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1. Introduction

Until 1965, when Janko [7] established the existence of his finite simple
group J, the five Mathieu groups were the only known examples of isolated
finite simple groups. In 1951, R. G. Stanton [10] showed that M,, and M,, were
determined uniquely by their order. Recent characterizations of M,, and M,,
by Janko [8], M,, by D. Held [6], and M, by W. J. Wong [12], have facilitated
the unique determination of the three remaining Mathieu groups by their orders.
D. Parrott [9] has so characterized M,, and M,;, while this paper is an outline
of the characterization of M,; in terms of its order.

MAIN THEOREM. Let G be a non-abelian simple group of order 10,200,960,
Then G is isomorphic to M, ;.

2. Some known results

1. The results used in the proof of the main theorem were obtained by R.
Brauer [1], 2], [3], H. F. Tuan [4] and applied by R. G. Stanton [10], D. Parrott
[9] and S. K. Wong [11]. Some of the important theorems are given here without
proof.

2. If G is a group of order |G| containing k classes K|, * - *, K; of conjugate
elements, then there exists exactly k distinct irreducible characters {;(9), - - *, {i(g9)
where g denotes a variable element of G. Let p be a prime which divides |G,
then the k characters are distributed into a certain number of p-blocks B;(p),
B,(p), - - . The principal p-block B,(p) is always taken as the block containing
the 1-character {;(g) =1 for all g€ G. Suppose p* T |G]; if for all characters
{, of B,(p) the degrees z, of {, is divisible by p* while at least one of the degrees
z, is not divisible by p**! then B,(p) is a block of defect (y—a), or type a. In
particular if p T |G| a p-block B,(p) is of defect O (highest type) or of defect 1
(lowest type).

An element g is p-regular if its order is prime to p, otherwise g is called
p-singular.
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3. Weassume in this section that p T |G|. Let G, be a Sylow p-subgroup of G.
Then C¢(G,) = G, x V,. If V, has I conjugate classes in the group Ng(G,) then G
has ! blocks of defect 1. Let ¢ denote the number of conjugate classes of elements
of order p in G. To each of the / p-blocks B,(p) of defect ! there corresponds a
certain multiple #, of 7, where #,|p—1, such that B,(p) has (p—1)/t, characters {,
which are p-conjugate only to themselves and one exceptional family of 7, p-
conjugate characters.

THEOREM 2.1 ([2]. Theorem 11). For the block B,(p), we have t, = t. The
degrees z, of the characters {, of By(p) satisfy:

(2.1) z,=06,=*l(modp), 1S pu=Lw=(p-1)t
(2.2) 12441 = 044y = +1(mod p),
where z, . is the degree of a representative of the exceptional family.
o+l
(2.3) 215,,2,, =0 (6, =z, = 1).
u=

Moreover, for p-singular elements P of G we have
{(P) =6, (1£2ps o).

COROLLARY 1. Let G be a group of order pq®g* where p and q are distinct
primes, b and g* positive integers and (pq, g*) = 1. Suppose that G has an element
of order pq, then q° cannot divide the degree of any irreducible character { . in By(p).

We shall say a character { of B,(p) is of type O for the prime p if {(1) =
1(mod p) or if { belongs to the exceptional family of By(p) and {(1) = —(p—1)/t
(mod p); { is of type 1 if {(1) = —1(mod p) or if x belongs to the exceptional
family and {(1) = + (p—1)/t(mod p).

THEOREM 2.2 ([10] Lemma 6). Let G be a group of order |G|. Assume p and
p’ are distinct primes which divide |G| to the first power only and that G has no
elements of order pp'. Let a;; be the number of characters in B;(p) 0 By(p') which
are of type i for p and type j for p’', the indices i and j being O or 1 as described
above. Then
Qoo +3a11 = Aoyt dsp-

It is clear that a character { in B;(p) n B;(p') cannot be exceptional for both
primes p and p'.

THEOREM 2.3 ([4], Lemma 1). Let G be a finite group which is identical with
its commutator group G', and assume that the principal p-block B,(p) contains an
irreducible faithful character { of degree z < 2p. Then the order of the centralizer
Cs(G,) of a Sylow p-subgroup G, of G is a power of p.
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3. The Sylow 23-normalizer of G

We assume from now on, that G is an non-abelian finite simple group of
order 10,200,960 = 27 -32-5-7-11- 23,

Let S,3 be a Sylow 23-subgroup of G and let 1,3 = |G : Ng(S23)|. Then n,5
has the following possibilities: (1) 27-3%-5-7, (2) 2°-5-11, (3) 2°-3, (4)
2443-5-7, (5) 2°-32-7-11, (6) 2°-3, (7) 2-3*-5-11, (8) 2-5-7, (9)
3-7-11.

