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1. Introduction

In the paper [1] we stated the classification of the pointed Hopf algebras with finite
Gelfand-Kirillov dimension that are liftings of either the Jordan plane or the super Jor-
dan plane over a nilpotent-by-finite group. But we overlooked one possibility, namely
to deform degree one relations and therefore the classification in loc. cit. of liftings of
Jordan planes is not complete. Here we fill the gap. It turns out that the missed example
is essentially a Hopf algebra introduced by C. Ohn in 1992, see [3].

Throughout k is an algebraically closed field of characteristic 0. Recall that V(1, 2) is
the braided vector space with basis x1, x2 and braiding c given by c(xi ⊗ x1) = x1 ⊗ xi,
c(xi ⊗ x2) = (x1 + x2) ⊗ xi, i = 1, 2. Here is the revised version of [1, Proposition 4.2].

Proposition 1. Let G be a nilpotent-by-finite group and let H be a pointed Hopf
algebra with finite GKdim such that

◦ G(H) � G and
◦ the infinitesimal braiding of H is isomorphic to V(1, 2).
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Then there exists a Jordanian YD-triple D = (g, χ, η) for kG such that either

(I) H � U(D, 0) or H � U(D, 1), introduced in [1, §4.1]; or

(II) χ = ε and there exists ξ ∈ Derε,ε(kG, k), ξ �= 0, such that H � Uξ(D, 0) or H �
Uξ(D, 1) see Definition 9; or

(III) χ = ε and H � Ujordan(D), see Definition 11.

Conversely, any of these Hopf algebras is pointed and has finite GKdim, actually
GKdim kG+ 2. See Lemmas 10, 12 and [1, Proposition 4.2]. Notice that if χ = ε and
ξ = 0, then U0(D, λ) � U(D, λ), introduced in [1, §4.1].

The subspace of (g, 1) skew-primitive elements in a Hopf algebra in case (I) is
decomposable as G-module, while in (II) is decomposable as 〈g〉-module but it is an
indecomposable G-module, and in (III) it is an indecomposable 〈g〉-module. Thus Hopf
algebras from different cases could not be isomorphic. Whether Hopf algebras in the same
case are isomorphic is treated as in [1, §4.1].

This note is organized as follows. In § 1.1 the minimal Hopf algebra missing in [1,
Proposition 4.2] and its relation with [3] are described. In § 1.2 we discuss the gap.
Proposition 1 is proved in § 1.3.

Notation

We keep the notations from [1]. Let G be a group, let kG be its group algebra and let Ĝ
be its group of characters. Given χ ∈ Ĝ, recall that

Derχ,χ(kG,k) = {η ∈ (kG)∗ : η(ht) = χ(h)η(t) + χ(t)η(h) ∀h, t ∈ G}.

A collection D = (g, χ, η) ∈ Z(G) × Ĝ× Derχ,χ(kG, k) is a YD-triple for kG if
η(g) = 1. Then the vector space Vg(χ, η) with a basis (xi)i∈I2 belongs to kG

kGYD, with
the coaction δ(xi) = g ⊗ xi, i ∈ I2, and the action given by

h · x1 = χ(h)x1, h · x2 = χ(h)x2 + η(h)x1, h ∈ kG.

When χ(g) = 1 we say that D = (g, χ, η) is a Jordanian YD-triple.
Let L be a Hopf algebra. The Δ, ε and S denote respectively the comultiplication,

the counit and the antipode. The group of group-like elements is denoted by G(L). Also
the space of (g, h)-primitive elements is Pg,h(L) = {� ∈ L : Δ(�) = �⊗ h+ g ⊗ �}, where
g, h ∈ G(L), and P(L) = P1,1(L) is the space of primitive elements. The adjoint action
of G(L) on L is denoted by g · � := g�g−1, g ∈ G(L), � ∈ L.

