Metabolic studies in rats of ⁷⁵Se incorporated in vivo into fish muscle

BY MARGARET RICHOLD, MARION F. ROBINSON AND R. D. H. STEWART

Department of Nutrition, and Department of Medicine, University of Otago, Dunedin, New Zealand

(Received 16 June 1976 – Accepted 30 July 1976)

1. [⁷⁵Se]selenite or [⁷⁵Se]selenomethionine was injected into the coelomic cavity of fish. After 2 d or 14 d the muscle portion of the fish was removed and homogenized. The long-term fate in rats of an oral dose of each labelled homogenate was compared with that of an oral dose of [⁷⁶Se]selenite or [⁷⁶Se]selenomethionine mixed with unlabelled fish homogenate.

2. Urinary and faecal radioactivity were measured during the 1st week and whole-body radioactivity was determined for 10 weeks. Rats were killed at weekly intervals for 4 weeks for analysis of tissue distribution of ⁷⁵Se.

3. Intestinal absorption of ⁷⁵Se given as labelled fish homogenate was less complete than that of ⁷⁵Se mixed with unlabelled homogenate, and the absorption of ⁷⁵Se from the 14 d-labelled fish homogenate derived from [⁷⁶Se]selenite was less complete than that of ⁷⁵Se from the other labelled homogenates.

4. Urinary excretion of absorbed ⁷⁵Se in the first 7 d was in the range 5-8 % absorbed dose and was slightly greater in the rats given ⁷⁵Se as selenite or derived from selenite than in those given ⁷⁵Se as selenomethionine or derived from selenomethionine. Endogenous faecal excretion of absorbed Se was similar in all groups, as also were tissue distribution of retained ⁷⁵Se and long-term whole-body turnover rate.

5. The results of these studies are compared with those of earlier studies of the metabolism in rats of [⁷⁵Se]selenomethionine, [⁷⁵Se]selenite, [⁷⁵Se]selenocystine and ⁷⁵Se incorporated in vivo into rabbit kidney. There were differences in the initial utilization of ⁷⁵Se from these various sources but after the 1st week ⁷⁵Se from all sources appeared to be metabolized similarly, suggesting that for rats dietary Se of all forms is ultimately incorporated into the same metabolic pool.

In New Zealand, where soil and food Se levels are low, fish, liver and kidney are relatively rich sources of dietary Se (Robinson, 1975). However, Se in these different foods is not equally available (Miller, Soares, Bauersfield & Cuppett, 1972; Cantor, Scott & Noguchi, 1975) and it is not known whether it is metabolized in the same manner. We have previously reported studies of the metabolism in rats of ⁷⁵Se administered as sodium selenite, or selenomethionine (Thomson & Stewart, 1973), as selenocystine (Thomson, Robinson, Stewart & Robinson, 1975) or as ⁷⁵Se incorporated in vivo into rabbit kidney (Thomson, Stewart & Robinson, 1975). This report presents the results of a study of the intestinal absorption, endogenous excretion, tissue distribution and whole-body turnover in rats of ⁷⁵Se incorporated in vivo into fish flesh.

EXPERIMENTAL

Procedure

A dose of 500 μ Ci [⁷⁵Se]selenomethionine or [⁷⁵Se]selenite containing not more than 500 μ g Se (Radiochemical Centre, Amersham, Bucks.) was injected into the coelomic cavity of *Pseudolabrus celidotus*, a common and hardy marine fish found in Otago harbour, New Zealand. Six fish were dosed with [⁷⁵Se]selenomethionine in February and six fish were dosed with [⁷⁵Se]selenite in July. They were kept at the harbour edge in a tank which was flushed continuously with sea-water. Three fish were killed 2 d after injection with ⁷⁵Se and three fish were killed at 14 d. The muscular portions of the three fish in each group were

pooled and homogenized in 75 ml distilled water using a combination of Silverson (Gallenkamp, Technico House, London) and Waring blenders (Waring Products Division, Dynamics Corporation of America, New Hartford, Conn., USA). The homogenate was stored at 4° until used.

