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Abstract
We construct explicit generating series of arithmetic extensions of Kudla’s special divisors on integral models of
unitary Shimura varieties over CM fields with arbitrary split levels and prove that they are modular forms valued in
the arithmetic Chow groups. This provides a partial solution to Kudla’s modularity problem. The main ingredient
in our construction is S. Zhang’s theory of admissible arithmetic divisors. The main ingredient in the proof is an
arithmetic mixed Siegel-Weil formula.
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2 C. Qiu

1. Introduction

Let 𝐸 be a CM field, V a hermitian space over E of signature (𝑛, 1), (𝑛 + 1, 0), ..., (𝑛 + 1, 0), and X a
Shimura variety for 𝑈 (𝑉). Let F be the maximal totally real subfield and 𝐹>0 the set of totally positive
elements of F. For 𝑡 ∈ 𝐹>0, we have a special divisor 𝑍𝑡 on X, following Kudla’s work [Kud97a] for
orthogonal Shimura varieties. Let [𝑍𝑡 ] be the class of 𝑍𝑡 in the Chow group Ch1(𝑋)C of divisors on X
with C-coefficients. By Liu [Liu11a], the generating series

constant term +
∑
𝑡 ∈𝐹>0

[𝑍𝑡 ]𝑞𝑡 , (1.1)

with a suitable constant term, is a Ch1(𝑋)C-valued holomorphic modular form. Here, 𝑞 =
∏[𝐹 :Q]

𝑘=1 𝑒2𝜋𝑖𝜏𝑘

with 𝜏 = (𝜏𝑘 ) [𝐹 :Q]
𝑘=1 ∈ H [𝐹 :Q] , where H is the usual upper half plane. This is an analog of the theorem of

Borcherds [Bor99], Yuan, S. Zhang and W. Zhang [YZZ09] for orthogonal Shimura varieties, which was
originally conjectured by Kudla [Kud97a]. In [Kud02, Kud03, Kud04], Kudla also raised the problem
of finding (canonical) arithmetic extensions of special divisors on integral models of Shimura varieties
to obtain a modular generating series, which is crucial for Kudla’s program on arithmetic theta lifting.

The main result of this paper provides a solution to Kudla’s modularity problem in the case that
X is proper with arbitrary level structures at split places and certain lattice level structures at nonsplit
places. The arithmetic extensions are defined using S. Zhang’s theory of admissible arithmetic divisors.
Slightly more explicitly, we construct a regular integral modelX of X proper flat overO𝐸 . An admissible
arithmetic divisor onX is an analog of an admissible Green function (i.e., one with harmonic curvature).
Consider the normalized admissible extension 𝑍L

𝑡 of 𝑍𝑡 , which is the Zariski closure at every finite
place of E where the model is smooth. Let [𝑍L

𝑡 ] be its class in the arithmetic Chow group. Then the
generating series

constant term +
∑
𝑡 ∈𝐹>0

([𝑍L
𝑡 ] + 𝔢𝑡 )𝑞𝑡 , (1.2)

with a suitable constant term, is a holomorphic modular form. Here, 𝔢𝑡 is formed using coefficients of
an explicit Eisenstein series and its derivative.

Previous to our work, solutions to Kudla’s modularity problem were obtained using different methods
by Kudla, Rapoport and Yang [Kud03] [KRY06] for quaternionic Shimura curves, by Bruinier, Burgos
Gil, and Kühn [BBGK07] for Hilbert modular surfaces, overQwith minimal level structures, by Howard
and Madapusi Pera [HMP20] for orthogonal Shimura varieties overQ, and by Bruinier, Howard, Kudla,
Rapoport and Yang [BHK+20a] for unitary Shimura varieties over imaginary quadratic fields, with self-
dual lattice level structures. Compared to these results, we expect that the greater generality of the level
structures in our result could be more useful for some purposes – for example, to approach modularity
in higher codimensions following the inductive process in [YZZ09] for the generic fibers.

In the other direction, S. Zhang [Zha20] introduced the notion of L-liftings of divisor classes
(on general polarized arithmetic varieties), and then deduced a solution to Kudla’s modularity problem
directly from the modularity results for the generic fibers in the first paragraph, regardless of level
structures. The L-lifting of a divisor class is also admissible but ‘normalized’ in the level of arithmetic
divisor classes using the Faltings heights. Our approach is an explicit alternative of S. Zhang’s. In some
applications, an explicit modular generating series as our (1.2) is necessary. For example, W. Zhang’s
proof of the arithmetic fundamental lemma [Zha21a] used the explicit result of [BHK+20a].

The main ingredient in the proof of our main result is an arithmetic mixed Siegel-Weil formula,
which identifies the arithmetic intersection between the generating series (1.2) with a CM 1-cycle on X
(associated to a 1-dimensional hermitian subspace of V) and an explicit modular form constructed from
theta series and (derivatives of) Eisenstein series.
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Arithmetic mixed Siegel-Weil formulas appeared in the literature in different contexts. The first one
appeared in the work of Gross and Zagier [GZ86, p 233, (9.3)] for generating series of Hecke operators
on the square of a modular curve, and implies their celebrated formula relating heights of heegner points
and derivatives of L-functions. This arithmetic mixed Siegel-Weil formula was partially generalized
to quaternionic Shimura curves over totally real fields in the work of Yuan, S. Zhang and W. Zhang
[YZZ13, 1.5.6] on the general Gross-Zagier formula. For certain orthogonal Shimura varieties over Q,
an arithmetic mixed Siegel-Weil formula was conjectured by Bruinier and Yang [BY09, Conjecture 1.3].
Its analog for unitary Shimura varieties over imaginary quadratic fields with certain self-dual lattice
level structures was proved by Bruinier, Howard and Yang [BHY15, Theorem C].

In the rest of this introduction, we first state our main result in more detail. Then we discuss its proof.
Finally, we mention two non-holomorphic modular variants of (1.2).

1.1. Main result

To state our main result, we need some preliminaries.

1.1.1. Admissible divisors
Let E be a number field, X a regular scheme (or more generally Deligne-Mumford stack) proper flat over
SpecO𝐸 and L = (L, ‖ · ‖) an ample hermitian line bundle on X . At each infinite place v of E, equip
the complex manifold X𝐸𝑣 with the Kähler form that is the curvature form curv(L𝐸𝑣 ). First, a Green
function is admissible (introduced by Gillet and Soulé [GS90, 5.1] following Arakelov [Ara74]) if its
curvature form 𝛼 is harmonic; equivalently, on each connected component of X𝐸𝑣 , curv(L𝐸𝑣 )𝑛−1 ∧ 𝛼

is proportional to curv(L𝐸𝑣 )𝑛, where 𝑛 = dimX𝐸𝑣 . It is further normalized if on each connected
component of X𝐸𝑣 , its pairing with (i.e., integration against) curv(L𝐸𝑣 )𝑛 is 0. Second, at each finite
place v, a divisor Y on XO𝐸𝑣 is admissible if it has ‘harmonic curvature’ with respect to LO𝐸𝑣 , in the
sense that on each connected component of XO𝐸𝑣 , the linear form on the space of vertical divisors
defined by intersecting with 𝑌 · 𝑐1 (LO𝐸𝑣 )

𝑛−1 is proportional to the linear form defined by intersecting
with 𝑐1 (LO𝐸𝑣 )

𝑛. We further call Y normalized if its vertical part has intersection pairing 0 with 𝑐1(L)𝑛.
Finally, an arithmetic divisor on X is (normalized) admissible if it is (normalized) admissible at every
finite place and its Green function is (normalized) admissible. For a divisor Z on X𝐸 , we have the unique
normalized admissible extension 𝑍L on X (called the Arakelov lifting of Z in [Zha20]).

Let Ĉh
1
L,C(X ) be the space of admissible arithmetic divisors with C-coefficients, modulo the C-span

of the principal ones. If X is connected, then the natural map

Ĉh
1
L,C (X ) → Ch1 (X𝐸 )C (1.3)

is surjective and has a 1-dimensional kernel. It is the pullback of Ĉh
1
C (SpecO𝐸 ) � C, where the

isomorphism is by taking degrees. Then the 𝔢𝑡 ∈ C ⊂ Ĉh
1
L,C (X ) in (1.2) is understood in this way.

1.1.2. Shimura varieties and integral models
Let 𝑉 (A∞𝐸 ) be the space of finite adelic points of V. For an open compact subgroup 𝐾 ⊂ 𝑈 (𝑉 (A∞𝐸 )), we
have a 𝑈 (𝑉)-Shimura variety Sh(𝑉)𝐾 (which could be stacky) of level K defined over E. We assume
that Sh(𝑉)𝐾 is proper; equivalently, 𝐹 ≠ Q or 𝐹 = Q, 𝑛 = 1 and 𝑉 is nonsplit at some finite place.