1.1. The Jordanian enveloping algebra of s�(2)

Let Ũjordan be the algebra generated by a1, a2, g, g
−1 with defining relations

g±1g∓1 = 1, ga1 = a1 g + (g − g2), ga2 = a2 g + a1 g. (1.1)
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It is easy to see that Ũjordan is a Hopf algebra by imposing g ∈ G(Ũjordan) and a1, a2 ∈
Pg,1(Ũjordan). We introduce

z = a1a2 − a2a1 −
a2
1

2
+ a2 +

1
2
a1 ∈ Ũjordan (1.2)

Lemma 2. The element z belongs to Pg2,1(Ũjordan) and commutes with g.

Proof. We compute

Δ(z) = a1a2 ⊗ 1 + a1 g ⊗ a2 + ga2 ⊗ a1 + g2 ⊗ a1a2

− a2a1 ⊗ 1 − a2 g ⊗ a1 − ga1 ⊗ a2 − g2 ⊗ a2a1

− 1
2
a2
1 ⊗ 1 − 1

2
(a1 g + ga1) ⊗ a1 −

1
2
g2 ⊗ a2

1

+ a2 ⊗ 1 + g ⊗ a2 +
1
2
a1 ⊗ 1 +

1
2
g ⊗ a1

= z ⊗ 1 + g2 ⊗ z + (a1 g − ga1 + g − g2) ⊗ a2

+
(
ga2 − a2 g −

1
2
(a1 g + ga1) +

1
2
g − 1

2
g2

)
⊗ a1

= z ⊗ 1 + g2 ⊗ z;

here ga2 − a2 g −
1
2
(a1 g + ga1) +

1
2
g − 1

2
g2 =

1
2
(a1 g − ga1 + (g − g2)) = 0.

It remains to prove that γ(z) = 0, where γ ∈ Endk(Ũjordan) is given by γ(x) = gxg−1 −
x, for all x ∈ Ũjordan. Note that

γ(xy) = γ(x)(γ(y) + y) + xγ(y) for all x, y ∈ Ũjordan.

From (1.1) we have that

γ(a1) = 1 − g, γ(a2) = a1. (1.3)

Therefore,

γ(z) = γ(a1a2 +
(
a2 +

1
2
a1)(1 − a1)

)
= γ(a1)(γ(a2) + a2) + a1γ(a2)

+ γ

(
a2 +

1
2
a1

)
(γ(1 − a1) + 1 − a1) +

(
a2 +

1
2
a1

)
γ(1 − a1).
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By using (1.3) we obtain that

γ(z) = (1 − g)(a2 + a1) + a2
1

+
(
a1 +

1
2
(1 − g)

)
(g − a1) +

(
a2 +

1
2
a1

)
(g − 1)

= a2 + a1 − (a2g + 2a1g + g − g2) + a2
1 +

(
a2 +

1
2
a1

)
(g − 1)

+ a1g − a2
1 +

1
2
(g − g2) +

1
2
a1(g − 1) +

1
2
(g − g2).

Now it follows easily that γ(z) = 0. �

The Jordanian enveloping algebra of s�(2) is

Ujordan := Ũjordan/〈z〉. (1.4)

By Lemma 2, Ujordan is a Hopf algebra quotient of Ũjordan. By abuse of notation the
images of g, a1, a2 in Ujordan are denoted by the same symbols.

Remark 3. For each λ ∈ k let

U
jordan
λ := Ũjordan/〈z − λ(1 − g2)〉. (1.5)

Then U
jordan
λ is a Hopf algebra, since z − λ(1 − g2) ∈ Pg2,1(Ũjordan).

Let us now fix λ, μ ∈ k. Let U be the algebra

U = k〈g, g−1, a1, a2〉/〈gg−1 − 1, g−1g − 1〉.

Then U has a unique Hopf algebra structure such that g, g−1 ∈ G(U) and a1, a2 ∈
Pg,1(U). Moreover, there exists a well-defined Hopf algebra map

ϕλ,μ : U → U
jordan
λ , g �→ g, a1 �→ a1, a2 �→ a2 + μ(1 − g).

It is easily checked that

ga1 − a1g − g + g2, ga2 − (a2 + a1)g ∈ kerϕλ,μ.