Each experimental group comprised eighteen female Wistar rats from the same colony and initially weighing 130–150 g. These rats were housed individually in stainless-steel mesh cages and were given distilled water and a pelleted stock diet containing (/kg) 0.033 mg Se and 180 g available protein. Food and water were available *ad lib*. except for the 18 h immediately preceding administration of the dose of fish homogenate. Each of the rats received orally, by intragastric intubation when anaesthetized with diethyl ether, 6 ml labelled fish homogenate containing a known amount of ⁷⁵Se (4·3–5·0 μ Ci). Details of the homogenate fed to each group are summarized in Table 1. In addition a control group of rats received a mixture of unlabelled fish homogenate with either [⁷⁵Se]selenomethionine or [⁷⁵Se]selenite. Each dose comprised approximately 3 g fish and contained not more than 2 μ g Se. The selenomethionine doses were given in three portions in a 6 h period and the selenite doses were given in two portions in a 5 h period.

Collection of urine and faeces

Twelve rats from each group were placed in metabolism cages for the separate collection of urine and faeces. These collections were completed at 24 h intervals for 7 d. The amount of radioactivity in measured portions of each sample was determined using a large-volume counter (constructed in the Department of Medical Physics, Wakari Hospital, Dunedin; Thomson, Stewart & Robinson 1975), with a ⁷⁵Se standard. The total amount in each 24 h urine or faecal sample was expressed as a percentage of the administered dose.

Whole-body counting

Measurements of whole-body radioactivity were made with the large-volume counter and were made for each rat shortly after administration of the dose. This initial count (day 0) was used as the '100 %' reference value for subsequent measurements for that animal. All whole-body radioactivity measurements were corrected for radioactive decay and any variation in counting efficiency by reference to a ⁷⁵Se standard counted at the same time. Measurements were made on all rats not in metabolism cages on days 1, 2, 3 and 4, and on all surviving rats on day 7 and then weekly for 9 weeks.

Tissue retention

Three rats from each group were killed on day 7, two each on days 14, 21, 28, 35 and 56, and the remaining animals on day 70. Rats were anaesthetized with diethyl ether, 4 ml blood was removed from the jugular vein and the animals were killed by replacing them in the anaesthetizing jar. Radioactivity was measured in whole blood, plasma and erythrocytes, and in the liver, kidneys, adrenals, pancreas, heart, spleen, intestines, head, skin and carcass using the large-volume counter. The amount of radioactivity in whole organs was expressed as a percentage of the 'whole-body' ⁷⁵Se for that animal at death, and for the other tissues was expressed as a percentage of 'whole-body' ⁷⁵Se/g tissue wet weight.

RESULTS

⁷⁵Se balance during the 1st week

The intestinal absorption of the 75 Se tracer was calculated by plotting cumulative faecal excretion of 75 Se v. time (Lutwak, 1969) as previously described (Thomson & Stewart, 1973).

			Preparations of	f fish homogenat	a)	
Expt	Group of rats	Form of dose	Tracer administered to fish	period after admin- istration (d) when fish were killed	Season	Code for chemical form of dose
1. Selenomethionine	1a 1b 1c	73Se-labelled fish muscle 75Se-labelled fish muscle 75Sejselenomethionine with fish-muscle homogenate	[785]selenomethionine [786]selenomethionine	14 - 2	Summer Summer Summer	[75Se]FM-Semet-14d [75Se]FM-Semet-2d [75Se]Semet + FM
2. Selenite	2a 2b 2c	⁷⁵ Se-labelled fish muscle ⁷⁵ Se-labelled fish muscle [⁷⁵ Se]selenite with fish-muscle homogenate	[75Se]selenite [75Se]selenite	14 2	Winter Winter Winter	[758]FM-selenite-14d [758]FM-selenite-2d [758]selenite+FM
	FΝ	4, fish muscle; Semet, selenomethic	nine; 14d, 2d, labelled for 1	4d and 2d respe	ctively.	

