JP?+P2 '• tan™ = §• '• u = ziPWi +P2Q2) > « = -0^9i - P i ^ ) 
Pi P P 

pi 
The (p, n, v, w) along with t>i = -&• and it^ = /?' verify 

7r = Pid^i + p'2dq2 + p^d/3' = p(du + vdw + Vidwi) 

as well as the conditions on p, u and v given at the beginning of this paper, and 
therefore determine a system of CVSK. 
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For each successive value of n, we must first of all define an intermediate set of 
variables which are in fact generalized Andoyer variables. These are obtained by 
iteration of the standard Andoyer transformation. In the case n = 4 for example, we 
define a transformation (pi,p2,P3,P4,9i, 92,93,94) -> (Pi .P^.P^.P^ q[, q2\ ff, 0') 
by two iterations of the Andoyer transformation. The first one, which leaves P4 and 
94 invariant and goes from the (pi,P2,P3,9i, 92,93) to the (pi.p^Pp. q[, Q^P'), is 
the transformation given previously. The second Andoyer transformation, which 
leaves pj, and/3' invariant, goes from the (Pi,p2>P4, q[, 92,94) to the {p"x,p2,p"p, q", 
q2,/3 ), and is defined by the formulas 

" «" " . -" " / " a" " • a" •" I " o" " • a" •" 

pl=p1cosp -p2smp cosi qx = 91 cosp — 92 sin/3 cost 
/ " • a" 1 " o" •" I " • a" , " a" •" 

p2 = p1smp + p2cosp cosi 92 = 91sin/3 + q2cos/3 cos* 
P4 = p2 sin 1 94 = 92 sin % 

.11 n 11 a a a a \ where by definition cos i = Pp/{p2q\ — P\ q2). It is easily checked that the total 
transformation is canonical, since 

IT = (pid9i + P2d92 + pidqi) + P4dq4 = (jp'\dq[ + p^dq^ + p'pdft) + pudq* 

= (Pidq'i + P2dq2 + ^ 9 4 ) + P^/?' = {p[dq[ + p'2dq2 + p"0d0') + p'pd/3' 

and that the following relations hold 

P2 = E P i = Pl2 + P22 + P4 = P? + P? , 
1=1 

4 

Ti = 9i +9 2
2 + 94=9 i + 9 2

2 

i = l 
4 

Y ViQi = PWl + P292 + P494 = p[q[ + p"%q2 
i=\ 

4 

Y (Pj« - *'P*)2 = (P^9l - P l ^ ) 2 + (P492 ~ P294)2 + (P49l - Pl94)2 

« // // //. 
= (P2Q1 " P i 92) 

// // // //.. To determine a set of CVSK, we simply apply to the (px,p2,qi,q2) the same 
transformation as in the case n = 2, i.e. 

/ «2 , "2 .. P2 1 . // // // //. 1. // // // « 
P = VPi + f t • tanu; = - 4 ; « = - ( ? !? ! +P29 2 ) ; « = -(fcfli ~Pi9 2 ) 

Pi P P 
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and add the variables v\ = p'p/p ; t>2 = p'p/p \ w\ — P' ; W2 = p", so 
that 7r = p(du + vdw + vidwi + V2dw2). The Hamiltonian system can be easily 
computed, and is written in the new variables 

dp _ _&ff du_dt£_ v_dE_ _ 
dt du dt dp p dv 
dv___l (dH_ _ dH_\ _ dm_ _ 
dt p \dw du J ' dt 

dt p \du)2 du J 
dw _ 1 dH dw\ _ 1 dH dui2 
dt p dv ' dt p dv\ ' dt 

vxdH v2dH 

p dv2 p dv\ 
1 (dH dH\ 

v-i 
p \dwi 

\dH 

pdv2 

Vl 
du ) 

Although the transformation from the (»i, m, P3, PA , <7i, qi, 93, q*) to the general­
ized Andoyer variables (pj, p2, p'p, Pp, q[ ,q2,P', P") is n o t easY to write explicitly, 
it does receive a simple geometrical interpretation, thanks to the following figure 

q3 

(P'l/P,2/P4) 

(q'l/q^q^ 

<h 

q i 

The 0g4-axis is perpendicular to the 0q[q2 plane. The O^j'-axis lies on the 
intersection of the 0q[q'2-\Aane with the "pseudo plane of instantaneous motion" 
determined by aOM(q[,q2,q*) and p(p\,p'2,P4)- The 0g2-axis is perpendicular 
to the 0</j'-axis in the pseudo plane of instantaneous motion. 

The generalization of the above transformation to arbitrary n is accomplished 
by the iteration of the Andoyer transformation the number of times necessary, 
and then applying the transformation given at the beginning of this paper to the 
generalized Andoyer variables in order to obtain our system of CVSK. 