Moreover, for z ∈ U defined as in (1.2) we obtain that

ϕλ,μ(z) − z = a1μ(1 − g) − μ(1 − g)a1 + μ(1 − g) = μ(1 − g2).

Since z = λ(1 − g2) ∈ U
jordan
λ , we conclude that ϕλ,μ induces a surjective Hopf algebra

map

ϕλ,μ : U
jordan
λ+μ → U

jordan
λ .

It follows that ϕ0,λ : U
jordan
λ → Ujordan is a Hopf algebra isomorphism.
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Remark 4. For any � ∈ k, the Hopf algebra U� was introduced by Christian Ohn in
[3]; this is the algebra generated over k by K, Y, T±1 with relations:

TT−1 = T−1T = 1, [K,T ] = T 2 − 1, [Y, T ] = −�
2
(KT + TK), (1.6)

[K,Y ] = −1
2
(Y T + TY + Y T−1 + T−1Y ), (1.7)

with the Hopf algebra structure of U� determined by T ∈ G(U�) and X, Y ∈
PT−1, T (U�). It is easy to see that the the Hopf algebras U� with � �= 0 are all iso-
morphic so we fix one of them. The appellative Jordanian was introduced by Alev and
Dumas to the best of our knowledge. We claim that U

jordan
λ is isomorphic to the Hopf

subalgebra U of U� generated by

x = KT−1, y = Y T−1, g = T−2; (1.8)

we choose these variables to have x, y ∈ Pg,1(U). Now (1.6) implies

g · x = x+ 2(1 − g), g · y = y − 2�(x+ (1 − g)). (1.9)

We perform a new change of variables:

a1 =
1
2
x, a2 = − 1

4�y −
1
4
x;

these new variables satisfy (1.1). Now (1.7) translates succesively into

xy − yx = −2y − �x2 +
�
4
(1 − g2)

and then into

z = − 1
32

(1 − g2).

That is, U � U
jordan

− 1
32

.

Remark 5. The algebra U� can be described as an iterated Ore extension:

U� = k[T±][x ; δ][y ; σ,D] (1.10)

with δ a derivation of k[T±], σ an automorphism of k[T±][x ; δ] and D a σ-derivation of
k[T±][x ; δ] defined by:

xT = Tx+ (T − T−1)︸ ︷︷ ︸
=δ(T )

(1.11)

yT = T︸︷︷︸
=σ(T )

y + (−�Tx− �
2
(T − T−1))︸ ︷︷ ︸

=D(T )

(1.12)

yx = (x+ 2)︸ ︷︷ ︸
=σ(x)

y + �x2 − �
4
(1 − T−4)︸ ︷︷ ︸

=D(x)

. (1.13)
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Proposition 6. There exist a derivation δ1 of R := k[g, g−1], a derivation δ2 of S :=
R[a1; id, δ1] and an automorphism σ of S such that Ujordan is isomorphic to the Ore
extension S[a2;σ, δ2].

Hence Ujordan is a noetherian domain of Gelfand-Kirillov 3, and the monomials gjai1
1 a

i2
2

form a PBW-basis of Ujordan.

Proof. We leave the verification of the first claim to the reader as a long but
straightforward exercise: the derivations δ1 : R→ R, δ2 : S → S satisfy

δ1(g) = g2 − g, δ2(g) = −a1 g, δ2(a1) =
1
2
a1(1 − a1),

and σ is given by σ(g) = g, σ(a1) = a1 + 1. The rest is standard. �

Corollary 7. The Hopf algebra Ujordan is pointed and gr Ujordan is isomorphic to the
bosonization of the Jordan plane by the group algebra of the infinite cyclic group. �

1.2. The gap and how to fix it

We fix a group G. Let H be a pointed Hopf algebra with coradical filtration (Hn)n∈N0

such that G(H) � G. Then H1/H0 � V#kG, where V ∈ kG
kGYD is the infinitesimal

braiding of H. For g ∈ G, the space of (g, 1) skew-primitives Pg,1(H) satisfies

Pg,1(H) ∩H0 = k(1 − g) and Pg,1(H)/ (Pg,1(H) ∩H0) � Vg.

