BULL. AUSTRAL. MATH. SOC. Vol. 52 (1995) [161-167]

SEPARABLE DETERMINATION OF FRÉCHET DIFFERENTIABILITY OF CONVEX FUNCTIONS

J.R. GILES AND SCOTT SCIFFER

For a continuous convex function on an open convex subset of any Banach space a separability condition on its image under the subdifferential mapping is sufficient to guarantee the generic Fréchet differentiability of the function. This gives a direct insight into the characterisation of Asplund spaces.

It is well known that a continuous convex function ϕ on a separable Banach space X may be Fréchet differentiable on a dense G_{δ} subset of X but the image of ϕ under its subdifferential mapping be non-separable. For example, the James Tree space JT, [6], is separable and its dual JT^* is non-separable, but there exists an equivalent norm on JT which is Fréchet differentiable on a dense G_{δ} subset of JT, [1, p.246].

However in this note we show that for a continuous convex function on an open convex subset A of any Banach space X, if the subdifferential mapping produces a separable image on every closed separable subspace Y of X, then the function is Fréchet differentiable on a dense G_{δ} subset of A.

A Banach space X is said to be an Asplund space if every continuous convex function on an open convex subset A of X is Fréchet differentiable on a dense G_{δ} subset of A. A Banach space is Asplund if and only if every separable subspace has separable dual, [9, p.24]. Our general Propositions 1 and 2 give us direct insight into why such a structural property for a Banach space has implications for the Fréchet differentiability of all continuous convex functions defined on open convex subsets of the space.

A set-valued mapping Φ from a topological space A into non-empty subsets of a linear topological space X is upper semi-continuous at $t \in A$ if for every open set Wwhere $\Phi(t) \subset W$ there exists an open neighbourhood U of t such that $\Phi(U) \subset W$. When Φ is upper semi-continuous on A and has convex compact images at each point we call Φ a cusco mapping. A cusco Φ is a minimal cusco if its graph does not contain the graph of any other cusco with the same domain. A minimal weak* cusco from a topological space A into subsets of the dual X^* of a Banach space X has the property

Received 17th October, 1994.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

that, for any open set U in A and any weak* closed convex set K in X^* , if $\Phi(t) \cap K \neq \emptyset$ for every $t \in U$ then $\Phi(U) \subset K$, [4, p.844]. Further, a set-valued mapping Φ from a topological space A into non-empty subsets of a linear topological space X is *lower* semi-continuous at $t_0 \in A$ if for every open subset W where $\Phi(t_0) \cap W \neq \emptyset$ there exists an open neighbourhood U of t_0 such that $\Phi(t) \cap W \neq \emptyset$ for each $t \in U$.

PROPOSITION 1.

- (i) A weak* cusco Φ from a Baire space A into subsets of the dual X* of a Banach space X where $\Phi(A)$ is separable, is norm lower semi-continuous at the points of a dense G_{δ} subset D of A.
- (ii) If Φ is also a minimal weak^{*} cusco then it is single-valued and norm upper semi-continuous at the points of D.

PROOF: (i) Since $\Phi(A)$ is separable there exists a countable base $\{B_n\}$ of open balls for the norm topology relative to $\Phi(A)$. If Φ is not norm lower semi-continuous at $t_0 \in A$ then there exists an $n_0 \in \mathbb{N}$ such that $\Phi(t_0) \cap B_{n_0} \neq \emptyset$ but in any neighbourhood U of t_0 there exists a $t \in U$ such that $\Phi(t) \cap B_{n_0} = \emptyset$. Now there exists $\overline{B_{n_1}} \subset B_{n_0}$ such that $\Phi(t_0) \cap B_{n_1} \neq \emptyset$. Then $\Phi(t) \cap B_{n_1} = \emptyset$. Now $\Phi(t) \subset C(\overline{B_{n_1}})$ and since $C(\overline{B_{n_1}})$ is weak* open and Φ is weak* upper semi-continuous at t there exists an open neighbourhood V of t where $V \subset U$ such that $\Phi(V) \cap \overline{B_{n_1}} = \emptyset$, and so $\Phi(V) \cap B_{n_1} = \emptyset$. Given $n \in \mathbb{N}$, the set

 $\{t \in A : \Phi(t) \cap B_n \neq \emptyset \text{ but for every open neighbourhood } U \text{ of } t$

there exists an open set V of U such that $\Phi(V) \cap B_n = \emptyset$

is nowhere dense. We conclude that the subset of A where Φ is not norm lower semicontinuous is first category in A.