Table 1. Details of ⁷⁵Se-labelled and unlabelled fish homogenates administered orally to six groups of rats (Each group contained eighteen rats)

Studies of ⁷⁵Se in rats

able 2. Absorption, excretion and retention of ⁷⁵ Se (% administered dose) by rats during the 1st week after oral doses of	75Se-labelled fish homogenates and 75 Se mixed with unlabelled fish homogenate*	(Mean values with their standard errors for twelve rats/treatment)
[ab]		

						Excretion			Rete	ntion
Group of rats	Chemical form of dose†		Intestinal absorption of ¹⁵ Se	Urine	Unabsorbed faecal 75Se	Endogenous faecal 75Se‡	Total faecal ⁷⁶ Se	Total excretion of 756 b	From excretion y difference	By whole- body counting
la	[756]FM-Semet-14d	Mean SE	72:4 0:6	4.4 0.2	27-6 0-6	10-6 0-8	38-2 0-5	42.6 0-5	57.4 0.5	64-0 0-5
lb	[⁷⁵ Se]FM-Semet-2d	Mean se	74-0 0-5	4- 0-2 2	26-0 0-5	10-5 1-0	36-5 0-9	40.6 0.9	59-4 0-9	61·8 1·0
lc	[75Se]Semet + FM	Mean SE	95-9 0-1	5.2 0:3	4·1 0·1	13-1 0-4	17·2 0·4	22:4 0:5	77-6 0-5	75-8 1-4
2a	[75Se]FM-selenite-14d	Mean se	64·2 0-3	5:3 0:4	35.8 0-3	9.4 1:2	45·2 1·2	50·5 1·2	49·5 1·2	50-3 0-8
2b	[75Se]FM-selenite-2d	Mean SE	77-3 0-1	5.6 0:3	22·7 0·1	10-2 1-2	32-9 1-2	38·5 1·2	61·5 1·2	9.09 0.0
2с	[⁷⁵ Se]selenite + FM	Mean SE	84-0 0-8	5.7 0.4	16-0 0-8	14-0 1-5	30-0 1-3	35-7 1-3	64:3 1:3	70-6 1-1
	FM, 1 * For	fish muscle r details of	; Semet, seleno procedures se	methionin	e; 14d, 2d, lab	elled for 14 d an	id 2 d rest	sectively.		

For details of procedures, see p. 19.
For details, see Table 1.
Calculated as the difference between total faecal ⁷⁵Se and unabsorbed faecal ⁷⁵Se.

https://doi.org/10.1079/BJN19770057 Published online by Cambridge University Press

Fig. 1. Urinary excretion of the ⁷⁵Se (% administered dose) in three groups, each of twelve rats, given oral doses of an homogenate of ⁷⁵Se incorporated in vivo into fish muscle, 14 d (group 1a) (\odot) or 2 d (group 1 b) (\bigcirc) after an injection of [⁷⁵Se]selenomethionine (see p. 19), or [⁷⁵Se]selenomethionine mixed with unlabelled fish muscle (group 1 c) (\triangle).

7

Studies of ⁷⁵Se in rats

Jrinary excretion of ⁷⁵Se

 $(^0, administered dose)$

3.5

3.0

2.5

2·0 1·5

1.0

0.5

1

2 3

Period after administration of dose (d)

Fig. 1

5 6

Urinary excretion of ⁷⁵Se

(% administered dose)

3.5

3.0

2·5 2·0

1.5

1.0 0.5 1 2 3

5

Period after administration of dose (d) Fig. 2

Fig. 2. Urinary excretion of 75 Se (% administered dose) in three groups, each of twelve rats, given oral doses of an homogenate of 75 Se incorporated in vivo into fish muscle, 14 d (group 2a) (**I**) or 2 d (group 2b) (**D**) after an injection of [76 Se]selenite (see p. 19), or [75 Se]selenite mixed with unlabelled fish muscle (group 2c) (**A**).

Mean absorption was 72, 74 and 96 % administered dose for the rats in groups 1a, 1b and 1c given the selenomethionine series of homogenates (Table 2) respectively, and 64, 77 and 84 % for those in groups 2a, 2b and 2c given the selenite series of homogenates respectively (Table 2).

Urinary excretion of ⁷⁵Se during the 1st week is shown in Figs. 1 and 2. Mean excretion in the 1st day was 1.6-2.4% administered dose for the three groups given ⁷⁵Se derived from selenomethionine (Fig. 1), with the rats given the unlabelled homogenate (group 1c) excreting more than those in group 1b (P < 0.001). For the groups given ⁷⁵Se derived from selenite (Fig. 2) the mean excretion on the 1st day was 2.2-3.1% administered dose, with those given unlabelled homogenate excreting less than the other two groups (P < 0.01). There was no difference between the two groups given unlabelled homogenate, but groups 1a and 1b given fish labelled with ⁷⁵Se derived from [⁷⁵Se]selenomethionine excreted less than the corresponding groups 2a and 2b given fish labelled with ⁷⁵Se derived from [⁷⁵Se]selenite (P < 0.001).