Now assume that V � Vg(χ, η) for a YD-triple D = (g, χ, η) over kG. Thus V = Vg and
we have an exact sequence of G-modules

0 �� k(1 − g) �� Pg,1(H)
� �� Vg(χ, η) �� 0.

Since g ∈ Z(G), one has k(1 − g) ⊂ Pg,1(H)ε. Hence χ �= ε implies that

Pg,1(H) � k(1 − g) ⊕ Vg(χ, η)

and we have a morphism of Hopf algebras π : T (Vg(χ, η)) → H, where T (Vg(χ, η)) =
T (Vg(χ, η))#kG. In particular the proof of [1, Prop. 4.3] goes over without changes.

We assume for the rest of this Section that the infinitesimal braiding V of H is isomor-
phic to Vg(ε, η) for a YD-triple D = (g, ε, η) as Yetter-Drinfeld module over kG. Under
this assumption, Pg,1(H) might be indecomposable.

Example 8. The indecomposability of Pg,1(H) could happen in other situations. Here
is a simple example. Let A be the algebra generated by a, γ±1, where γ−1 is the inverse
of γ and the relation γaγ−1 = a+ (1 − γ) holds, so that A is not commutative. Then
A is a pointed Hopf algebra by declaring that γ is a group-like and a a (γ, 1) skew-
primitive element. Observe that Pg,1(A) is indecomposable. Let Γ � Z. It can be shown
that grA � T (V ) ⊗ kΓ , where V has dimension 1 and is the infinitesimal braiding of
A. But Pg,1(A) is indecomposable and there is no surjective morphism of Hopf algebras
T (V ) ⊗ kΓ → A.
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Back to our situation, let us pick a1, a2 ∈ Pg,1(H) such that �(aj) = xj , j = 1, 2 and
set a0 = 1 − g. Then there are ζ ∈ Derε,ε(kG, k) and a linear map ξ : kG→ k such that
the action of h ∈ G on Pg,1(H) is given in the basis (a0, a1, a2) by

‖h‖ =

⎛⎝1 ζ(h) ξ(h)
0 1 η(h)
0 0 1

⎞⎠ . (1.14)

Notice that Derε,ε(kG, k) = Homgps(G, (k, +)) and that ξ is a kind of differential
operator of degree 2, meaning that

ξ(hk) = ξ(h) + ζ(h)η(k) + ξ(k) for all h, k ∈ G. (1.15)

Thus if ζ �= 0, then the claim [1, Prop. 4.2, page p. 669, line 8] is not true. To correct this
we consider the subalgebra A generated by g and Pg,1(H), a Hopf subalgebra of H. The
action of g on Pg,1(H) = Pg,1(A) in the basis (a0, a1, a2) is given by

‖g‖ =

⎛⎝1 ζ(g) ξ(g)
0 1 1
0 0 1

⎞⎠ . (1.16)

As g ∈ Z(G), we have that ξ(gh) = ξ(hg) for all h ∈ G, so (1.15) says that

ζ(h) = η(h)ζ(g) for all h ∈ G. (1.17)

We consider two cases:

(A) ζ(g) = 0. Then ζ = 0 by (1.17) and ξ ∈ Derε,ε(kG, k) by (1.15).

(B) t := ζ(g) �= 0, the Jordanian case. In the basis (a0, t
−1a1, t

−1a2 − t−2ξ(g)a1), the

action of g is given by

(
1 1 0
0 1 1
0 0 1

)
. We still denote the new basis by (a0, a1, a2);

that is, we may assume that ζ(g) = 1, ξ(g) = 0. By (1.17), ζ = η, and by (1.15),
ξ(hk) = ξ(h) + η(h)η(k) + ξ(k) for all h, k ∈ G.

We shall see that the following Hopf algebras exhaust the case (A).