Let Λ ⊂ 𝑉 (A∞𝐸 ) be a hermitian lattice with stabilizer 𝐾Λ ⊂ 𝑈 (𝑉 (A∞𝐸 )). Let 𝐾 ⊂ 𝐾Λ such that
𝐾𝑣 = 𝐾Λ,𝑣 for v nonsplit in E. We construct a regular integral model X𝐸 of Sh(𝑉)𝐾 proper flat over O𝐸

under some conditions on 𝐸, 𝐹,Λ (Theorem 4.4.4). Our construction is largely suggested by Liu.
We have two constructions according to different conditions on 𝐸, 𝐹. First, assume that 𝐸/Q is

tamely ramified. We have the normalization in Sh(𝑉)𝐾 of the flat model of Sh(𝑉)𝐾Λ of Kisin [Kis10],
Kisin and Pappas [KP18] over O𝐸, (𝑣) , for every finite place v. We want to show their regularity and
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glue them to obtain a regular integral model X𝐾 over O𝐸 . For this purpose, we use a certain regular
PEL moduli space for a group closely related to 𝑈 (𝑉) over the ring of integers of a reflex field 𝐸 ′/𝐸 ,
constructed by Rapoport, Smithling and W. Zhang [RSZ20]. Expectably, the moduli space and our
integral models are closely related, as shown by Xu in Appendix B (the proof for the general level at
split places was suggested by Liu). Second, replacing the tameness assumption by the assumption that
𝐸/Q is Galois or 𝐸 is the composition of F with some imaginary quadratic field, which implies that
𝐸 ′ = 𝐸 , we can construct a regular integral model over O𝐸, (𝑣) from the above moduli space, following
[LTX+22]. Moreover, if both the tameness assumption and the replacement hold, the two constructions
give the same model.

We remark that by our choice of Λ, X𝐾Λ is smooth over O𝐸 so that the finite part of the normalized
admissible extension of a divisor on Sh(𝑉)𝐾Λ is the Zariski closure on X𝐾Λ .

1.1.3. Hodge bundles and CM cycles
Let L𝐾Λ be an arbitrarily line bundle on X𝐾Λ extending the Hodge (line) bundle on Sh(𝑉)𝐾Λ . Let L𝐾 ,
denoted by L if K is clear from the context, be the pullback of L𝐾Λ to X𝐾 . Let L = (L, ‖ · ‖), where
‖ · ‖ is the descent of the natural hermitian metric on the hermitian symmetric domain uniformizing
Sh(𝑉)𝐾 . It is compatible under pullbacks as K shrinks. Changing L, 𝑐1 (L) ∈ Ĉh

1
C(X ) changes by an

element in the pullback of Ĉh
1
C (SpecO𝐸 ). (It is a special feature due to the smoothness of X𝐾Λ over

O𝐸 .) In particular, changing L will not change the generating series (1.2). However, this fact does not
play a role in our proof.

For a 1-dimensional hermitian subspace 𝑊 ⊂ 𝑉 , we have an associated 0-dimensional Shimura
subvariety of Sh(𝑉). On X𝐾Λ , let the 1-cycle P𝐾Λ be its Zariski closure, divided by the degree of
its genetic fiber (so that degP𝐾Λ ,𝐸 = 1). Then P𝐾Λ is independent of the choice of this subspace
(Proposition 5.1.9). We do not need CM cycles at other levels.

1.1.4. Generating series
We start with the non-constant terms of the generating series (1.2).

For 𝑥 ∈ V∞ with norm in 𝐹>0, the orthogonal complement of A∞𝐸 𝑥 in V∞ defines a (shifted) unitary
Shimura subvariety 𝑍 (𝑥)𝐾 of Sh(𝑉)𝐾 of codimension 1. For 𝑡 ∈ 𝐹>0 and a Schwartz function 𝜙 on
𝑉 (A∞𝐸 ) invariant by K, the weighted special divisor is

𝑍𝑡 = 𝑍𝑡 (𝜙)𝐾 =
∑

𝑥∈𝐾\V∞ , 𝑞 (𝑥)=𝑡
𝜙(𝑥)𝑍 (𝑥)𝐾 .

It is compatible under pullbacks as K shrinks.
Now we define 𝔢𝑡 . Let 𝐸 (𝑠, 𝜏) be the Siegel-Eisenstein series on H [𝐹 :Q] associated to 𝜙. Its t-th

Whittaker function 𝐸𝑡 (𝑠, 𝜏) has a decomposition

𝐸𝑡 (𝑠, 𝜏) = 𝑊∞,𝑡 (𝑠, 𝜏)𝑊∞𝑡 (𝑠)

into the infinite component and the finite component. Here, we choose the s-variable so that 𝐸 (0, 𝜏) is
holomorphic of weight 𝑛 + 1, equivalently, the infinite component 𝑊∞,𝑡 (0, 𝜏) is a multiple of 𝑞𝑡 . (Note
that 𝑠 = 0 is the critical point for the Siegel-Weil formula, but not the center for the functional equation.)
The t-th Fourier coefficient of 𝐸 (0, 𝜏) is 𝐸𝑡 (0,𝜏)

𝑞𝑡 . Define

𝔢𝑡 =
𝑊∞,𝑡 (0, 𝜏)

𝑞𝑡

𝑑

𝑑𝑠

����𝑠=0𝑊
∞
𝑡 (𝑠) +

𝐸𝑡 (0, 𝜏)
𝑞𝑡

log Nm𝐹/Q𝑡. (1.4)

Then 𝔢𝑡 is independent of 𝜏.
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We introduce a number that will appear in the constant term of the generating series. Let

𝔞 = 𝑐1(L𝐾Λ ) · P𝐾Λ + 2
𝐿 ′(0, 𝜂)
𝐿(0, 𝜂) + log |Disc𝐸 | − 𝔟[𝐹 : Q] − [𝐹 : Q]

𝑛
,

where Disc𝐸 ∈ Z is the discriminant of 𝐸/Q, and 𝔟 = −(1 + log 4) when 𝑛 = 1 and more complicated in
general. See (3.30) and the remarking following it. We hope to compute the Faltings height 𝑐1 (L𝐾Λ ) ·P𝐾Λ

based on [YZ18] in a future work. And we expect cancellation among the terms defining 𝔞 so that the
definition of 𝔞 will be elementary and transparent.

Theorem 1.1.1 (Theorem 4.4.21, (4.28)). If 𝜙𝑣 = 1Λ𝑣 at ramified places, the generating series (1.2) with
the constant term being 𝜙(0)

(
𝑐1 (L

∨) + 𝔞
)

is a holomorphic modular form on H [𝐹 :Q] of parallel weight

𝑛 + 1 valued in Ĉh
1
L,C(X𝐾 ). Here, we understand 𝔞,𝔢𝑡 ∈ C ⊂ Ĉh

1
L,C (X𝐾 ) as discussed below (1.3).

Since the formation of normalized admissible extension is compatible under flat pullbacks, the
generating series (1.2) is compatible under pullbacks as K shrinks.

We note that the sum of the normalized admissible Green function for 𝑍𝑡 and 𝔢𝑡 recovers the
Bruinier-Borcherds Green function used by Bruinier, Howard, Kudla, Rapoport and Yang [BHK+20a]
for 𝐹 = Q, so that Theorem 1.1.1 is an analog of [BHK+20a, Theorem B]. Though the Bruinier-
Borcherds construction can not be directly extended to a general F (as explained to us by Bruinier), our
construction could be considered as an alternative generalization.

1.2. Sketch of the proof

Now we discuss the proof of Theorem 1.1.1. By the 1-dimensionality of the kernel of (1.3) and the
modularity of the generic fiber of the generating series (1.2) (i.e., the generating series (1.1)), the
modularity of (1.2) is equivalent to the modularity of the generating series of arithmetic intersection
numbers between [𝑍L

𝑡 ] + 𝔢𝑡 ’s and a 1-cycle on X𝐾 whose generic fiber has nonzero degree. (A similar
strategy was used in [Kud03, KRY06].)