(ii) Consider $t_0 \in D$ and $x \in \Phi(t_0)$. Given an open ball W where $x \in W$, there exists an open ball V such that $x \in V \subset \overline{V} \subset W$. Since Φ is norm lower semicontinuous at t_0 there exists an open neighbourhood U of t_0 such that $\Phi(t) \cap V \neq \emptyset$ for each $t \in U$ and so $\Phi(t) \cap \overline{V} \neq \emptyset$ for each $t \in U$. Since \overline{V} is weak* closed convex and Φ is minimal we have that $\Phi(U) \subset \overline{V}$ and so $\Phi(U) \subset W$. This implies that Φ is single-valued and norm upper semi-continuous at t_0 .

This proposition is a modification of [4, Proposition 2.3 and Theorem 2.6].

Given a continuous convex function ϕ on an open convex subset A of a Banach space X, the subdifferential of ϕ at $x \in A$ is the set

$$\partial \phi(x) = \{f \in X^* : f(y) \leqslant \lim_{\lambda \to 0+} rac{\phi(x+\lambda y) - \phi(x)}{\lambda} ext{ for all } y \in X \},$$

and the subdifferential mapping, $x \mapsto \partial \phi(x)$, is a minimal weak^{*} cusco from A into subsets of X^* . Now ϕ is Fréchet differentiable at $x \in A$ if there exists a continuous

linear functional $\phi'(x)$ on X and given $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\Big|\phi(x+y)-\phi(x)-\phi'(x)(y)\Big|$$

Further, ϕ is Fréchet differentiable at $x \in A$ if and only if the subdifferential mapping $x \mapsto \partial \phi(x)$ is single-valued and norm upper semi-continuous at x, [9, p.19].

So the proposition has implications for the differentiability of continuous convex functions.

COROLLARY 1.1. A continuous convex function ϕ on an open convex subset A of a Banach space X where $\partial \phi(A)$ is separable is Fréchet differentiable on a dense G_{δ} subset of A.

To utilise the full strength of our result we need the following proposition which is a generalisation of Gregory's method, [2, p.141], as developed by Veselý, [10, Theorem 2].

PROPOSITION 2. A set-valued mapping Φ from an open subset A of a Banach space X into subsets of X^{*} is single-valued and norm upper semi-continuous at the points of a dense G_{δ} of A if for every closed separable subspace Y of X where $A \cap Y \neq \emptyset$, the restriction mapping $\Phi|_Y$ into subsets of Y^{*} is single-valued and norm upper semi-continuous at the points of a dense G_{δ} subset of $A \cap Y$.

PROOF: Suppose that the set

 $H = \{x \in A : \Phi \text{ is not single-valued and norm upper semi-continuous at } x\}$

is of the second Baire category. We construct a closed separable subspace Y of X where $A \cap Y \neq \emptyset$ and $\Phi|_Y$ is not single-valued and norm upper semi-continuous at each point of a non-empty open subset of $A \cap Y$. Now $H = \bigcup_{m=1}^{\infty} H_m$ where

 $H_m = \{x \in A : \text{ there exists an } f \in \Phi(x) \text{ and sequences } \{y_k\} \to x \text{ and } \{g_k\}$ where $g_k \in \Phi(y_k)$ such that $||g_k - f|| > 1/m$ for all $k \in \mathbb{N}\}$.

Since H is second category there exists an $m_0 \in \mathbb{N}$ and a non-empty open set G in A such that H_{m_0} is dense in G.