Definition 9. Let D = (g, ε, η) be a YD-triple, ξ ∈ Derε,ε(kG, k) and λ ∈ k. We
define Uξ(D, λ) as the algebra generated by h ∈ G, a1, a2 with defining relations being
those of G and

ha1 − a1 h, h ∈ G; (1.18)

ha2 − (a2 + η(h)a1 + ξ(h)(1 − g))h, h ∈ G; (1.19)

a1a2 − a2a1 −
a2
1

2
− λ(1 − g2). (1.20)

As we said already, U0(D, λ) � U(D, λ), introduced in [1, §4.1].
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Lemma 10. Uξ(D, λ) is a Hopf algebra with comultiplication determined by

G(Uξ(D, λ)) = G and a1, a2 ∈ Pg,1(Uξ(D, λ)).

Thus Uξ(D, λ) is pointed. The set {am
1 a

n
2h |m, n ∈ N0, h ∈ G} is a basis of Uξ(D, λ);

gr Uξ(D, λ) � B(V(1, 2))#kG and

GKdimUξ(D, λ) = GKdim kG+ 2.

In particular, if G is nilpotent-by-finite, then GKdimUξ(D, λ) <∞.

Proof. Left to the reader. �

We shall see that the following Hopf algebras exhaust the case (B).

Definition 11. Let D = (g, ε, η) be a YD-triple and define ξ ∈ (kG)∗ by ξ(h) =
1
2 (η(h)2 − η(h)), h ∈ G. We introduce Ujordan(D) as the algebra generated by h ∈ G,
a1, a2 with defining relations those of G, (1.19) and

ha1 − (a1 + η(h)(1 − g))h, h ∈ G. (1.21)

a1a2 − a2a1 −
a2
1

2
+ a2 +

1
2
a1. (1.22)

Observe that ξ, needed in (1.19), satisfies (1.15) with ζ = η. The proof of the following
Lemma is also standard.

Lemma 12. Ujordan(D) is a Hopf algebra with structure determined by

G(Ujordan(D)) = G and a1, a2 ∈ Pg,1(Ujordan(D)).

Thus Ujordan(D) is pointed. The set {am
1 a

n
2h |m, n ∈ N0, h ∈ G} is a basis of Ujordan(D);

gr Ujordan(D) � B(V(1, 2))#kG and

GKdimUjordan(D) = GKdim kG+ 2.

In particular, if G is nilpotent-by-finite, then GKdimUjordan(D) <∞.

1.3. Proof of proposition 1

Let G be a nilpotent-by-finite group and let H be a pointed Hopf algebra with finite
GKdim such that G(H) � G and the infinitesimal braiding V of H is isomorphic to
V(1, 2). By [1, Lemma 2.3], there exists a unique YD-triple D = (g, χ, η) such that V �
Vg(χ, η) in kG

kGYD. By [1, Lemma 3.7], grH � B(V(1, 2))#kG, hence H is generated by
Pg,1(H) and G as algebra.

If χ �= ε, then the proof of [1, Prop. 4.1] implies that H is isomorphic either to U(D, 0)
or U(D, 1), the Hopf algebras introduced in [1, §4.1].

Assume that χ = ε. Pick a basis (a0 = 1 − g, a1, a2) such that any h ∈ G acts on
Pg,1(H) by (1.14) where ζ ∈ Derε,ε(kG, k) and ξ ∈ (kG)∗ satisfies (1.15). Let A be the
subalgebra generated by Pg,1(H). As explained above we consider two cases.
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Case (A): ζ(g) = 0, thus ζ = 0. Even if [1, Proposition 4.2] does not apply in general
since we may have ξ �= 0, it does apply to A up to changing the base to (a0, a1, ã2) where
ã2 := a2 − ξ(g)a1, see (1.14). Call the new basis again (a0, a1, a2) by abuse of notation.
Hence A � U(D′, λ) where D′ = (g, χ|〈g〉, η|〈g〉) is a YD-triple over the subgroup 〈g〉 of
G and λ ∈ {0, 1}. In particular the following equality holds in H:

a2a1 = a1a2 − 1
2a

2
1 + λ(1 − g2).