Assume that 𝐾 = 𝐾Λ for simplicity and let us take the 1-cycle to be P𝐾Λ . Then this generating series
of arithmetic intersection numbers

(
[𝑍L

𝑡 ] + 𝔢𝑡
)
· P𝐾Λ is the arithmetic analog of the integration of a

theta series of 𝑈 (1, 1) ×𝑈 (𝑉) along 𝑈 (𝑊)\𝑈 (𝑊 (A𝐸 )), where 𝑊 ⊂ 𝑉 is the 1-dimensional hermitian
subspace defining P𝐾Λ . By the Siegel-Weil formula for 𝑈 (1, 1) × 𝑈 (𝑊), this integration is a theta-
Eisenstein series (i.e., a linear combination of products of theta series and Eisenstein series).1

Let 𝜃𝐸 (𝑠, 𝜏) be the theta-Eisenstein series associated to 𝜙 and let 𝜃𝐸 𝑡 (𝑠, 𝜏) be its t-th Whittaker
coefficient. We study the holomorphic projections of 𝜃𝐸 ′(0, 𝜏) in order to match the above generating
series of arithmetic intersection numbers, which is supposed to be holomorphic in view of our goal
(Theorem 1.1.1). A priori, there are two holomorphic projections. One is the projection of 𝜃𝐸 ′(0, 𝜏) to
the space of holomorphic cusp forms, which we call ‘cuspidal holomorphic projection’ and denote by
𝜃𝐸 ′chol(0, 𝜏). Let 𝜃𝐸 ′chol,𝑡 (0, 𝜏) be its t-th Whittaker coefficient. The other is for 𝜃𝐸 ′𝑡 (0, 𝜏) and purely
at infinite places, which we call ‘quasi-holomorphic projection’ following [YZZ13] and denote by
𝜃𝐸 ′𝑡 ,qhol (0, 𝜏). However, neither of them could be the desired match, since 𝜃𝐸 ′chol(0, 𝜏) has no constant
term and 𝜃𝐸 ′𝑡 ,qhol (0, 𝜏) is (in general) not the t-th Whittaker coefficient of a modular form. Thus, we
compute their difference and find that 𝜃𝐸 ′𝑡 ,qhol(0, 𝜏) − 𝜃𝐸 ′chol,𝑡 (0, 𝜏) is the sum of 2𝔢𝑡𝑞𝑡 and the t-th
Whittaker coefficient of a holomorphic Eisenstein series. See (3.31). In the case 𝑛 = 1, the computations
of holomorphic projections have their roots in [GZ86]. The strategy we follow is outlined in [YZZ13,
6.4.3], and the explicit computation was done by Yuan [Yua22]. We largely follow [Yua22].

1The name actually comes from ‘mixed Eisenstein-theta series’ in [YZZ13]. We use a slightly different notation to cope with
the later notation ‘𝜃𝐸 (𝑠, 𝜏)’, which we will take derivative on the Eisenstein series and so that we make the ‘E’ closer to the
s-variable.
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Let f be the sum of − 1
2 𝜃𝐸

′
chol(0, 𝜏) and the negative of the holomorphic Eisenstein series in the last

sentence. Then f is a holomorphic modular form on H [𝐹 :Q] of parallel weight 𝑛 + 1. The t-th Whittaker
coefficient of f is − 1

2
𝜃𝐸′

𝑡,qhol (0,𝜏)
𝑞𝑡 + 𝔢𝑡 .

In 5.2.1, we define some explicit Schwartz functions 𝜙′𝑣 , for every ramified place v, which are ‘error
functions’ due to ramification. Let g be sum of the theta-Eisenstein series associated to 𝜙𝑣𝜙′𝑣 ’s. The
following is our arithmetic mixed Siegel-Weil formula (Theorem 5.2.5) in the case 𝐾 = 𝐾Λ.
Theorem 1.2.1. Assume that 𝜙𝑣 = 1Λ𝑣 for v nonsplit in E. The arithmetic intersection number(
[𝑍L

𝑡 ] + 𝔢𝑡
)
· P𝐾Λ is the t-th Fourier coefficient of 𝑓 − 𝑔 − 1

𝑛𝐸 (0, 𝜏).

In Theorem 5.2.5 for a general K, we use the pullback of P𝐾Λ to X𝐾 , instead of natural CM cycles
on X𝐾 , to simplify certain local computations. See Remark 5.2.6.

We remind the reader that in Theorem 5.2.5, we actually use the automorphic Green function for 𝑍𝑡

constructed by Bruinier [Bru02, Bru12] and Oda and Tsuzuki [OT03] (for 𝑛 = 1 and 𝐹 = Q, it was
well known and used by Gross and Zagier [GZ86]). Its difference with the normalized admissible Green
function is 1

𝑛𝐸𝑡 (0, 𝜏) by Lemma 4.2.4 and the remark following it.
Let us remark on the innovation in proving the arithmetic mixed Siegel-Weil formula. We consider

the difference of two CM cycles. The generic fiber of the difference has degree 0. Then the generating
series of arithmetic intersection numbers is modular by the admissibility. (A similar observation was
used in [MZ21] to generalize the arithmetic fundamental lemma. See also [Zha21b].) This modularity
enables us to ‘switch CM cycles’ and thus avoid computing improper intersections directly. This idea is
inspired by [YZZ13] and [Zha21a].

1.3. Non-holomorphic variants

We obtain a non-holomorphic modular variant of the generating series (1.2), where the sum of the
normalized admissible Green function for 𝑍𝑡 and 𝔢𝑡 is replaced by Kudla’s Green function [Kud97b]. See
Theorem 4.4.24. This is an analog of [KRY06, Theorem A] [BHK+20a, Theorem 7.4.1]. Theorem 4.4.24
follows from Theorem 1.1.1, and the modularity of the differences between the generating series of two
kinds of Green functions (Theorem 4.2.10). The latter (Theorem 4.2.10) is an analog of the main result
of Ehlen and Sankaran [ES18] for 𝐹 = Q.

Note that Kudla’s Green function is not admissible. We also obtain a non-holomorphic modular
generating series with admissible Green functions (Theorem 4.4.21, (4.29)). This has not appeared in
the literature yet, as far as we know.

2. Some notations and conventions

2.1.

For a number field F, let A𝐹 be the ring of adeles of F and A∞𝐹 the ring of finite adeles of F. For a finite
place v of a number field F, let 𝜛𝐹𝑣 be a uniformizer of 𝐹𝑣 . Let 𝑞𝐹𝑣 be the cardinality of O𝐹𝑣 /𝜛𝐹𝑣 . The
discrete valuation is 𝑣(𝜛𝐹𝑣 ) = 1 and the absolute value | · |𝐹𝑣 is |𝜛𝑣 |𝐹𝑣 = 𝑞−1

𝐹𝑣
. For an infinite place, v is

understood as a pair of complex embeddings. If v is real, the absolute value | · |𝐹𝑣 is the usual one; if v
is complex, the absolute value | · |𝐹𝑣 is the square of the usual one. Their product is | · |A𝐹 . The symbol
| · | without a subscript means the usual real or complex absolute value.

Below in this paper, 𝐸/𝐹 is always a CM extension. Let ∞ be the set of infinite places of F. Let
𝐹>0 ⊂ 𝐹 be the subset of totally positive elements. For a place v of F, 𝐸𝑣 is understood as 𝐸 ⊗𝐹 𝐹𝑣 .
The nontrivial Galois action will be denoted by 𝑥 ↦→ 𝑥, and the norm map Nm𝐸/𝐹 or its local version
is abbreviated as Nm. Let 𝜂 be the associated quadratic Hecke character of 𝐹×\A×𝐹 via the class field
theory.

For a set of place S of F and a decomposable adelic object X over A𝐹 , we use 𝑋𝑆 (resp. 𝑋𝑆) to
denote the S-component (resp. component away from S) of X if the decomposition of X into the product
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of 𝑋𝑆 and 𝑋𝑆 is clear from the context. For example, A𝐹 = A𝐹,𝑆A
𝑆
𝐹 and A𝐸 = A𝐸,𝑆A

𝑆
𝐸 by regarding

A𝐸 as over A𝐹 . Here is another example which is ubiquitous in the paper: a function 𝜙 on the space of
A𝐹 -points of an algebraic group over F that can be decomposed as 𝜙 = 𝜙𝑆 ⊗ 𝜙𝑆 , where 𝜙𝑆 (resp. 𝜙𝑆)
is a function on the set of A𝐹,𝑆-points (resp. A𝑆

𝐹 -points) of the group. Note that such a decomposition
of 𝜙 is not unique. By using these notations, we understand that we have fixed such a decomposition.
See 2.3 for an example. If 𝑆 = {𝑣}, we write 𝑋𝑣 (resp. 𝑋 𝑣 ) for 𝑋𝑆 (resp. 𝑋𝑆).

2.2.

All hermitian spaces are assumed to be nondegenerate. We always use 〈·, ·〉 to denote a hermitian pairing
and 𝑞(𝑥) = 〈𝑥, 𝑥〉 the hermitian norm if the underlying hermitian space (over E, 𝐸𝑣 or A𝐸 ) is indicated
in the context. For a hermitian space V over E, we use V to denote 𝑉 (𝐸) to lighten the notation if there
is no confusion. For 𝑡 ∈ 𝐹, let 𝑉 𝑡 = {𝑣 ∈ 𝑉 : 𝑞(𝑣) = 𝑡}. The same notation applies to a local or adelic
hermitian space. We use 𝑈 (𝑉) for both the algebraic group 𝑈 (𝑉) and its group of F-points. Define

[𝑈 (𝑉)] = 𝑈 (𝑉)\𝑈 (𝑉 (A𝐸 )).

A hermitian space V/A𝐸 is called coherent (resp. incoherent) if its determinant belongs (resp. does
not belong) to 𝐹×Nm(A×𝐸 ); equivalently, V � 𝑉 (A𝐸 ) for some (resp. no) hermitian space 𝑉/𝐸 . If V is
incoherent of dimension 1, for a place v of F nonsplit in E, there is a unique hermitian space 𝑉/𝐸 such
𝑉 (A𝑣

𝐸 ) � V
𝑣 . We call V the v-nearby hermitian space ofW.