We know that G has either 1, 2, or 11 classes of elements of order 23 according
as ¢ for prime 23 (written as #(,3)) is 1, 2, or 11. Using equations (2.1), (2.2), and
(2.3), and Theorem 2.3 #,5, = 11 is ruled out, consequently |[Ng(S,3)/(Cs(S23)l =
11 or 22. Hence cases (2), (5), (7), and (9) above, for n,5 are not possible. The
impossibility of cases (4) and (8) follows almost as quickly, because otherwise G
has no elements of order 5-23, 7-23, or 11-23 thus facilitating the use of
Stanton’s block intersection theorem (Theorem 2.2). Suppose n,; = 23-3,
case (6). Then |Ng(S,3)| =2*-3-5-7-11-23. G then contains elements of
order 2-23, 3-23, 5-23, and 7 - 23. From this it follows that 528 is the only
possible degree of a nonexceptional character and 264 the only possible excep-
tional degree. But both of these degrees are even, and for (2 - 3) to be satisfied
B,(23) must contain a character of odd degree. Case (3) is ruled out similarly.
Hence we have proved

LeMMA 3.1. The Sylow 23-normalizer Ng(S,3) is a Frobenius group of order
23 - 11.

COROLLARY 3.1. The principal 23-block B,(23) is the only 23-block of defect 1,
and consists of 11 non-exceptional characters and a family of 2 exceptional charac-
ters. All other characters of G have degrees divisible by 23.

4. The Sylow 11-normalizer of G

Let S;; be a Sylow 11-subgroup of G and n; = |G : Ng(S;,)|. Lemma 3.1
reduces the possible values for n, to the following: (1)3%-5-23,(2)2-3-5-7-23,
(3)22-3-23,(4)22-7-23,(5)2%-32-5-7-23,(6)2%-32-23,(7)2%-3-7- 23,
(8)25-5-23,(9)27-3%-7-23.

Using the same methods as for the prime 23, one proves quickly that #;;, # 5
and so |Ng(S;1)/Cs(S11)l = 5 or 10. This in turn eliminates cases (1), (2), (5)
and (8), from the above list for ny; .

Suppose [ Ng(Si1)l = 253 -5-7-11,case (3). Then |Cg(Syy)l =2°-3-7-11
or2*-3-7-11.

If |C(Syy)l = 2°-3-7-11, then ty;y = 2 and B,(11) consists of 5 non-
exceptional characters 1g, ¥2, 3, x* and x° and a family of 2 exceptional charac-
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ters with representative y¢. Since G has elements of order 2- 11,311 and 7 - 11,
the possible degrees for the non-exceptional characters are

TABLE 1
1, 23, 276 = +1 (mod 11)
230, 736, 2760 = —1 (mod 11)
while the possible degrees for y¢ are
TABLE 2
115, 368, 1380 = +5 (mod 11)
138, 160, 1920 = —5 (mod 11)

Then the degrees in B;(23) n B;(11) are 1 and 160, and so xs(1) = 160. Applying
theorem 2.2 to By(11) n B,(5) we see that only degrees 1 and 736 lie in this
intersection. Let y,(1) = 736. Substitute the values 1, 160 and 736 in the degree
equation (2.3). Then

8323 +0,24+0525s = —(1—T36+160) = 575

and so z; = 23, z, = zs = 276. The characters 1, x,, y; and x¢ are real on 11-
regular elements, but this implies that in the tree for B;(11), two characters
having the same sign 6 = +1 are joined by one edge contrary to a result of
Brauer ([2], Theorem 5).

Thus [Cg(Syy)l =2*-3-7-11, and so ¢, = 1 and B;(11) consists of 10
non-exceptional characters whose possible degrees are given by Table I. But then
the only character which could lie in the principal 23-block and the principal
11-block is the principal character which is impossible.

Using similar arguments cases (4), (6) and (8) are removed and so we have

LemMMA 4.1. The Sylow 11-normalizer N(S,,) is a Frobenius group of order
5-11.

COROLLARY 4.1. The principal 11-block B;(11) is the only 11-block of defect 1.
All other characters of G have degrees divisible by 11, and lie in 11-blocks of defect 0.

5. The determination of degrees and blocks of characters of G

We know now that G has no elements of order 23 - 11, 23-7, 23 -5, 23 - 3,
11-7, 11-5 or 11 - 3. Applying Theorem 2.2 to the intersection of B;(23) and
B,(5) we see that both blocks contain a character of degree 896. This character is-
then the exceptional character for B,(11) and using the degree equation (2.3)
together with Theorem 2.2, we have
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LeMMA 5.1. The principal 11-block B(11) contains only characters with the
Jollowing degrees 1, 45, 45, 1035, 230, 896. All other characters of G have degrees
which are divisible by 11.