We construct inductively a sequence $\{Y_1, Y_2, \ldots, Y_n, \ldots\}$ of separable subspaces of X. Choose $x_0 \in H_{m_0} \cap G$. Now there exists an $f_0 \in \Phi(x_0)$ and sequences $\{y_k\} \to x_0$ and $\{g_k\}$ where $g_k \in \Phi(y_k)$ such that $||g_k - f|| > 1/m_0$. Given $k \in \mathbb{N}$ there exists a $v_k \in X$, $||v_k|| = 1$ such that $(g_k - f)(v_k) > 1/m_0$. Define

$$Y_0 = sp\{\{x_0\} \cup \{y_k\}_{k=1}^{\infty} \cup \{v_k\}_{k=1}^{\infty}\}.$$

J.R. Giles and S. Sciffer

Suppose we have defined $Y_0 \subset Y_1 \subset Y_2 \subset \ldots \subset Y_s$, separable subspaces of X. Now there exists a sequence $\{c_i^{(s)}\}_{i=1}^{\infty}$ dense in $Y_s \cap G$. Given $i \in \mathbb{N}$ there exists a sequence $\{x_{i,n}^{(s)}\}_{n=1}^{\infty} \subset H_{m_0} \cap G$ such that $\{x_{i,n}^{(s)}\} \to c_i^{(s)}$ as $n \to \infty$. By the definition of H_{m_0} , given $i, n \in \mathbb{N}$ there exists $f_{i,n}^{(s)} \in \Phi(x_{i,n}^{(s)})$ and sequences $\{y_{i,n,k}^{(s)}\} \to x_{i,n}^{(s)}$ as $k \to \infty$ and $\{g_{i,n,k}^{(s)}\}$ where $\{g_{i,n,k}^{(s)}\} \in \Phi(y_{i,n,k}^{(s)})$ such that $\|g_{i,n,k}^{(s)} - f_{i,n}^{(s)}\| > 1/m_0$. Given $k \in \mathbb{N}$ there exists $v_{i,n,k}^{(s)} \in X$, $\|v_{i,n,k}^{(s)}\| = 1$ such that $(g_{i,n,k}^{(s)} - f_{i,n}^{(s)})(v_{i,n,k}^{(s)}) > 1/m_0$. Define

$$Y_{s+1} = sp\{Y_s \cup \{x_{i,n}^{(s)}\}_{i,n=1}^{\infty} \cup \{y_{i,n,k}^{(s)}\}_{i,n,k=1}^{\infty} \cup \{v_{i,n,k}^{(s)}\}_{i,n,k=1}^{\infty}\}.$$

Now $Y = \bigcup_{s=1}^{\infty} Y_s$ is a closed separable subspace of X and $G \cap Y$ is a non-empty open subset of $A \cap Y$.

We show that $\Phi|_Y$ is nowhere single-valued and norm upper semi-continuous on $G \cap Y$. Consider $z \in G \cap Y$ and $\delta > 0$. There exists some $s \in \mathbb{N}$ and $u^{(s)} \in Y_s \cap G$ such that $||z - u^{(s)}|| < \delta/4$ and some $i, n, k \in \mathbb{N}$ such that $||u^{(s)} - c_i^{(s)}|| < \delta/4$, $||c_i^{(s)} - x_{i,n}^{(s)}|| < \delta/4$ and $||x_{i,n}^{(s)} - y_{i,n,k}^{(s)}|| < \delta/4$. Then $||z - x_{i,n}^{(s)}|| < \delta$ and $||z - y_{i,n,k}^{(s)}|| < \delta$. Given $Q: X^* \to Y^*$, the restriction mapping $f \mapsto f|_Y$, we have

$$Q\left(f_{i,n}^{(s)}
ight) \in \Phi|_Y\left(x_{i,n}^{(s)}
ight) ext{ and } Q\left(g_{i,n,k}^{(s)}
ight) \in \Phi|_Y\left(y_{i,n,k}^{(s)}
ight)$$

and

$$\begin{aligned} \left\| Q\left(f_{i,n}^{(s)}\right) - Q\left(g_{i,n,k}^{(s)}\right) \right\| &\geq \left(Q\left(f_{i,n}^{(s)}\right) - Q\left(g_{i,n,k}^{(s)}\right) \right) \left(v_{i,n,k}^{(s)}\right) \\ &= \left(f_{i,n}^{(s)} - g_{i,n,k}^{(s)}\right) \left(v_{i,n,k}^{(s)}\right) > 1/m_0. \end{aligned}$$