2.3.

Let S (V) be the space of C-valued Schwartz functions. For 𝑣 ∈ ∞ such that V(𝐸𝑣 ) is positive definite,
the standard Gaussian function on V∞ is 𝑒−2𝜋𝑞 (𝑥) ∈ S (V(𝐸𝑣 )). If a hermitian space V/A𝐸 is totally
positive-definite, let

S (V) ⊂ S (V)

be the subspace of functions of the form 𝜙 = 𝜙∞ ⊗ 𝜙∞, where 𝜙∞ is the pure tensor of standard Gaussian
functions over all infinite places and 𝜙∞ ∈ S (V∞) taking values in C. For 𝜙 ∈ S (V∞), we always fix
such a decomposition.

2.4.

Fix the additive character of 𝐹\A𝐹 to be 𝜓 := 𝜓Q ◦ Tr𝐹/Q, where 𝜓Q is the unique additive character of
Q\AQ such that 𝜓Q,∞(𝑥) = 𝑒2𝜋𝑖𝑥 . The additive character of A𝐸 is 𝜓𝐸 := 𝜓 ◦ Tr𝐸/𝐹 . For 𝑡 ∈ A𝐹 (we in
fact only use 𝑡 ∈ 𝐹), let 𝜓𝑡 (𝑏) = 𝜓(𝑡𝑏). For a place v of F and 𝑡 ∈ 𝐹𝑣 , Let 𝜓𝑣,𝑡 (𝑏) = 𝜓𝑣 (𝑡𝑏). Then
𝜓𝑣,𝑡 = 𝜓𝑣,𝑡𝑣 for 𝑡 ∈ A𝐹 .

Fix the self-dual Haar measures for 𝐹𝑣 and 𝐸𝑣 . Then

𝑑𝐹×𝑣 𝑥 := 𝜁𝐹𝑣 (1) |𝑥 |−1
𝐹𝑣

𝑑𝐹𝑣 𝑥, 𝑑𝐸×𝑣 𝑥 := 𝜁𝐸𝑣 (1) |𝑥 |−1
𝐸𝑣

𝑑𝐸𝑣 𝑥

are the induced Haar measures on 𝐹×𝑣 and 𝐸×𝑣 . The subscripts will be omitted later in the paper. They
induce the quotient measure on 𝐸×𝑣 /𝐹×𝑣 �𝑈 (1) (𝐹𝑣 ).

For 𝜙 ∈ S (V(𝐸𝑣 )), the Fourier transform of 𝜙 (with respect to 𝜓 and a Haar measure) is

𝜙(𝑥) =
∫
V(𝐸𝑣 )

𝜙(𝑦)𝜓𝐸,𝑣 (〈𝑥, 𝑦〉)𝑑𝑦.

We fix the self-dual Haar measure on V(𝐸𝑣 ).
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2.5.

Let 𝐺 = 𝑈 (1, 1) be the unitary group over F of the standard skew-hermitian space over E of dimension 2;
that is, the skew-hermitian form is given by the matrix

𝑤 =

[
0 1
−1 0

]
.

Then 𝑤 ∈ 𝐺 (𝐹). We use 𝑤𝑣 to denote the same matrix in 𝐺 (𝐹𝑣 )
For 𝑏 ∈ G𝑎,𝐹 , let

𝑛(𝑏) =
[
1 𝑏
0 1

]
.

For 𝑎 ∈ Res𝐸/𝐹G𝑚,𝐸 , let

𝑚(𝑎) =
[
𝑎 0
0 𝑎−1

]
.

Let 𝑁 = {𝑛(𝑏) : 𝑏 ∈ G𝑎,𝐹 } ⊂ 𝐺, 𝑀 = {𝑚(𝑎) : 𝑎 ∈ Res𝐸/𝐹G𝑚,𝐸 } ⊂ 𝐺, and 𝑃 = 𝑀𝑁 the subgroup
of upper triangular matrices. Then G is generated P and w. The isomorphism 𝑁 � G𝑎,𝐹 induces an
additive character and a Haar measure on 𝑁 (A𝐹 ) which we fix in this paper.

Let 𝐾max
𝑣 be the intersection of 𝐺 (𝐹𝑣 ) with the standard maximal compact subgroup GL2 (𝐸𝑣 ). Then

𝐾max
𝑣 is a maximal compact subgroup of 𝐺 (𝐹𝑣 ). For 𝑣 ∈ ∞, 𝐾max

𝑣 is the group of matrices

[𝑘1, 𝑘2] :=
1
2

[
𝑘1 + 𝑘2 −𝑖𝑘1 + 𝑖𝑘2
𝑖𝑘1 − 𝑖𝑘2 𝑘1 + 𝑘2

]
,

where 𝑘1, 𝑘2 ∈ 𝐸𝑣 are of norm 1. We have the Iwasawa decomposition

𝐺 (𝐹𝑣 ) = 𝑁 (𝐹𝑣 )𝑀 (𝐹𝑣 )𝐾max
𝑣 .

2.6.

For a place v of F, the local modulus character of 𝐺 (𝐹𝑣 ) is given by

𝛿𝑣 (𝑔) = |𝑎 |𝐸𝑣

if 𝑔 = 𝑛(𝑏)𝑚(𝑎)𝑘 with 𝑘 ∈ 𝐾max
𝑣 under the Iwasawa decomposition. The global modulus character

𝛿 of 𝐺 (A𝐹 ) is the product of the local ones. Since we will use results in [YZ18, YZZ13], where
the subgroup SL2 ⊂ 𝐺 is used, we remind the reader that our modulus character, when restricted to
SL2 (𝐹𝑣 ) ⊂ 𝐺 (𝐹𝑣 ), is the square of the one in loc. cit..

2.7.

For 𝔴 = (𝔴𝑣 )𝑣 ∈∞, where 𝔴𝑣 is a pair of integers, let A(𝐺,𝔴) be the space of smooth automor-
phic forms for G of weight 𝔴. Let Ahol(𝐺,𝔴) be the subspace of holomorphic automorphic forms.
A characterization is as follows. For 𝑣 ∈ ∞, 𝑡 ∈ 𝐹𝑣,≥0 and a pair of integers (𝑤1, 𝑤2), the standard
holomorphic 𝜓𝑣,𝑡 -Whittaker function on 𝐺 (𝐹𝑣 ) of weight (𝑤1, 𝑤2) is

𝑊 (𝑤1 ,𝑤2)
𝑣,𝑡 (𝑔) = 𝑒2𝜋𝑖𝑡 (𝑏+𝑖 |𝑎 |𝐸𝑣 ) |𝑎 | (𝑤1+𝑤2)/2

𝐸𝑣
𝑘𝑤1

1 𝑘𝑤2
2 ,
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for 𝑔 = 𝑛(𝑏)𝑚(𝑎) [𝑘1, 𝑘2] under the Iwasawa decomposition. For 𝑡 ∈ A𝐹,∞, let

𝑊𝔴
∞,𝑡 =

∏
𝑣 ∈∞

𝑊𝔴𝑣
𝑣,𝑡 .

An automorphic form f on 𝐺 (A𝐹 ) is holomorphic of weight 𝔴 if for 𝑡 ∈ 𝐹>0 ∪ {0}, its 𝜓𝑡 -Whittaker
function is a tensor of the finite and infinite component: 𝑓𝑡 = 𝑓∞𝑡 ⊗ 𝑊𝔴

∞,𝑡 , and for other 𝑡 ∈ 𝐹, its
𝜓𝑡 -Whittaker function is 0. In this case, we call the locally constant function 𝑓∞𝑡 on 𝐺 (A∞𝐹 ) the t-th
Fourier coefficient of f. (Then 𝑓∞𝑡 (1) is the t-th Fourier coefficient in the sense of classical modular
forms.)

For a subfield 𝐶 ⊂ C, let

Ahol(𝐺,𝔴)𝐶 ⊂ Ahol(𝐺,𝔴)

be the C-subspace of automorphic forms f whose Fourier coefficients take values in C. (In the sense of
classical modular forms, it means that the coefficients of the q-expansion of f along all cusps are in C.)
Taking Fourier coefficients defines an embedding of C-vector spaces

Ahol(𝐺,𝔴)𝐶 →
∏

𝑡 ∈𝐹>0∪{0}
LC

(
𝐺 (A∞𝐹 ), 𝐶

)
,

where LC
(
𝐺 (A∞𝐹 ), 𝐶

)
means locally constant functions on 𝐺 (A∞𝐹 ) valued in 𝐶. For a C-vector space X,

we have the induced embedding

Ahol(𝐺,𝔴)𝐶 ⊗𝐶 𝑋 →
∏

𝑡 ∈𝐹>0∪{0}
LC

(
𝐺 (A∞𝐹 ), 𝑋

)
.