Urinary loss of ⁷⁵Se decreased progressively and for all groups was less than 0.5% administered dose/d on day 7. Cumulative urinary excretion of ⁷⁵Se in the 1st week was 4.4, 4.1 and 5.2% administered dose for the rats in groups 1a, 1b and 1c respectively, and it was 5.3, 5.6 and 5.7% administered dose for those in groups 2a, 2b and 2c respectively (Table 2). This accounted for 5.4–6.1% absorbed dose for the groups given ⁷⁵Se derived from selenomethionine (Table 3), which was just less than the excretion of 6.8-8.3% absorbed dose for the corresponding groups given ⁷⁵Se derived from selenite (P < 0.05 for groups 1c and 2c, P < 0.01 for groups 1b and 2b, P > 0.001 for groups 1a and 2a). Cumulative urinary losses of the absorbed dose did not differ for the selenomethionine series of homogenates, whereas in the selenite series of homogenates, the loss was 6.8% absorbed dose for group 2c compared with 8.3% absorbed dose for group 2a (P > 0.02).

Faecal loss of ⁷⁵Se during the 1st week is shown in Figs. 3 and 4. Most of the unabsorbed radioactivity was passed on day 1 or day 2 and on day 7 faecal ⁷⁵Se was less than 2 %

Fig. 3. Faecal excretion of ⁷⁵Se (% administered dose) in three groups, each of twelve rats, given oral doses of an homogenate of ⁷⁵Se incorporated in vivo into fish muscle, 14 d (group 1 a) (\odot) or 2 d (group 1 b) (\bigcirc) after an injection of [⁷⁵Se]selenomethionine (see p. 19), or [⁷⁵Se]selenomethionine mixed with unlabelled fish muscle (group 1 c) (\triangle).

Fig. 4. Faecal excretion of ⁷⁵Se (% administered dose) in three groups, each of twelve rats, given oral doses of an homogenate of ⁷⁵Se incorporated in vivo into fish muscle, 14 d (group 2a) (\blacksquare) or 2 d (group 2b) (\square) after an injection of [⁷⁵Se]selenite (see p. 19), or [⁷⁵Se]selenite mixed with unlabelled fish muscle (group 2c) (\blacktriangle).

administered dose/d for all groups. Cumulative faecal losses of ⁷⁵Se in the 1st week were 38, 37 and 17 % administered dose for groups 1a, 1b and 1c respectively; and were 45, 33 and 30 % administered dose for groups 2a, 2b and 2c respectively (Table 2). Endogenous faecal loss of ⁷⁵Se during the 1st week was determined as the difference between total faecal ⁷⁵Se and unabsorbed ⁷⁵Se. This amounted to 9–14 % administered dose for the six groups (Table 2) or 13–17 % absorbed ⁷⁵Se (Table 3).

Whole-body retention and turnover of ⁷⁵Se

Whole-body retentions of ⁷⁵Se on day 7 were calculated from combined urinary and faecal losses of radioactivity and by whole-body counting (Table 2). There was close agreement between the values obtained by the two methods for four of the groups, but the value obtained by whole-body counting was 6–7 % higher for groups 1a and 2c (Table 2). Whole-body retention at day 7 calculated from excretion measurements was 57, 59 and 78 % administered dose for groups 1a, 1b and 1c respectively, and 50, 62 and 64 % administered dose for groups 2a, 2b and 2c respectively (Table 2). When expressed as a percentage of absorbed dose the values were in range 77–81 % absorbed dose (Table 3). Retention of ⁷⁵Se

Studies of ⁷⁵Se in rats

Table 3. Comparison of results obtained for absorption (% administered dose) excretion and retention (% absorbed dose) of ⁷⁵Se by rats during the 1st week after dose of ⁷⁵Se-labelled fish homogenates and ⁷⁵Se mixed with unlabelled fish homogenates^{*}