Since a character of degree 896 = 27 - 7 lies in B,(5) then G has no elements
of order 7 - 5, or 2 - 5. As shown earlier, G has no elements o orderf23-50r11-5
and so a Sylow 5-subgroup S5 of G can be centralized only by elements of order
3 or 9. Further [Ng(S5)/Cs(Ss)| < 4, whence |Ng(S5)l = 2-5 or 22-3-5. But
in B(5) we have already 3 non-exceptional characters and so |[Ng(Ss)| = 22-3-5.
Hence 5, = 1 and B,(5) contains exactly 5 characters. These are found easily
using equation (2.3).

LEMMA 5.2. |Ng(S5)| = 2%2-3-5. B(5) consists of 5 characters with the
Sfollowing degrees: 1, 896, 896, 231, 2024,

Using the same methods we have

LEMMA 5.3. The principal 23-block By(23) contains only characters with the
following degrees: 1, 22, 45, 45, 231, 231, 231, 896, 896, 990, 990 and 770. All
other degrees of characters of G are divisible by 23.

LEMMA 5.4. |Ng(S;)/C(S;)| = 3. The principal T-block By(7) contains only
characters with the following degrees: 1, 2024, 1035 and 990.

We have determined 16 characters of G, the sum of squares of degrees is
(10200960 — 64009). Further, the degrees of the remaining characters must be
divisible by both 23 and 11. However (11 -23)* = 64009, so G has only one
more character and that is of degree 253 = 11 - 23. »

LEMMA 5.5. G has 17 characters with the following degrees: 1, 22, 45, 45, 230,
231, 231, 231, 253, 770, 770, 896, 896, 990, 990, 1035 and 2024.

It is thus clear there are two 7-blocks of defect 1, and hence two conjugate
classes of 7-regular elements of Cg(S;) in Ng(S;). Further since [Ng(S;)/Cs(S7)
= 3, |Ng(S;)| has the following possible orders, 27 -3:7,2*-3-7 and 2-3-7,
but only when |Ng(S,)] = 23 -7, are there the required two classes of 7-regular
elements. Finally, there is only one 3-block of defect 2 and so a Sylow 3-subgroup
is self centralizing.

6. Conclusion

The group G has 17 conjugate classes and we have so far determined 16 of
them, as is shown in the table below.

Order of 1 23 11 7 14 5 15 6 4 3 2
element
No. of 1 2 22 21 21111
classes
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There is at least one class of involutions, and at least one class of elements of
order 3 with one class to be determined.

By Sylow theorems, the order of the normaliser of a Sylow 3-subgroup of G
is either 2232 or 2%-32, and consequently a Sylow 3-subgroup is elementary
abelian. Suppose G has two classes of elements of order 3. Let R be a Sylow
3-subgroup of G. We know that R is self centralising and that |[Ng(R)| = 2% - 3%,
and so Ng(R)/R is cyclic of order 4. Let Q be a subgroup of order 3 in R and
Cs(Q) the centraliser of Q in G. Then since N¢,(R) = R, we have by Burnside’s
result ([5], p. 252) that Cg(Q) has a normal 3-complement, say N. Let 0 be the
subgroup of order 3 of R which is centralised by an element of order 5.

Then Cg((3) = RN where N is the normal 3-complement in Cg(@) and
5|{N'|. But then by the Frattini argument ([5], p. 12), 9||Ng(Gs)| where Gs is a
Sylow 5-subgroup of G, which is false. Hence G has only one class of elements of
order 3 and so we have proved

LEMMA 6.1. The group G has one class of elements of order 3. A Sylow 3-sub-
group is normalised by a semi-dihedral group of order 16, and so G has only one
class of involutions and one class of elements of order 8.

Let ¢ be the involution in the normaliser of a Sylow 7-subgroup G; of G,
and consider the centraliser of ¢ in G, Cg(t). It follows immediately that
Ng(G,) © Cg(t). Since G has no elements of order 223, 2-11, or 2-5, then
Cg(?) has order 2°-3f - 7, where o < 7 and B < 2. We know that G has only
one class of involutions, and because |Cg(?) : Ng(G,)| = 1(mod 7), the order of
Ce(t)is 27-3-17.

Suppose the group Cg(?) is soluble. Let G, be a Sylow 2-subgroup of G which
is contained in C = Cg(?). Let O,(C) be the maXimal normal subgroup of 2-power
order in C. Then the factor group C/0,(C) is soluble. Let N be a minimal normal
subgroup of C/0,(C). Then N has order 7 and so 0,(C) = G,. But then Cg(t)
is 2-closed and so by a result of Suzuki ([5], p. 466). G is one of known list of finite
simple groups. However, none of these have the order 10, 200, 960, a contradic-
tion.