Define the t-th Fourier coefficient of an element in Ahol(𝐺,𝔴)𝐶 ⊗𝐶 𝑋 to be the t-th component of its
image.

2.8.

Let V/A𝐸 be a hermitian space. For a character 𝜒
W

of 𝐸×\A×𝐸 such that 𝜒
V ,𝑣 |𝐹×𝑣 = 𝜂dimV

𝑣 for every
place v of F, the Weil representation 𝜔 = 𝜔

V
on S (V) is the restricted tensor product of local Weil

representations of 𝐺 (𝐹𝑣 ) × 𝑈 (V(𝐸𝑣 )) on S (V(𝐸𝑣 )). The local Weil representation (which we still
denote by 𝜔 instead of 𝜔𝑣 if the meaning is clear from the context) of 𝐺 (𝐹𝑣 ) is defined as follows: for
𝜙 ∈ S (V(𝐸𝑣 )),

𝜔(𝑚(𝑎))𝜙(𝑥) = 𝜒
V ,𝑣 (𝑎) |𝑎 |

𝑚/2
𝐸𝑣

𝜙(𝑥𝑎), 𝑎 ∈ 𝐸×𝑣 ;

𝜔(𝑛(𝑏))𝜙(𝑥) = 𝜓𝑣 (𝑏𝑞(𝑥))𝜙(𝑥), 𝑏 ∈ 𝐹𝑣 ;

𝜔(𝑤𝑣 )𝜙 = 𝛾V(𝐸𝑣 )𝜙;
𝜔(ℎ)𝜙(𝑥) = 𝜙(ℎ−1𝑥), ℎ ∈ 𝑈 (V(𝐸𝑣 )).

Here, 𝛾V(𝐸𝑣 ) is the Weil index associated to 𝜓𝑣 and V(𝐸𝑣 ).

2.9.

For 𝑣 ∈ ∞, define 𝔨𝜒V ,𝑣 to be the unique integer such that

𝜒
V ,𝑣 (𝑧) = 𝑧𝔨

𝜒

https://doi.org/10.1017/S2050509425000003 Published online by Cambridge University Press

https://doi.org/10.1017/S2050509425000003


10 C. Qiu

for 𝑧 ∈ 𝐸𝑣 of norm 1. Define 𝔴𝜒
V
= (𝔴𝜒

V
,𝑣 )𝑣 ∈∞, where

𝔴𝜒
V
,𝑣 :=

(
dimV + 𝔨𝜒V ,𝑣

2
,

dimV − 𝔨𝜒V ,𝑣
2

)
.

3. Theta-Eisenstein series

First, we recall basic knowledge about Eisenstein series and theta series. Then we set up basic properties
of theta-Eisenstein series (i.e., linear combinations of products of theta series and Eisenstein series).
Finally, we study two kinds of holomorphic projections of theta-Eisenstein series. The origin of theta-
Eisenstein series is in the work of Gross and Zagier[GZ86]. We largely follow the works of Yuan,
S. Zhang and W. Zhang [Yua22, YZ18, YZZ13].

3.1. Eisenstein series and theta series

Let W be a hermitian space over A𝐸 (with respect to the extension 𝐸/𝐹). Let 𝜒
W

be a character of
𝐸×\A×𝐸 such that 𝜒

V
|A×𝐹 = 𝜂. We have the Weil representation 𝜔

W
, which we simply denote by 𝜔.

3.1.1. Local Whittaker integrals
Let v be a place of F. For 𝑡 ∈ 𝐹𝑣 , 𝜙 ∈ S (W𝑣 ) and 𝑔 ∈ 𝐺 (𝐹𝑣 ), define the Whittaker integral

𝑊𝑣,𝑡 (𝑠, 𝑔, 𝜙) =
∫
𝑁 (𝐹𝑣 )

𝛿𝑣 (𝑤𝑣𝑛𝑔)𝑠𝜔(𝑤𝑣𝑛𝑔)𝜙(0)𝜓−𝑡 (𝑛)𝑑𝑛. (3.1)

We immediately have the following equations:

𝑊𝑣,𝑡 (𝑠, 𝑔𝑘, 𝜙) = 𝑊𝑣,𝑡 (𝑠, 𝑔, 𝜔(𝑘)𝜙), 𝑘 ∈ 𝐾max
𝑣 , (3.2)

𝑊𝑣,𝑡 (𝑠, 𝑛(𝑏)𝑔, 𝜙) = 𝜓𝑣 (𝑏𝑡)𝑊𝑣,𝑡 (𝑠, 𝑔, 𝜙), 𝑏 ∈ 𝐹𝑣 . (3.3)

Since 𝑤𝑛(𝑏)𝑚(𝑎) = 𝑚(𝑎−1)𝑤𝑛(𝑏Nm(𝑎)−1), 𝑚(𝑎−1)𝑛(𝑏) = 𝑛(𝑏′)𝑚(𝑎−1) for some 𝑏′, and
𝜒
W ,𝑣 (Nm(𝑎)) = 1, a direct computation gives

𝑊𝑣,𝑡 (𝑠, 𝑚(𝑎)𝑔, 𝜙) = |𝑎 |1−dimW/2−𝑠
𝐸𝑣

𝜒
W ,𝑣 (𝑎)𝑊𝑣,Nm(𝑎)𝑡 (𝑠, 𝑔, 𝜙), 𝑎 ∈ 𝐸×𝑣 . (3.4)

Lemma 3.1.1 [Ich04, Proposition 6.2][YZZ13, Proposition 2.7 (2)]. Let 𝑡 ≠ 0.
(1) The setW𝑡

𝑣 is either empty or consists of one orbit of 𝑈 (W𝑣 ).
(2) IfW𝑡

𝑣 is empty, then 𝑊𝑣,𝑡 (0, 𝑔, 𝜙) = 0. Otherwise, for 𝑥 ∈ W𝑡
𝑣 , we have

𝑊𝑣,𝑡 (0, 𝑔, 𝜙) = 𝜅

∫
𝑈 (W𝑣 )

𝜔(𝑔)𝜙(ℎ−1𝑥)𝑑ℎ,

for a nonzero constant 𝜅.
(3) If dimW = 1, with the measure fixed in 2.4, 𝜅 = 𝛾W𝑣

𝐿 (1,𝜂𝑣 ) .
Assume dimW = 1.

Lemma 3.1.2. Assume that v is a finite place and 𝜙(0) = 0. Then for t small enough, 𝑊𝑣,𝑡 (𝑠, 𝑔, 𝜙) =
𝑊𝑣,0 (𝑠, 𝑔, 𝜙) and is a holomorphic function.
Proof. The proof is by the reasoning as the proof of [Qiu21, Lemma 4.2.4 (2)] �

We define the following normalization (following [YZZ13, 6.1.1]):

𝑊◦𝑣,𝑡 = 𝛾−1
W𝑣

𝑊𝑣,𝑡 , 𝑡 ≠ 0. (3.5)
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For 𝑡 = 0, 𝑊𝑣,𝑡 (𝑠, 𝑔, 𝜙) has a possible pole at 𝑠 = 0. And we take a different normalization (following
[YZZ13, 6.1.1], and taking care of the difference between the modulus characters mentioned in 2.6),

𝑊◦𝑣,0(𝑠, 𝑔, 𝜙) := 𝛾−1
W𝑣
|Diff𝑣Disc𝑣 |−1/2

𝐹𝑣

𝐿(2𝑠 + 1, 𝜂𝑣 )
𝐿(2𝑠, 𝜂𝑣 )

𝑊𝑣,0(𝑠, 𝑔, 𝜙). (3.6)

Here, if v is a finite place, Diff𝑣 is the different of 𝐹𝑣/Q𝑣 and Disc𝑣 is the discriminant of 𝐸𝑣/𝐹𝑣 , and
if 𝑣 ∈ ∞, Diff𝑣 = Disc𝑣 = 1.
Lemma 3.1.3. (1) There is an analytic continuation of 𝑊◦0 (𝑠, 𝑔, 𝜙) to C such that 𝑊◦0 (0, 𝑔, 𝜙) =
𝜔(𝑔)𝜙(0).

(2) If 𝐸𝑣/Q𝑣 is unramified where W𝑣 = 𝐸𝑣 with 𝑞 = Nm, and 𝜙 = 1O𝐸𝑣 , then 𝑊◦0 (𝑠, 𝑔, 𝜙) =
𝛿𝑣 (𝑔)−𝑠𝜔(𝑔)𝜙(0).