		Intes-	Fv	cretion	Rete	ntion
Group		absorp- tion		Endogenous	From ex- cretion by	By whole-body
of rats	Chemical form of dose	or "Se	Orme	laecal Set	unterences	counting
1a	[⁷⁵ Se]FM-Semet-14d	72	6 ∙1	14.6	7 9·3	88-4
1b	[⁷⁵ Se]FM-Semet-2d	74	5.5	14.2	80 ∙3	83.5
1c	[⁷⁵ Se]Semet + FM	96	5∙4	13.7	80·9	79 ·0
2a	[⁷⁵ Se]FM-selenite-14d	64	8.3	14.6	77.1	7 8·3
2Ъ	[75Se]FM-selenite-2d	77	7.2	13·2	79·6	78.4
2c	[⁷⁵ Se]selenite + FM	84	6.8	16 ∙7	76· 5	84·0

(Mean values for twelve rats/treatment)

FM, fish muscle; Semet, selenomethionine; 14d, 2d, labelled for 14 d and 2 d respectively.

* For details of procedures, see p. 19.

† For details, see Table 1.

‡ Calculated as the difference between total faecal ⁷⁸Se and unabsorbed faecal ⁷⁸Se.

Fig. 5. Whole-body ⁷⁵Se (% administered dose) in groups of rats given oral doses of an homogenate of ⁷⁵Se incorporated in vivo into fish muscle, 14 d (group 1a) (\odot) or 2 d (group 1b) (\bigcirc) after an injection of [⁷⁵Se]selenomethionine (see p. 19), or [⁷⁵Se]selenomethionine mixed with unlabelled fish muscle (group 1c) (\triangle). Each point represents the mean value for all surviving rats in that group (see p. 20).

Fig. 6. Whole-body ⁷⁵Se (% administered dose) in groups of rats given oral doses of an homogenate of ⁷⁵Se incorporated in vivo into fish muscle 14 d (group 2a) (**m**) or 2 d (group 2b) (**D**) after an injection of [⁷⁵Se]selenite (see p. 19), or [⁷⁵Se]selenite mixed with unlabelled fish muscle (group 2c) (**A**). Each point represents the mean value for all surviving rats in that group (see p. 20).

at 7 d measured by whole-body counting (% administered dose) was 64, 62 and 76 for groups 1a, 1b and 1c respectively, and 50, 61 and 71 for groups 2a, 2b and 2c respectively, or 78-88 % absorbed dose (Table 3).

Mean whole-body ⁷⁵Se in the surviving rats of the six groups for the 10-week period is shown in Figs. 5 and 6. For all six groups the whole-body retention curve could be resolved into two exponential components and regressions for each were calculated by the method of least squares. The first of these exponential components represents the phase of urinary and faecal loss of ⁷⁵Se during an initial equilibration period (phase 1) and the second exponential component represents long-term whole-body turnover of retained ⁷⁵Se (phase 2). The halftimes for phase 1 were 8.5 and 8.1 and 14.1 d for groups 1a, 1b and 1c respectively, and 8.0, 10.5 and 14.3 d for groups 2a, 2b and 2c respectively. The half-times for phase 2 were 45.9-49.8 d and there was no significant difference among the six groups.

Tissue distribution of ⁷⁵Se

The pattern of distribution of ⁷⁵Se between the tissues examined was similar for all groups. The highest concentration of ⁷⁵Se was found in kidney and liver, but the greatest amount of ⁷⁵Se was present in the carcass comprising the skeleton and skeletal muscle.

DISCUSSION

This study, the fourth in a series of studies on the metabolism in rats of various sources of Se, has revealed some differences in the initial metabolism of 'fish' Se compared with that of Se ingested in the other forms (Table 4). Further, the metabolism of the labelled fish muscle may have been influenced by the form in which ⁷⁵Se was administered and by the period which elapsed after the Se was taken up by the fish.

Millar (1972) had shown that injected ⁷⁵Se from [⁷⁵Se]selenite and [⁷⁵Se]selenomethionine was rapidly incorporated into rat tissues within 2–3 d. Because it was not known whether this would also occur in fish muscle, the fish were left for 2 d and 14 d before killing, and the fish homogenate was then fed to rats.