Hence we conclude that Cg(¢) = C is insoluble. Write E = O,(C). Because
we must have |C/E : N¢,g(G,)l = 1(mod 7) where G, is a Sylow 7-subgroup in
C/E, we have |E| = 2 or 16.

Suppose we have |E| = 2. Since 2° - 3 - 7 is not the order of any simple group,
C/E contains a normal subgroup. Let N be a minimal normal subgroup of C/E,
then N is either elementary abelian or a direct product of isomorphic simple
groups. Clearly N cannot be an elementary abelian 2-group. Further, N cannot be
of order 3 for then G would have elements of order 21, and N cannot be of order 7
for this would imply that |Ng(G,)| > 2+ 3 - 7. So we conclude that [N| = 2% -3 -7,
and N ~ PSL(2, 7). Write N = O,(C)N, then we have N <1 C = Cg(t). Let N,

https://doi.org/10.1017/51446788700010247 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010247

[71 On the Mathieu Group M, 3 391

be a Sylow 7-subgroup of N. By the Frattini argument C = NN¢(N,) and so
C/N ~ Nc(N;)/Ny(N,). But then order of the normaliser of a Sylow 7-subgroup
is greater than 2 - 3 - 7, which is a contradiction.

Thus we conclude that |0,(C)| = 16. Since Cg(¢) is insoluble, Cg(2) is an
extension of E = 0,(C) of order 16 by PSL(2,7). Suppose that E = O,(C) is
non-abelian. Let Z(E) be the centre of E. It follows that |Z(E)| # 4 for otherwise
the order of the centraliser of a Sylow 7-subgroupin Cis 4 - 7. Hence Z(E) = {t).
Let ¢(E) be the Frattini subgroup of E, then @(E) has order 4 or 2. If |{®(E)| = 4
then ®(F)<s C;(¢) and again we have that a Sylow 7-subgroup of C has a
normalizer of order 4.7. So ®(E) = Z(E) = E’ = {t) and hence E is an extra
special 2-group, but this is impossible as |E| = 2*. So E is abelian.

By a result of Suzuki ([5], p. 177) a Sylow 7-subgroup H of C acts as an
automorphism group of E, and so £ = {¢t}>Z where {t>) nZ = (1) and Z is an
H-admissible subgroup of E. The group Z is then of order 8 and so is elementary
abelian. Hence E is elementary abelian.

Let T be a Sylow 2-subgroup of Cg(¢). Clearly the centre of T, Z(T), is con-
tained in E. If Z(T) is of order 8, then at least two involutions say z and z’ in
Z(T)\{t) are conjugated in C by an element of order 7. But this contradicts the
result of Burnside ([5], p. 240) since they are not conjugate in No(T) = T. Suppose
Z(T) is of order 4 and let z be an element in EN\ (). Since z has 7 conjugates in
C, Cc(z) has order 27 - 3. Let Q be a Sylow 3-subgroup of Cc(z) and let T be a
Sylow 2-subgroup of Cc(z). It is clear that T is also a Sylow 2-subgroup of G.
We have E<1 Tand so <1, z) = Z(T) = Cg(Q). Further we have |Cc(Q)| = 22 - 3
and hence N¢(Q) has order 23 - 3.

Let F* be a Sylow 2-subgroup of Cg(Q) which contains <z, z) and suppose
by way of contradiction that {¢,z) < F* has a subgroup F; which contains
{t, z) properly and |F; : {t, z)| = 2. Since F,; does not lie in C, F; is contained
in Cg(z) or in Cg(1z) and s0 |C¢z) (@) > 22 - 3 or |Cer,)(Q)l > 2% - 3. But G has
only one class of involutions and so this is impossible. Hence C4(Q) has order
22 -3%-5. By a result of Gaschiitz ([5], p. 26) Q splits in Cg(Q) and so we may
write Cg(Q) = Q%L where L is a group of order 60. From the order of the
normalizer of a Sylow 5-subgroup of G (lemma 5.6) it follows that L is insoluble,
and so L is simple. But then L = A4, where 45 is the alternating group on 5 letters.
By a result of Gaschiitz we may write Ng(Q) = QK where |K}| = 2°-3-5, and
so L <1 K, where L =~ A and L < Cg(Q).

Let F be the Sylow 2-subgroup of Ng(Q), then F must be Abelian since a
dihedral group of order 8 cannot normalize a group of order 3. Consequently
K = L xS where S is a group of order 2. But then G has elements of order 10,
which is impossible. Hence a Sylow 2-subgroup of G has cyclic centre of order 2.
We have proved:

LEMMA 6.2. The centralizer C of an involution t in the centre of a Sylow
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2-subgroup T of G is an extension of an elementary abelian group E of order 16 by
a group H, H =~ PSL(2,7). Further the centre of T is cyclic.

It now follows from a result of Janko [8] that G = M,;.
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