ON FREE PRODUCTS OF CYCLIC ROTATION GROUPS

TH. J. DEKKER

We consider the group of rotations in three-dimensional Euclidean space, leaving the origin fixed. These rotations are represented by real orthogonal third-order matrices with positive determinant. It is known that this rotation group contains free non-abelian subgroups of continuous rank (see 1).

In this paper we shall prove the following conjectures of J. de Groot (1, pp. 261-262):

THEOREM 1. Two rotations with equal rotation angles α and with arbitrary but different rotation axes are free generators of a free group, if $\cos \alpha$ is transcendental.

THEOREM 2. A free product of at most continuously many cyclic groups can be isomorphically represented by a rotation group.

More precisely: Theorem 2 is a special case of the following conjecture of J. de Groot (1, p. 262): A free product of at most continuously many rotation groups, each consisting of less than continuously many elements, can be isomorphically represented by a rotation group.

J. Mycielski at Wroclaw informed me that he, with S. Balcerzyk has proved a theorem, which includes our Theorem 2 as a special case; moreover, our Theorem 1 seems to intersect with a theorem proved by S. Balcerzyk.

Preliminaries. We define

$$A(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}, \qquad D(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Let $i_{\sigma} = \pm 1, k_{\sigma} = 1, 2, 3, \ldots$ ($\sigma = 1, \ldots, s$). Furthermore, we assume $\cos \alpha$ is transcendental. Then we have

LEMMA: No product P_s ($s \ge 1$) of the form

$$P_s = D(\theta_0) A^{i_1k_1}(\alpha) D(\theta_1) A^{i_2k_2}(\alpha) \dots A^{i_sk_s}(\alpha) D(\theta_s)$$

is the identity, if one of the following conditions is satisfied for $\sigma = 1, \ldots, s - 1$:

(a) θ_{σ} is not a multiple of π ;

(b) θ_{σ} is not a multiple of 2π and the exponents of A are of alternating sign: $i_{\sigma+1} = -i_{\sigma}$.

Proof: We use the formulas (k > 0):

Received September 25, 1957.

$$\cos k\alpha = 2^{k-1}\cos^k\alpha + \dots,$$

$$\sin k\alpha = \sin \alpha \ (2^{k-1}\cos^{k-1}\alpha + \dots),$$

$$\sin^2\alpha = 1 - \cos^2\alpha,$$

where ... denote terms of lower degree in $\cos \alpha$, So we have

(1)
$$A^{i_{\sigma}k_{\sigma}}(\alpha)D(\theta_{\sigma}) = \begin{pmatrix} \cos \theta_{\sigma}, & -\sin \theta_{\sigma}, & 0\\ q_{\sigma}\sin \theta_{\sigma}\cos \alpha + \dots, & q_{\sigma}\cos \theta_{\sigma}\cos \alpha + \dots, & -i_{\sigma}q_{\sigma}\sin \alpha + \dots \\ i_{\sigma}q_{\sigma}\sin \theta_{\sigma}\sin \alpha + \dots, & i_{\sigma}q_{\sigma}\cos \theta_{\sigma}\sin \alpha + \dots, & q_{\sigma}\cos \alpha + \dots \end{pmatrix}$$

where . . . denote terms of lower degree in $\cos \alpha$ and $\sin \alpha$ and

$$q_{\sigma} = (2\cos\alpha)^{k_{\sigma}-1}.$$

By induction with respect to σ we find that the elements of the matrices $P_{\sigma} = (p^{\sigma}_{ik})$ are polynomials in $\cos \alpha$, multiplied or not by a factor $\sin \alpha$. In particular the elements p^{σ}_{32} and p^{σ}_{33} obtain the form (we consider the leading terms only, denoting terms of lower degree by . . .):

$$p^{\sigma}_{32} = i_{\sigma}q_{\sigma}V_{\sigma}\cos\theta_{\sigma}\sin\alpha + \dots,$$

$$p^{\sigma}_{33} = q_{\sigma}V_{\sigma}\cos\alpha + \dots$$

Indeed, for $\sigma = 1$ we have $V_1 = 1$ and multiplying P_{σ} with the matrix (1), where σ is replaced by $\sigma + 1$, we find