We first claim that A is stable under the action of G. Indeed let G act on the free algebra
generated by g±1, a1, a2, where G acts trivially on g, and by (1.14) on a1, a2. As g is
central, the action of each h ∈ G preserves the defining ideal of A, so G acts on A.

We next claim that H � A� kG/I, where I is the ideal that identifies the two copies
of g where � stands for smash product. Indeed, the inclusions A ↪→ H, kG ↪→ H induce
a Hopf algebra map ψ : A� kG/I → H. As grH � B(V )#kG, H is generated by a1,
a2 and G, so ψ is surjective. On the other hand, (A� kG/I)1 is spanned by the set
{1 ⊗ h, a1 ⊗ h, a2 ⊗ h|h ∈ G}. The image of this set under ψ is linearly independent,
which implies that ψ|(A�kG/I)1 is injective. By [2, 5.3.1], ψ is injective, and the claim
follows. As a consequence, the set {am

1 a
n
2h |m, n ∈ N0, h ∈ G} is a basis of H.

Finally, we see that there is a Hopf algebra map Uξ(D, λ) → H; since this map sends
a basis to a basis, we conclude that H � Uξ(D, λ).

Case (B). ζ(g) �= 0. As discussed above, we may assume that ζ = η. Recall that we
are assuming that GKdimH <∞. We claim that

(i) There exists a Hopf algebra isomorphism A � Ujordan, cf. (1.4).

(ii) ξ(h) = 1
2 (η(h)2 − η(h)) for all h ∈ G.

(iii) A is stable under the adjoint action of G and H � A� kG/I, where I is the ideal
that identifies the two copies of g.

(iv) The set {am
1 a

n
2h |m, n ∈ N0, h ∈ G} is a basis of H and H � Ujordan(D).

(i): It is easy to see that there exists a Hopf algebra surjective map π̃ : Ũjordan → A,
which applies g, a1, a2 to the corresponding elements of A. Hence π̃(z) ∈ Pg2,1(A), by
Lemma 2. Now, as g �= g2 and grH � B(V )#kG, we have that Pg2,1(H) = Pg2,1(H) ∩
H0 = k(1 − g2); thus there exists λ ∈ k such that π̃(z) = λ(1 − g2), which implies that
π̃ factors through a map π : U

jordan
λ � A. The set {gk, a1g

k, a2g
k : k ∈ Z} is linearly

independent in H, so π|(Ujordan

λ )1
is injective. By [2, 5.3.1], π is an isomorphism. Up to

composing with ϕ0,λ, see Remark 3, we may assume that λ = 0.
(ii): Given h ∈ G, let γh ∈ Endk H be given by

γh(x) = hxh−1 − x for all x ∈ H.

Note that γh(xy) = γh(x)(γh(y) + y) + xγh(y) for all x, y ∈ H. From (1.14),

γh(a1) = η(h)(1 − g), γh(a2) = η(h)a1 + ξ(h)(1 − g). (1.23)
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Therefore,

γh(z) = η(h)(1 − g)(η(h)a1 + ξ(h)(1 − g) + a2) + a1(η(h)a1 + ξ(h)(1 − g))

+
(
η(h)a1 + ξ(h)(1 − g) +

1
2
η(h)(1 − g)

)
(−η(h)(1 − g) + 1 − a1)

−
(
a2 +

1
2
a1

)
η(h)(1 − g) =

(
1
2
η(h) − 1

2
η(h)2 + ξ(h)

)
(1 − g2).

By (i), z = 0, so γh(z) = 0. Thus, ξ(h) = 1
2 (η(h)2 − η(h)).

(iii): Let G act on the free algebra generated by g±1, a1, a2, where G acts trivially on
g, and by (1.14) on a1, a2. Each h ∈ G fixes the defining relations gg−1 − 1, g−1g − 1,
ga1 − a1 g − g + g2, z, and

h · (ga2 − a2 g − a1 g) = ga2 − a2g − a1g + η(h)(ga1 − a1 g − (1 − g)g),

so the action descends to A. The proof of (iv) is as in Case (A). �
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