The metabolism of 'fish' Se derived from selenomethionine was not different from that of ⁷⁵Se given as [⁷⁵Se]selenomethionine together with the non-radioactive fish homogenate, except for a greatly reduced intestinal absorption. In addition there was no difference between the metabolism of the 2 d- and 14 d-labelled fish homogenates. This suggests that after digestion the greater part of the ⁷⁵Se in these homogenates was released as selenomethionine or a similarly metabolized compound. However, the lesser intestinal absorption of the tracer from the fish muscle shows that either digestion of the homogenate was incomplete or a proportion of the ⁷⁵Se had been converted into a non-absorbable or non-digestible form. If the latter were the situation existing, then the change would have occurred within 2 d of the administration of the [⁷⁵Se]selenomethionine to the fish. There was no evidence of any effect upon the intestinal absorption or initial metabolism of [⁷⁵Se]selenomethionine by unlabelled fish homogenate (Table 4) despite the bulk of the dose and the necessity of administering it in three divided doses in a period of 6 h.

It is of interest to compare the metabolism of 'fish' Se derived in vivo from [⁷⁵Se]selenomethionine with that of rabbit kidney similarly derived (Thomson, Stewart & Robinson, 1975). 'Rabbit-kidney' Se was more completely absorbed than 'fish' Se (87 v. 72-74 % administered dose), but in the 1st week after absorption more of the absorbed radioactivity was excreted in the urine from the labelled rabbit kidney than from the fish (13.3 v. 5.5- $6\cdot1$ % administered dose), the difference occurring principally on the 1st day (10 v. 3 % administered dose). It is likely that the Se had been incorporated into different compounds in the rabbit kidney and the fish muscle, because of metabolic differences between species

snoi	lled	
nover	-labe	
intr	75 <i>Se</i> -	
d or	put	
orbei	Se	
abs	2K-7	
3	ne, l	
ution	cysti	
reter	leno	
pur	Se]se	
ion	, [75]	
ccret	nine	
(), e)	ethio	
dose	mon	
ered]sele	
iniste	75Se	
admi	ite,	
%	selen	
tion	5Se	
sorp	of [
r ab.	oses	
d fo	er d	
taine	c afi	
iqo s	week	
esult.	lst	
ofre	the	
nosi	ring	
npar	s du	ate*
Cor	75Se	uago.
le 4.	1) of	moh
Tab	dose	fish

(treatment)
rats,
twelve
or
ten
for
values
(Mean

Retention

Excretion

				Urii	g		from
			Intestinal		ſ	Endogenou	s excretion
	Method of		absorption	Day	Day	faecal	by
Chemical form of dose	administration	Source of results	of ⁷⁵ Se	1	2-7	75Set	difference
[75 Se]selenite	Intravenous	Thomson & Stewart (1973)	l	16	ŝ	13	68
[75Se]selenomethionine	Intravenous		1	7	ŝ	12	83
[75Se]selenite	Oral	Thomson & Stewart (1973)	16	11	ę	13	73
[75Se]selenomethionine	Oral		95	7	7	11	84
[75Se]selenocystine	Oral	Thomson, Robinson, Stewart &	81	10	4	10	76
[75Se]selenomethionine	Oral	Robinson (1975)	86	ŝ	ς	10	84
RK- ⁷⁵ Se	Oral	Thomson, Stewart & Robinson (1975)	87	10	4	12	74
^{[75} Se]selenomethionine + rabbit kidney homogenate	Oral		16	4	ŝ	13	80
[75Se]FM-Semet-14d†	Oral	Present study	72	ŝ	ę	15	79
[75Se]FM-Semet-2d†	Oral		74	7	ŝ	14	80
[75Se]Semet + FM†	Oral		96	6	ŝ	14	81
[75Se]FM-selenite-14d [†]	Oral	Present study	2	5	ŝ	15	77
[75Se]FM-selenite-2d†	Oral		77	ę	4	13	80
[75Se]selenite + FM [†]	Oral		84	7	4	17	77
DV 75Ca Vidn	lev homocenete fron	and the second state of the second	on Ctompart P. D	chincon	1075)		

RK-⁷³Se, kidney homogenate from rabbits given [⁷³Se]selenomethionine (Thomson, Stewart & Robinson, 1975). FM, fish muscle; Semet, selenomethionine; 14d, 2d, labelled for 14 d and 2 d respectively. * For details of procedure, see p. 19. † For details, see Table 1. ‡ Calculated as the difference between total faecal ⁷⁵Se and unabsorbed faecal ⁷⁵Se.

or between tissues. It is noteworthy that the metabolism of [⁷⁵Se]selenomethionine mixed with unlabelled fish muscle or rabbit kidney homogenates was similar.