Therefore diam $\Phi|_Y(B_Y(z; \delta)) \ge 1/m_0$ and we conclude that $\Phi|_Y$ is not single-valued and norm upper semi-continuous at z.

This proposition says that for any set-valued mapping from an open subset of a Banach space into subsets of the dual, generic single-valuedness and norm upper semicontinuity is a separably determined property.

So we deduce Gregory's result for convex functions, [2, p141].

COROLLARY 2.1. A continuous convex function ϕ on an open convex subset A of a Banach space X is Fréchet differentiable on a dense G_{δ} subset of A if for every closed separable subspace Y of X where $A \cap Y \neq \emptyset$, the continuous convex function $\phi|_Y$ is Fréchet differentiable on a dense G_{δ} subset of $A \cap Y$.

Given a locally Lipschitz function ψ on an open subset A of a Banach space X,

the Clarke subdifferential of ψ at $x \in A$ is the set

$$\partial \psi(x) = \{f \in X^*: f(y) \leqslant \limsup_{\substack{z o x \ \lambda o 0+}} rac{\psi(z+\lambda y) - \psi(z)}{\lambda} ext{ for all } y \in X \},$$

and the Clarke subdifferential mapping $x \mapsto \partial \psi(x)$ is a weak^{*} cusco from A into subsets of X^* . The function ψ is said to be uniformly strictly differentiable at $x \in A$ if ψ is Fréchet differentiable at x and given $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$|\psi(z+y)-\psi(z)-\psi'(x)(y)| for all $\|z-x\|<\delta$ and all $\|y\|<\delta.$$$

Now ψ is uniformly strictly differentiable at $x \in A$ if and only if the Clarke subdifferential mapping $x \mapsto \partial \psi(x)$ is single-valued and norm upper semi-continuous at x, [3, p.374].

A locally Lipschitz function ψ on an open subset A of a Banach space X is said to be *pseudo-regular* at $x \in A$ if

$$\limsup_{\lambda o 0+} rac{\psi(x+\lambda y)-\psi(x)}{\lambda} = \limsup_{\substack{\lambda o 0+ \ \lambda o 0+}} rac{\psi(z+\lambda y)-\psi(z)}{\lambda} \quad ext{for all } y \in X.$$

The Clarke subdifferential mapping of a pseudo-regular function is a minimal weak^{*} cusco, [8, Theorem 2.5]. Clearly the restriction of a pseudo-regular function is also pseudo-regular.

So more generally, Proposition 2 has differentiability implications for pseudoregular locally Lipschitz functions.

COROLLARY 2.2. A pseudo-regular locally Lipschitz function ψ on an open subset A of a Banach space X is uniformly strictly differentiable on a dense G_{δ} subset of A if for every closed separable subspace Y of X where $A \cap Y \neq \emptyset$ the locally Lipschitz function $\psi|_Y$ is uniformly strictly differentiable on a dense G_{δ} subset of $A \cap Y$.

A set-valued mapping Φ from an open subset A of a Banach space X into subsets of X^* is said to be *monotone* if

$$(f-g)(x-y) \ge 0$$
 for all $x, y \in A, f \in \Phi(x), g \in \Phi(y)$.

The mapping is *maximal monotone* if its graph is not contained in the graph of any other monotone mapping with the same domain. A maximal monotone mapping is a minimal weak* cusco, [9, p105]. The restriction of a maximal monotone mapping is also maximal monotone.

We have our main result from Propositions 1 and 2.

THEOREM 3. Consider any Banach space X.