$$p_{32}^{\sigma+1} = i_{\sigma}q_{\sigma}V_{\sigma}\cos\theta_{\sigma}\sin\alpha \cdot q_{\sigma+1}\cos\theta_{\sigma+1}\cos\alpha + q_{\sigma}V_{\sigma}\cos\alpha \cdot i_{\sigma+1}q_{\sigma+1}\cos\theta_{\sigma+1}\sin\alpha + \dots = i_{\sigma+1}q_{\sigma+1}q_{\sigma}V_{\sigma}\cos\theta_{\sigma+1}\cos\alpha\sin\alpha (i_{\sigma}i_{\sigma+1}\cos\theta_{\sigma}+1) + \dots p_{33}^{\sigma+1} = i_{\sigma}q_{\sigma}V_{\sigma}\cos\theta_{\sigma}\sin\alpha \cdot - i_{\sigma+1}q_{\sigma+1}\sin\alpha + q_{\sigma}V_{\sigma}\cos\alpha \cdot q_{\sigma+1}\cos\alpha + \dots = q_{\sigma}q_{\sigma+1}V_{\sigma}\cos^{2}\alpha (i_{\sigma}i_{\sigma+1}\cos\theta_{\sigma}+1) + \dots$$

Hence,

. .

$$V_{\sigma+1} = q_{\sigma} V_{\sigma} \cos \alpha \ (1 + i_{\sigma} i_{\sigma+1} \cos \theta_{\sigma}).$$

From this it follows that the coefficient of the leading term of p^{s}_{33} does not vanish if

$$1 + i_{\sigma}i_{\sigma+1}\cos\theta_{\sigma} \neq 0 \qquad (\sigma = 1, \dots, s-1),$$

that is, if (a) or (b) holds true.

Thus since $p^{s_{33}}$ is a polynomial in $\cos \alpha$ and $\cos \alpha$ is transcendental, the product P_s satisfying (a) or (b) obviously is unequal to the identity, by which the lemma is proved.

Proof of Theorem 1. Two rotations with rotation angles α , the axes of which intersect under an angle θ , may be represented by the matrices $A = A(\alpha)$ and $B = D(\theta)A(\alpha)D(-\theta)$. Clearly the theorem is proved if we show that A and B generate a free non-abelian group when $\cos \alpha$ is transcendental and θ is not a multiple of π .

https://doi.org/10.4153/CJM-1959-009-7 Published online by Cambridge University Press

Since all non-trivial products of the elements $A^{\pm 1}$ and $B^{\pm 1}$ have the form P_s satisfying condition (a), they are not equal to the identity by virtue of the lemma, by which the theorem is proved.

Proof of Theorem 2. J. von Neumann (2) proved that the real numbers x_i defined by

$$x_t = \sum_{n=0}^{\infty} 2^{2^{[nt]} - 2^{n^2}} \qquad (t > 0)$$

are algebraically independent over the field of rational numbers.

We define

(2)
$$\begin{cases} \phi_t = 2 \arctan x_t & (0 < t < 1). \\ \alpha = 2 \arctan x_1 \end{cases}$$

Then, according to a theorem of J. de Groot (1), we have:

The continuously many rotations

$$B_t = D(\phi_t) A(\alpha) D(-\phi_t) \qquad (0 < t < 1)$$

are free generators of a free rotation group.

Let (F) denote the group generated by the rotation F. We shall now prove:

The group generated by the continuously many rotations

$$F_{t}(\delta_{t}) = B_{t} D(\delta_{t}) B_{t}^{-1} \qquad (0 < t < 1)$$

is a free product of the cyclic groups $(F_t(\delta_i))$. This obviously implies Theorem 2.

Consider any non-trivial product

$$F_{t_{1}}^{m_{1}}(\delta_{t_{1}})F_{t_{2}}^{m_{2}}(\delta_{t_{2}}) \dots F_{t_{s}}^{m_{s}}(\delta_{t_{s}}) = D(\phi_{t_{1}})A(\alpha)D(m_{1}\delta_{t_{1}})A^{-1}(\alpha)D(\phi_{t_{2}} - \phi_{t_{1}})A(\alpha)D(m_{2}\delta_{t_{2}}) \dots A(\alpha)D(m_{s}\delta_{t_{s}})A^{-1}(\alpha)D(-\phi_{t_{s}}).$$

We may assume that

$$m_k \delta_{t_k} \qquad (k = 1, \ldots, s)$$

is not a multiple of 2π , for otherwise we have a trivial product. Furthermore, the numbers

$$\phi_{t_{k+1}} - \phi_{t_k}$$
 $(k = 1, \dots, s - 1)$

are not multiples of 2π by virtue of (2). Thus the product considered has the form P_{2s} satisfying condition (b). According to the lemma this product is unequal to the identity, by which the theorem is proved.

References

- 1. J. de Groot, Orthogonal isomorphic representations of free groups, Can. J. Math., 8 (1956), 256-262.
- J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann., 99 (1928), 134–141.

University of Amsterdam