The ⁷⁶Se in homogenates from fish given [⁷⁵Se]selenite was also less well absorbed by the rats than ⁷⁵Se administered as selenite with unlabelled fish homogenate, but in this experiment there was a difference between the 2 d- and 14 d-labelled homogenates. Absorption of the 14 d-labelled homogenates was less than the 2 d-labelled homogenate which indicates that in the 14 d after dosing there was a continuing coversion in the fish of ⁷⁵Se derived from [⁷⁶Se]selenite to a less digestible or less absorbable form. However, the selenite experiment was undertaken in July when the mean sea-water temperature was 7°, whereas the selenomethionine experiment was done in February when the mean sea-water temperature was 16°. This difference in environmental temperature for the poikilothermic fish could have made an almost twofold difference in their metabolic rate (Bullock, 1955), which may have accounted in part at least for the differences between the [⁷⁶Se]selenite homogenates of 2 d- and 14 d-labelled fish.

Urinary output of ⁷⁵Se where [⁷⁵Se]selenite was mixed with unlabelled homogenate was much lower than that previously found for [⁷⁵Se]selenite given orally in solution or by intravenous injection to rats (Table 4). In the earlier studies 16 % injected dose and 11 % absorbed dose were excreted during the 1st day, and most probably within a few hours of the dose being given, if one can extrapolate from the studies of [⁷⁵Se]selenite in young women (Thomson & Stewart, 1974). In the present study only 2 % absorbed dose was excreted which suggests that there was some in vitro interaction between the selenite and the fish homogenate during the storage for 18 h in the refrigerator before administration. According to Levander (1976), most of the selenite would have been reduced to selenide, or complexed in some other way. This might also account for the slightly reduced intestinal absorption of [⁷⁵Se]selenite given with the unlabelled fish homogenate compared with that of [⁷⁵Se]selenite given alone (84 v. 91 % administered dose) (Table 4).

Little is known about the chemical nature of Se in seafoods. Se is known to become associated in fish with heavy metals, particularly mercury, with which it forms complexes, possibly metal selenides (Ganther, Goudie, Sunde, Kopecky, Wagner, Oh & Hoekstra, 1972; Pařízek, Kalousková, Babický, Beneš & Pavlik, 1974). It is also known that Se in fish meal has a low biological availability (Ganther, Wagner, Sunde & Hoekstra, 1972; Cantor *et al.* 1975) but this does not appear to depend directly upon the concentration of Hg in the fish as availability of Se is low, even from fish meals low in Hg (Ganther & Sunde, 1974). The fish muscle used in the present study contained 0.6 μ g Se/g and 0.06 μ g Hg/g (J. V. Dunckley, private communication) giving a value for the molar ratio, Hg:Se of 0.04, which was less than the value of 0.07 found in low-Hg tuna meal (Ganther & Sunde, 1974). It seems unlikely that more than a small proportion of the Se in our fish homogenate was complexed with Hg or other heavy metals, the remainder probably being incorporated into tissue proteins or other compounds (Lunde, 1973*a*, *b*; Levander, 1976; Moffit & Clary, 1974; Potter & Matrone, 1974).

The present study gives no clear information on the actual forms of ⁷⁵Se in the labelled fish, but it would seem unlikely that they would be identical judging from the different chemical and metabolic behaviour of selenite and selenomethionine. The differences in intestinal absorption by the rat of the labelled fish homogenates and in the urinary excretion during the 1st day suggest that ⁷⁵Se in fish muscle differed chemically according to the form of the tracer injected into the fish. But from the 1st day onwards there was close agreement with all groups of rats given fish in their handling of absorbed tracer.