(3) If 𝑣 ∈ ∞ and 𝜙 is the standard Gaussian function, then 𝑊◦0 (𝑠, 𝑔, 𝜙) = 𝛿𝑣 (𝑔)−𝑠𝜔(𝑔)𝜙(0).
Proof. (1) follows from [YZZ13, Proposition 6.1]. (2) follows from [Tan99, Proposition 2.1]. (3) follows
from [YZ18, Lemma 7.6 (1)] (or its proof). �

3.1.2. Siegel-Eisenstein series
Now we come back to a generalW. For 𝜙 ∈ S (W), we have a Siegel-Eisenstein series of G:

𝐸 (𝑠, 𝑔, 𝜙) =
∑

𝛾∈𝑃 (𝐹 )\𝐺 (𝐹 )
𝛿(𝛾𝑔)𝑠𝜔(𝛾𝑔)𝜙(0), (3.7)

which is absolutely convergent if Re𝑠 > 1− dimW/2 and has a meromorphic continuation to the entire
complex plane [Tan99]. Moreover, it is holomorphic at 𝑠 = 0 [Tan99, Proposition 4.1].

Let 𝐸𝑡 (𝑠, 𝑔, 𝜙) be the 𝜓𝑡 -Whittaker function of 𝐸 (𝑠, 𝑔, 𝜙). Let𝑊𝑡 (𝑠, 𝑔, 𝜙) be the global counterpart of
the Whittaker integral (3.1) so that if 𝜙 is a pure tensor, then 𝑊𝑡 (𝑠, 𝑔, 𝜙) is the product of 𝑊𝑣,𝑡 (𝑠, 𝑔𝑣 , 𝜙𝑣 )
over all places of F. By the non-vanishing of 𝐿(1, 𝜂) and Lemma 3.1.3, 𝑊0 (𝑠, 𝑔, 𝜙) has a meromorphic
continuation to the entire complex plane, which is holomorphic at 𝑠 = 0. Then we have

𝐸𝑡 (𝑠, 𝑔, 𝜙) = 𝑊𝑡 (𝑠, 𝑔, 𝜙), 𝑡 ≠ 0; (3.8)

𝐸0 (𝑠, 𝑔, 𝜙) = 𝛿(𝑔)𝑠𝜔(𝑔)𝜙(0) +𝑊0 (𝑠, 𝑔, 𝜙). (3.9)

By Lemma 3.1.1 (2) and (3.8), for ℎ ∈ 𝑈 (W), we have

𝐸𝑡 (0, 𝑔, 𝜔(ℎ)𝜙) = 𝐸𝑡 (0, 𝑔, 𝜙). (3.10)

For 𝑡 ≠ 0 and a pure tensor 𝜙, define

𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣) = 𝑊 ′𝑣,𝑡 (0, 𝑔𝑣 , 𝜙𝑣 )
∏
𝑢≠𝑣

𝑊𝑢,𝑡 (0, 𝑔𝑢 , 𝜙𝑢). (3.11)

Extend the definition to all Schwartz functions by linearity. Then

𝐸 ′𝑡 (0, 𝑔, 𝜙) =
∑
𝑣

𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣). (3.12)

3.1.3. Coherent case: Siegel-Weil formula
Assume thatW = 𝑊 (A𝐸 ) is coherent. For 𝜙 ∈ S (𝑊 (A𝐸 )) and (𝑔, ℎ) ∈ 𝐺 (A𝐹 ) ×𝑈 (W), we define a
theta series, which is absolutely convergent:

𝜃 (𝑔, ℎ, 𝜙) =
∑
𝑥∈𝑊

𝜔(𝑔, ℎ)𝜙(𝑥).

Then 𝜃 (𝑔, ℎ, 𝜙) is smooth, slowly increasing and 𝐺 (𝐹) ×𝑈 (𝑊)-invariant.
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Assume that W is anisotropic. Then 𝐸 (𝑠, 𝑔, 𝜙) is holomorphic at 𝑠 = 0, and the following equation
is a special case of the regularized Siegel-Weil formula [Ich04, Theorem 4.2]:

𝐸 (0, 𝑔, 𝜙) = 𝜅

Vol([𝑈 (𝑊)])

∫
[𝑈 (𝑊 ) ]

𝜃 (𝑔, ℎ, 𝜙)𝑑ℎ, (3.13)

where 𝜅 = 2 if dim𝑊 = 1 and 𝜅 = 1 if dim𝑊 > 1.

3.1.4. Incoherent case: derivative
Assume thatW is incoherent. By Lemma 3.1.1 (1), for 𝑡 ≠ 0, the summand in (3.12) corresponding to
v is nonzero only if t is represented byW𝑣 . By the incoherence,W𝑣 does not represent t. In particular,
we have the following lemma.

Lemma 3.1.4. For v split in E, the summand in (3.12) corresponding v is 0.

Assume that dimW = 1. Assume that 𝜙 is a pure tensor.
First, assume that 𝑡 ≠ 0. By the product formula for Hasse invariant and the Hasse principle, if t is

represented byW𝑣 , then v is nonsplit in E and t is represented by the v-nearby hermitian space W ofW.
See 2.2. By Lemma 3.1.1 (2) and Lemma 3.1.4, we have

𝐸 ′𝑡 (0, 𝑔, 𝜔(ℎ)𝜙) = 𝐸 ′𝑡 (0, 𝑔, 𝜙) (3.14)

for ℎ ∈ 𝑈 (W𝑣 ), where v is split in E.
Now we consider the constant term. Let

𝔠 = 4
𝐿 ′(0, 𝜂)
𝐿(0, 𝜂) + 2 log |Disc𝐸/Disc𝐹 |, (3.15)

where Disc𝐸 , Disc𝐹 ∈ Z are the discriminants of E and F overQ. By [YZ18, p 586] (note the difference
by 2 between the s-variables in the L-factors in loc. cit. and (3.6)),

𝑊 ′0 (𝑠, 𝑔, 𝜙) = −𝔠𝜔(𝑔)𝜙(0) −
∑
𝑣

𝜔(𝑔𝑣 )𝜙𝑣 (0)𝑊◦𝑣,0
′(0, 𝑔𝑣 , 𝜙𝑣 ). (3.16)

3.2. Theta-Eisenstein series

From now on, always assume dimW = 1.

3.2.1. Definition
Let 𝑉♯/𝐸 be a hermitian space of dimension 𝑛 > 0. Let 𝜒𝑉 ♯ be a character of 𝐸×\A×𝐸 such that
𝜒𝑉 ♯ |A×𝐹 = 𝜂𝑛. Let V = W ⊕ 𝑉♯ (A𝐸 ) be the orthogonal direct sum and 𝜒V = 𝜒

W
𝜒𝑉 ♯ . We have the

corresponding Weil representations. Below, we shall use 𝜔 to denote a Weil representation if the
hermitian space is indicated in the context – for example, by the function that it acts on.

For 𝜙 ∈ S (V), we define a theta-Eisenstein series 𝜃𝐸 (𝑠, 𝑔, 𝜙) on G associated the to the orthogonal
decomposition V =W ⊕ 𝑉♯ (A𝐸 ):

𝜃𝐸 (𝑠, 𝑔, 𝜙) =
∑

𝛾∈𝑃 (𝐹 )\𝐺 (𝐹 )
𝛿(𝛾𝑔)𝑠

∑
𝑥∈𝑉 ♯

𝜔(𝛾𝑔)𝜙((0, 𝑥)). (3.17)

If 𝜙 = 𝜙1 ⊗ 𝜙2 with 𝜙1 ∈ S (W) and 𝜙2 ∈ S
(
𝑉♯ (A𝐸 )

)
, then

𝜃𝐸 (𝑠, 𝑔, 𝜙) = 𝐸 (𝑠, 𝑔, 𝜙1)𝜃 (𝑔, 𝜙2). (3.18)

For 𝑡 ∈ 𝐹, let 𝜃𝐸 𝑡 (𝑠, 𝑔, 𝜙) be the 𝜓𝑡 -Whittaker function of 𝜃𝐸 (𝑠, 𝑔, 𝜙).
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3.2.2. Coherent case
Assume thatW = 𝑊 (A𝐸 ) is coherent. The regularized Siegel-Weil formula (3.13) immediately implies
the following ‘mixed Siegel-Weil formula’:

𝜃𝐸 (0, 𝑔, 𝜙) = 2
Vol([𝑈 (𝑊)])

∫
[𝑈 (𝑊 ) ]

𝜃 (𝑔, ℎ, 𝜙)𝑑ℎ. (3.19)

(We will prove an arithmetic analog of (3.19) forW being incoherent in 5.2.) Then for 𝑡 ∈ 𝐹,

𝜃𝐸 𝑡 (0, 𝑔, 𝜙) =
2

Vol([𝑈 (𝑊)])

∫
[𝑈 (𝑊 ) ]

∑
𝑥∈𝑉 𝑡

𝜔(𝑔)𝜙(ℎ−1𝑥)𝑑ℎ. (3.20)

For 𝜙 invariant by 𝑈 (𝑊 (𝐸𝑣 )), 𝑣 ∈ ∞, the integration in (3.20) is a finite sum.

Lemma 3.2.1. Let 𝑡 ∈ 𝐹>0 and 𝜙 a pure tensor. Let u be a finite place of F, 𝑂 ⊂ V𝑢 an open compact
neighborhood of 0 and 𝜙𝑂 = 𝜙𝑢 ⊗ (𝜙𝑢1V𝑢−𝑂). Given 𝑔 ∈ 𝐺 (A𝑢

𝐹 )𝑃(𝐹𝑢), for O small enough, we have
𝜃𝐸 𝑡 (0, 𝑔, 𝜙) = 𝜃𝐸 𝑡 (0, 𝑔, 𝜙𝑂).