2. The Reduction of the iV-Body Problem 

We take as our starting point the iV-Body Problem formulated in Jacobi variables, 
for which the elimination of the center of mass motion is immediate, and allows 
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us to interpret the reduced problem as the motion of N — 1 fictitious bodies with 
Jacobi reduced masses in 3-dimensional space (Whittaker, 1927). Designating the 
Jacobi coordinates of each body and their conjugate momenta by qai,Pai{a = 
1, • • •, N — 1 ; i = 1,2, 3) and the corresponding reduced mass by ma, the 
Hamiltonian function has the form 

N-l 2 3 

H(pai, qai) = T(pai) - U(qai) where T(pai) = ] £ ^ T a n d P° = ^ *"** 

The Liouville 1-form is written -K = Y,a=i ^a with ira = Y$=i Paidqa%- We 
can eliminate the masses from the problem by "normalizing" the (pai,qai), i.e. 
by replacing them with pai = (l/y/rn^)pai ; qai = sfma~q0d. This simplifies the 

expression of T (— \ Yla Pa) stn^ preserves the form of the 7ra (= ]£i Paidqai)-
(So as to not overburden the notation, we will keep on using (pai, qai) and assume 
normalization has already been carried out). 

The definition of a system of CVSK is a two-step process. This is so we can take 
account of the fact that the variables come in N — 1 groups, and that the problem 
is invariant by rotation (i.e. there exists an angular momentum integral). The first 
step is to define CVSK for each one of the N — 1 sets of variables (pai, qai). This 
means replacing them by N — 1 sets (pa, ua,va, v\a, wa, wia) according to the 
transformation corresponding to the case n = 3. We therefore have 

3 
lTa = ^2 Paidqai = Pa{dua + Vadwa + ViadWia) 

i=l 

along with the usual relations 

1 3 

Pa = 2^i=l Pai > ua — / ^ Pai (7m > 
P<* i = l 

3 
Va = ^ , / E y = i (Pajqai ~ qajPai)2 \ Ua + t £ = ^ ^ . 

V 'O i=i 

We can write 

iV-1 N - l Af-1 N - l 

7T = ^ TCa= ^ PadUa + Yl (PaVa)dwa + ^ {PaVla)dw\a 
a=l a=\ a—\ a=\ 

The second step is to define a system of CVSK for the (pa, ua), i.e. we must define 
a system of 2(N - 1) variables (p,u,v,v\,w,w\), (A = 1, • • •, N - 3), such that 
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JV-1 JV-3 

7f = 5 3 Padua = p(du + vdW + 5 3 V\dW\) 
a=l A=l 
JV-1 j JV-1 

v2 = 53 p«; ^ = - 53 
a = l ^ a = l 

pQu0 

1 
V = -

"\ 

JV-1 JV-1 

53 ( p ^ - <w<*)2; «2 + v2= 5 3 
o, /3=l <*=1 
a < / 3 

« a 

To accomplish this, we simply make use of the general transformation with the 
ua in the place of the q^ and where n = N — 1. Having thus defined the 
(p,u,Tj,v\,W,W\), we add the variables va = pava/p ', via = PaVia/p, and 
the Liouville 1-form n takes on the desired form 

/ JV-3 JV-1 JV-1 \ 

7T = p I M + VdW + 5 3 V\dW\ + 5 3 ' ' a ^ a + 5 3 VladWia I 
V A=l a=l a=l ) 

Note that it is possible to give a simple expression to the length C of the angular 
momentum vector. For this we must assume that this vector lies along the vertical 
axis. We then have the classic result that C is the sum of the projections of 
the angular momentum of each of the N — 1 bodies on the vertical axis, i.e. 
C = E a PocVla =PT,a Via-

The (qai), as well as the potential function U(qai), when expressed in terms 
of the new variables, do not depend explicitly on p. To see this, we consider the 
so-called homothetical vector field associated with the Liouville 1-form, which has 
the following expression in terms of the (pai, qai) 

JV-1 3 Q 

Y=ZZP<«-) 
a=i i=i °P-

We therefore have Y.qai = 0. Expressed in the new variables, Y is written simply 
Y = p-§-, and the relation Yqai = p ^ f = 0 means that qai and hence U(qai) 
do not depend on p. It follows that since T(pai) = \p2, the energy integral 
H = T — U = constant = h can be easily solved for p, i.e. 

p = ^2(U + h) 

Replacing p by the above expression in the Hamiltonian equations effectively 
carries out the isoenergetic reduction of the system. 

When the motion approaches collision, U(qai) becomes infinite, and, because 
of the above relation, so does p. A remarkable feature of the CVSK defined for the 
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problem is that all of the other variables remain finite. This is a direct consequence 
of the method we used to construct the system of CVSK. Therefore, once p has 
been eliminated, collision and near-collision orbits in the reduced problem belong 
to a finite domain in the vicinity of collision. 

The above property leads to a "practical" method for extending total collision 
orbits. A classical property of total collision orbits is that the length C of the 
angular momentum is zero. The idea for extending such orbits through collision is 
to incorporate them in a one-parameter continuous family of orbits, the parameter 
being C. The only total collision orbit in the family is therefore the one where 
C — 0, which appears as a limiting case since we assume C > 0. If none of the 
orbits of the family exhibits a lower-order collision, all the orbits except the total 
collision one are well-defined and finite. A limiting orbit for the family therefore 
always exists when C —*• 0, and this is the orbit we adopt as the extension of the 
collision orbit. Note that this method only extends the geometrical orbits through 
collision, but not the actual Hamiltonian system (i.e. it has not been regularized). 

In a subsequent paper we will describe the above method for extending total 
collision orbits in more detail, and give several concrete examples. We will also 
show how to handle lower-order collisions. 
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