- (i) Every continuous convex function φ on an open convex subset A of X is Fréchet differentiable on a dense G_δ subset of A if for every closed separable subspace Y of X where A ∩ Y ≠ Ø, ∂φ|_Y(A ∩ Y) is separable in Y*.
- (ii) Every pseudo-regular locally Lipschitz function ψ on an open subset A of X is uniformly strictly differentiable on a dense G_{δ} subset of A if for every closed separable subspace Y of X where $A \cap Y \neq \emptyset$, $\partial \psi|_Y (A \cap Y)$ is separable in Y^* .
- (iii) Every maximal monotone mapping Φ from an open subset A of X into subsets of X* is single-valued and norm upper semi-continuous at the points of a dense G_δ subset of A if for every closed separable subspace Y of X where A ∩ Y ≠ Ø, Φ|_Y(A ∩ Y) is separable in Y*.

We deduce the known results relating to the characterisation of Asplund spaces.

COROLLARY 3.1. A Banach space X where every closed separable subspace has separable dual has the properties that

- (i) every continuous convex function ϕ on an open convex subset A of X is Fréchet differentiable on a dense G_{δ} subset of A,
- (ii) every pseudo-regular locally Lipschitz function ψ on an open subset A of X is uniformly strictly differentiable on a dense G_δ subset of A, and
- (iii) every maximal monotone mapping Φ from an open subset A of X into subsets of X^* is single-valued and norm upper semi-continuous at the points of a dense G_{δ} subset of A, [7].

We should note that the converse of Proposition 2 does not hold in general. It is well known that the Banach space ℓ_{∞} contains a subspace isometrically isomorphic to ℓ_1 , [5, p.225]. The norm on ℓ_{∞} is Fréchet differentiable on a dense G_{δ} set, [9, p.94], however the norm on ℓ_1 is nowhere Fréchet differentiable, [9, p.8].

Finally, we should point out that Corollaries 2.1 and 2.2 are special cases of a very general result which holds for arbitrary mappings between Banach spaces, [11, p.481].

References

- R. Deville, G. Godefroy, D.E.G. Hare and V. Zizler, 'Differentiability of convex functions and the convex point of continuity property in Banach spaces', *Israel J. Math.* 59 (1987), 245-255.
- [2] J.R. Giles, 'On the characterisation of Asplund spaces', J. Austral. Math. Soc. Ser. A 32 (1982), 134-144.
- [3] J.R. Giles and Scott Sciffer, 'Continuity characterisations of differentiability of locally Lipschitz functions', Bull. Austral. Math. Soc. 41 (1990), 371-380.

[7]	Fréchet differentiability 167
[4]	J.R. Giles and Scott Sciffer, 'Generalising generic differentiability properties from convex to locally Lipschitz functions', J. Math. Anal. Appl. 188 (1994), 833-854.
[5]	R.B. Holmes, Geometrical functional analysis and its applications, Graduate Texts in Mathematics 24 (Springer-Verlag, Berlin, Heidelberg, New York, 1975).
[6]	R.C. James, 'A separable somewhat reflexive Banach space with nonseparable dual', Bull. Amer. Math. Soc. 80 (1974), 738-743.
[7]	P.S. Kenderov, 'Monotone operators in Asplund spaces', C.R. Acad. Bulgare Sci. 30 (1977), 963-964.
[8]	W.B. Moors, 'A characterisation of minimal subgradients of locally Lipschitz functions', Set Valued Analysis (to appear).
[9]	R.R. Phelps, Convex functions, monotone operators and differentiability, Lecture notes in mathematics 1364 2nd ed. (Springer-Verlag, Berlin, Heidelberg, New York, 1993).
[10]	L. Veselý, 'Norm to weak upper semi-continuous monotone operators are generically strongly continuous', (unpublished manuscript).
[11]	L. Zajíček, 'Fréchet differentiability, strict differentiability and subdifferentiability', Czechoslovak Math. J. 41 (1991), 471–489.

Department of Mathematics The University of Newcastle Newcastle NSW 2308