Proof. Write 𝑔𝑢 = 𝑚(𝑎)𝑛(𝑏), where 𝑎 ∈ 𝐸×𝑢 . See 2.5. Then {𝑎ℎ−1
𝑢 𝑥 : 𝑥 ∈ 𝑉 𝑡 , ℎ ∈ 𝑈 (V)} ⊂ V𝑎2𝑡

𝑢 .
The latter is closed in V𝑢 and does not contain 0. Thus, 𝑂 ∩ {𝑎ℎ−1

𝑢 𝑥 : 𝑥 ∈ 𝑉 𝑡 , ℎ ∈ 𝑈 (V)} = ∅ if O is
small enough. Then the lemma follows from (3.20), the remark below it, and the definition of the Weil
representation in 2.8. �

3.2.3. Incoherent case
Assume thatW is incoherent.

For a place v of F nonsplit in E, let W be the v-nearby hermitian space ofW. For 𝜙 = 𝜙1 ⊗ 𝜙2 with
𝜙1 ∈ S (W𝑣 ), 𝜙2 ∈ S

(
𝑉♯ (𝐸𝑣 )

)
and 𝑥 = (𝑥1, 𝑥2) ∈ 𝑉 := 𝑊 (𝐸𝑣 ) ⊕ 𝑉♯ (𝐸𝑣 ) with 𝑥1 ≠ 0, let

𝑊𝜃𝑣,𝑥 (𝑠, 𝑔, 𝜙) =
𝐿(1, 𝜂𝑣 )

Vol(𝑈 (𝑊 (𝐸𝑣 ))
𝑊◦𝑣,𝑞 (𝑥1) (𝑠, 𝑔, 𝜙1)𝜔(𝑔)𝜙2(𝑥2). (3.21)

This is a local analog of (3.18). Extend this definition to S (W𝑣 ) ⊗S
(
𝑉♯ (𝐸𝑣 )

)
⊂ S (V(𝐸𝑣 )) by linearity.

The inclusion is an equality unless 𝑣 ∈ ∞. However, this subspace is enough for our purpose. (Besides,
there is another definition of 𝑊𝜃𝑣,𝑥 for the whole S (V(𝐸𝑣 )). We will not need it.) For v nonsplit in E
and 𝑡 ≠ 0, define

𝜃𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣) =
2

Vol([𝑈 (𝑊)])

∫
[𝑈 (𝑊 ) ]

∑
𝑥∈𝑉 𝑡−𝑉 ♯

𝑊𝜃 ′
𝑣,ℎ−1

𝑣 𝑥
(0, 𝑔𝑣 , 𝜙𝑣 )𝜔(𝑔𝑣 )𝜙𝑣 (ℎ𝑣,−1𝑥)𝑑ℎ. (3.22)

Note that the analog of (3.12) does not hold.
We study 𝑊𝜃 ′𝑣,𝑥 (0, 𝑔, 𝜙) following [YZZ13]. Indeed, the computation is only on the Eisenstein (i.e.,

Whittaker) part. We remind the reader of the difference between the modulus characters mentioned
in 2.6. By (3.3), (3.4) and Lemma 3.1.1, we have the following lemma, which says that under the action
of 𝑃(𝐹𝑣 ), 𝑊𝜃 ′𝑣,𝑥 (𝑠0, 𝑔, 𝜙) behaves in the same was as the Weil representation.

Lemma 3.2.2 [YZZ13, Lemma 6.6]. The following relations hold:

𝑊𝜃 ′𝑣,𝑥 (0, 𝑚(𝑎)𝑔, 𝜙) = 𝜒
V ,𝑣 (𝑎) | det 𝑎 |dimV/2

𝐸𝑣
𝑊𝜃 ′𝑣,𝑎𝑥 (0, 𝑔, 𝜙), 𝑎 ∈ 𝐸×𝑣 ;

𝑊𝜃 ′𝑣,𝑥 (0, 𝑛(𝑏)𝑔, 𝜙) = 𝜓𝑣 (𝑏𝑞(𝑥))𝑊𝜃 ′𝑣,𝑥 (0, 𝑔, 𝜙), 𝑏 ∈ 𝐹𝑣 .

Corollary 3.2.3. For 𝑎 ∈ 𝐸×, 𝜃𝐸 ′𝑡 (0, 𝑚(𝑎)𝑔, 𝜙) (𝑣) = 𝜃𝐸 ′
𝑎2𝑡
(0, 𝑔, 𝜙) (𝑣).
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3.3. Holomorphic projections

We define quasi-holomorphic projection and cuspidal holomorphic projection, and compare them for
theta-Eisenstein series (Lemma 3.3.3). After imposing Gaussian condition at infinite places in 3.3.4,
we make the comparison more explicit in (3.31). Finally, after imposing the incoherence condition, we
explicitly compute the quasi-holomorphic projection (Proposition 3.3.13).

3.3.1. Definitions
For 𝑣 ∈ ∞, let 𝔴𝑣 be a pair of integers whose sum |𝔴𝑣 | is ≥ 2. For 𝑡 ∈ 𝐹𝑣,>0, let 𝑊𝔴𝑣

𝑣,𝑡 be the standard
holomorphic Whittaker function of weight 𝔴𝑣 as in 2.7. Then∫

𝑍 (𝐹𝑣 )𝑁 (𝐹𝑣 )\𝐺 (𝐹𝑣 )
|𝑊𝔴𝑣

𝑣,𝑡 (ℎ) |2𝑑ℎ = (4𝜋)−|𝔴𝑣 |+1Γ(|𝔴𝑣 | − 1).

For 𝑡 ∈ 𝐹𝑣,>0, a 𝜓𝑣,𝑡 -Whittaker function W on 𝐺 (𝐹𝑣 ), and 𝑔 ∈ 𝐺 (𝐹𝑣 ), define

𝑊𝑠 (𝑔) =
(4𝜋) |𝔴𝑣 |−1

Γ(|𝔴𝑣 | − 1)𝑊
𝔴𝑣
𝑣,𝑡 (𝑔)

∫
𝑍 (𝐹𝑣 )𝑁 (𝐹𝑣 )\𝐺 (𝐹𝑣 )

𝛿(ℎ)𝑠𝑊 (ℎ)𝑊𝔴𝑣
𝑣,𝑡 (ℎ)𝑑ℎ.

If 𝑊𝑠 has a meromorphic continuation to 𝑠 = 0, define the quasi-holomorphic projection

𝑊qhol := l̃im
𝑠→0

𝑊𝑠

of W of weight 𝔴𝑣 . Here, l̃im
𝑠→0

denotes the constant term at 𝑠 = 0.
Let 𝔴 = (𝔴𝑣 )𝑣 ∈∞, where 𝔴𝑣 is a pair of integers. For a continuous function 𝑓 : 𝑁 (𝐹)\𝐺 (A𝐹 ) → C

with 𝜓𝑡 -Whittaker function 𝑓𝑡 for 𝑡 ∈ 𝐹>0, let 𝑓𝑡 ,qhol be the quasi-holomorphic projection of 𝑓𝑡 of weight
𝔴 at all infinite places (if it is well defined).

For an automorphic form f on 𝐺 (A𝐹 ), the cuspidal holomorphic projection 𝑓chol of weight 𝔴 of f
is the 𝐿2-orthogonal projection of f to the subspace Ahol(𝐺,𝔴) of cusp forms – that is, for every cusp
form 𝜙 ∈ Ahol(𝐺,𝔴), the Petersson inner product 〈 𝑓 , 𝜙〉 equals 〈 𝑓chol, 𝜙〉.

Lemma 3.3.1 [Liu11b, Proposition 6.2][YZZ13, Proposition 6.12]. Assume that there exists 𝜖 > 0 such
that for 𝑣 ∈ ∞ and 𝑎 ∈ 𝐸×𝑣 with |𝑎 |𝐸𝑣 →∞, we have

𝑓 (𝑚(𝑎)𝑔) = 𝑂𝑔

(
|𝑎 | |𝔴𝑣 |/2−𝜖𝐸𝑣

)
,

where 𝑚(𝑎) is as in 2.5. Then for 𝑡 ∈ 𝐹>0, 𝑓𝑡 ,qhol is well defined and 𝑓𝑡 ,qhol = 𝑓chol,𝑡 .

3.3.2. Holomorphic projections of 𝜃𝐸 ′(0, 𝑔, 𝜙)
Let 𝔴 = 𝔴𝜒

V
be as in 2.9. Then |𝔴𝑣 | = 𝑛 + 1. Holomorphic projections below are of weight 𝔴.