From our comparisons of the results from all our studies of ⁷⁵Se in rats (Table 4; see also Table 3 of Thomson, Robinson *et al.* 1975), it seems that 'fish' Se is less well absorbed than all the other forms studied. But once absorbed, the differences which existed in the urinary

excretion of the tracer during the 1st week, occurred almost entirely during the 1st day; 'fish' Se resembled selenomethionine whereas 'rabbit-kidney' Se resembled selenocystine and selenite. It is not clear whether the endogenous faecal output during the 1st week differed according to the dose given. Nevertheless on all occasions in this study and in our earlier studies (Thomson & Stewart, 1973; Thomson *et al.* 1975; Thomson, Stewart & Robinson, 1975), whole-body turnover rates for ⁷⁵Se after the 1st week were closely similar. This supports our previous claim that the long-term metabolism of retained Se in rats appears to be independent of the chemical form from which it was derived. In this respect the metabolism of Se in rats is different from that in man for whom the long-term turnover rate for ⁷⁵Se given as selenite is much more rapid than that of ⁷⁵Se given as selenomethionine (Thomson & Stewart, 1974; Griffiths, Stewart & Robinson, 1976).

We are indebted to Associate Professor J. B. Jillet, Director, Portobello Marine Laboratory, University of Otago, New Zealand, for his advice and provision of facilities for the fish husbandry, and are grateful to Miss Gaylene Friend for technical assistance, to Mr J. V. Dunckley for estimations of Hg in the fish, and to Dr Christine Thomson for helpful discussions. This work was supported by the Medical Research Council of New Zealand.

REFERENCES

Bullock, T. H. (1955). Biol. Rev. 30, 311.

- Cantor, A. H., Scott, M. L. & Noguchi, T. (1975). J. Nutr. 105, 96.
- Ganther, H. E., Goudie, C., Sunde, M. L., Kopecky, M. J., Wagner, P., Oh, S. H. & Hoekstra, W. G. (1972). Science, N.Y. 175, 1122.
- Ganther, H. E. & Sunde, M. L. (1974). J. Fd Sci. 39, 1.
- Ganther, H. E., Wagner, P. A., Sunde, M. L. & Hoekstra, W. G. (1972). In *Trace Substances in Environ*mental Health, vol. 4, p. 247 [D. D. Hemphill, editor]. Columbia, Missouri: University of Missouri.
- Griffiths, N., Stewart, R. D. H. & Robinson, M. F. (1976). Br. J. Nutr. 35, 373

Levander, O. A. (1976). In Trace Elements in Human Health and Disease, Vol. II, Essential and Toxic Elements p. 135 [A. S. Prasad and D. Oberleas, editors]. New York: Academic Press.

Lunde, G. (1973a). Biochim. biophys. Acta 304, 76.

- Lunde, G. (1973b). J. Sci. Fd Agric. 24, 413.
- Lutwak, L. (1969). Am. J. clin. Nutr. 22, 771.
- Millar, K. R. (1972). N.Z. Jl agric. Res. 15, 547.
- Miller, D., Soares, J. H., Bauersfield, P. & Cuppett, S. L. (1972). Poult. Sci. 51, 1669.

Moffit, A. E. & Clary, J. J. (1974). Res. Commun. chem. Path. Pharmac. 7, 593.

- Pařizek, J., Kalousková, J., Babický, A., Beneš, J. & Pavlík, L. (1974). In *Trace Element Metabolism in Animals*, vol. 2, p. 119 [W. G. Hoekstra, J. W. Suttie, H. E. Ganther and W. Mertz, editors]. Baltimore, Maryland: University Park Press.
- Potter, S. & Matrone, G. (1974). J. Nutr. 104, 639.
- Robinson, M. F. (1975). *The Moonstone: More About Selenium*, p. 13. Palmerston North, New Zealand: The Nutrition Society of New Zealand.
- Thomson, C. D., Robinson, B. A., Stewart, R. D. H. & Robinson, M. F. (1975). Br. J. Nutr. 34, 501.

Thomson, C. D. & Stewart, R. D. H. (1973). Br. J. Nutr. 30, 139.

- Thomson, C. D. & Stewart, R. D. H. (1974). Br. J. Nutr. 32, 47.
- Thomson, C. D., Stewart, R. D. H. & Robinson, M. F. (1975). Br. J. Nutr. 33, 45.