Retrieve the notations in 3.2.1. Let 𝜃𝐸 ′chol(0, 𝑔, 𝜙) be the cuspidal holomorphic projection of the
derivative 𝜃𝐸 ′(0, 𝑔, 𝜙). For 𝑡 ∈ 𝐹>0, let 𝜃𝐸 ′chol,𝑡 (0, 𝑔, 𝜙) be its 𝜓𝑡 -Whittaker function. Let 𝜃𝐸 𝑡 (𝑠, 𝑔, 𝜙)
be the 𝜓𝑡 -Whittaker function of 𝜃𝐸 (𝑠, 𝑔, 𝜙). Let 𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) be the quasi-holomorphic projection of
𝜃𝐸 ′𝑡 (0, 𝑔, 𝜙) if it is well defined. The difference between 𝜃𝐸 ′chol,𝑡 (0, 𝑔, 𝜙) and 𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) is given
as follows.

For 𝜙 = 𝜙1 ⊗ 𝜙2 ∈ S (V) with 𝜙1 ∈ S (W) and 𝜙2 ∈ S
(
𝑉♯ (A𝐸 )

)
, define

𝜃𝐸00(𝑠, 𝑔, 𝜙) = 𝛿(𝑔)𝑠𝜔(𝑔)𝜙(0) +𝑊0 (𝑠, 𝑔, 𝜙1)𝜔(𝑔)𝜙2(0),

which is the product of 𝐸0 (𝑠, 𝑔, 𝜙1) and the constant term of 𝜃 (𝑔, 𝜙2). See (3.9). The definition extends
to general 𝜙 ∈ S (V) by linearity. By (3.3) and (3.4), we can define an Eisenstein series
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𝐽 (𝑠, 𝑔, 𝜙) =
∑

𝛾∈𝑃 (𝐹 )\𝐺 (𝐹 )
𝜃𝐸00(𝑠, 𝛾𝑔, 𝜙).

For 𝑡 ∈ 𝐹>0, let 𝐽𝑡 (𝑠, 𝑔, 𝜙) be its 𝜓𝑡 -Whittaker function. Let 𝐽 ′𝑡 ,qhol (0, 𝑔, 𝜙) be the quasi-holomorphic
projection of the derivative 𝐽 ′𝑡 (0, 𝑔, 𝜙) if it is well defined.

Remark 3.3.2. In the notations of [Tan99], 𝛿(𝑔)𝑠𝜔(𝑔)𝜙(0) is in the degenerate principal series
𝐼 (𝑛/2 + 𝑠, 𝜒

V
), while 𝑊0 (𝑠, 𝑔, 𝜙1)𝜔(𝑔)𝜙2(0) is in 𝐼 (𝑛/2 − 𝑠, 𝜒

V
) by (3.3) and (3.4).

Lemma 3.3.3. If one of 𝜃𝐸 ′𝑡 ,qhol(0, 𝑔, 𝜙) and 𝐽 ′𝑡 ,qhol (0, 𝑔, 𝜙) is well defined, then so is the other one.
In this case, 𝜃𝐸 ′chol,𝑡 (0, 𝑔, 𝜙) = 𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) − 𝐽 ′𝑡 ,qhol (0, 𝑔, 𝜙).

Proof. By the same proof of [YZZ13, Lemma 6.13], 𝜃𝐸 ′(0, 𝑚(𝑎)𝑔, 𝜙) − 𝜃𝐸 ′00(0, 𝑚(𝑎)𝑔, 𝜙) is expo-
nentially decay, and 𝐽 ′(0, 𝑚(𝑎)𝑔, 𝜙) − 𝜃𝐸 ′00(0, 𝑚(𝑎)𝑔, 𝜙) is exponentially decay up to the derivative
at 𝑠 = 0 of the intertwining part of the constant term. The intertwining part of the constant term lies
in 𝐼 (−𝑛/2 ± 𝑠, 𝜒

V
) so that its derivative at 𝑠 = 0 has growth rate 𝑂𝑔

(
|𝑎 |−𝑛/2+1/2+𝜖𝐸𝑣

)
(in the notations

in Lemma 3.3.1). In particular, both differences satisfy the growth condition in Lemma 3.3.1. Thus,
𝜃𝐸 ′(0, 𝑔, 𝜙) −𝐽 ′(0, 𝑔, 𝜙) satisfies the growth condition in Lemma 3.3.1. Since the cuspidal holomorphic
projection of the Eisenstein series 𝐽 (𝑠, 𝑔, 𝜙) is 0, the lemma follows. �

3.3.3. A new Eisenstein series
We introduce a new Eisenstein series in order to compute 𝐽 ′(0, 𝑔, 𝜙). For 𝜙𝑣 = 𝜙𝑣,1 ⊗ 𝜙2,𝑣 ∈ S (V(𝐸𝑣 ))
with 𝜙𝑣,1 ∈ S (W𝑣 ) and 𝜙2,𝑣 ∈ S

(
𝑉♯ (𝐸𝑣 )

)
, define a function on 𝐺 (𝐹𝑣 ) ×𝑉♯ (𝐸𝑣 ):

𝑐(𝑔, 𝑥, 𝜙𝑣 ) = 𝑊◦𝑣,0
′(0, 𝑔, 𝜙1,𝑣 )𝜔(𝑔)𝜙2,𝑣 (𝑥) + log 𝛿𝑣 (𝑔)𝜔(𝑔)𝜙𝑣 (𝑥). (3.23)

For the moment, we only need

𝑐(𝑔, 𝜙𝑣 ) := 𝑐(𝑔, 0, 𝜙𝑣 ).

Extend this definition to the whole S (V(𝐸𝑣 )) linearly.
By (3.3), (3.4) and Lemma 3.1.3 (1), a direct computation shows the following lemma.

Lemma 3.3.4. The function 𝑐(𝑔, 𝜙𝑣 ) on 𝐺 (𝐹𝑣 ) is in the same principal series as 𝜔(𝑔)𝜙𝑣 (0); that is,
(1) 𝑐(𝑚(𝑎)𝑔, 𝜙𝑣 ) = 𝜒

V ,𝑣 (𝑎) | det 𝑎 |dimV/2
𝐸𝑣

𝑐(𝑔, 𝜙𝑣 ) for 𝑎 ∈ 𝐸×𝑣 ;
(2) 𝑐(𝑛(𝑏)𝑔, 𝜙𝑣 ) = 𝑐(𝑔, 𝜙𝑣 ) for 𝑏 ∈ 𝐹𝑣 .

Thus, we can define the following Eisenstein series in the case that 𝜙 is a pure tensor:

𝐶 (𝑠, 𝑔, 𝜙) (𝑣) =
∑

𝛾∈𝑃 (𝐹 )\𝐺 (𝐹 )
𝑐(𝛾𝑔𝑣 , 𝜙𝑣 )𝜔(𝛾𝑔𝑣 )𝜙𝑣 (0).

Lemma 3.3.5. For all but finitely many finite places, 𝑐(𝑔, 𝜙𝑣 ) = 0 for all g.

Proof. If 𝑣 ∈ ∞, by Lemma 3.1.3 (3) which says 𝑊◦0 (𝑠, 𝑔, 𝜙) = 𝛿𝑣 (𝑔)−𝑠𝜔(𝑔)𝜙(0), we clearly have
𝑐(𝑔, 𝜙𝑣 ) = 0. The same is true if 𝐸𝑣/Q𝑣 is unramified and 𝜙 = 1O𝐸𝑣 by Lemma 3.1.3 (2). These cases
cover all but finitely many finite places. �

Let

𝐶 (𝑠, 𝑔, 𝜙) =
∑
𝑣

𝐶 (𝑠, 𝑔, 𝜙) (𝑣),

where the sum is over these finite places of F. Let 𝐶𝑡 (𝑠, 𝑔, 𝜙) be the 𝜓𝑡 -Whittaker function of 𝐶 (0, 𝑔, 𝜙).
The definitions can be obviously extended to the whole S (V) by linearity.
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By (3.16), a direct computation shows that

𝐽 ′(0, 𝑔, 𝜙) = 2𝐸 ′(0, 𝑔, 𝜙) − 𝔠𝐸 (0, 𝑔, 𝜙) − 𝐶 (0, 𝑔, 𝜙). (3.24)

3.3.4. Gaussian functions and holomorphy
Below in this section, assume that V is totally positive definite and 𝜙 = 𝜙∞ ⊗ 𝜙∞ ∈ S (V). (So 𝜙∞ is
Gaussian. See 2.3.) Let 𝑣 ∈ ∞. Then

𝜔([𝑘1, 𝑘2])𝜙𝑣 = 𝑘𝑤1
1 𝑘𝑤2

2 𝜙𝑣 (3.25)

for [𝑘1, 𝑘2] ∈ 𝐾max
𝑣 as in 2.5 if 𝔴𝑣 = (𝑤1, 𝑤2). (Indeed, first check (3.26) for 𝑔 = 𝑤𝑣 and 𝑔 ∈ 𝐾max

𝑣

being diagonal, then for 𝑔 ∈ 𝐾max
𝑣 being anti-diagonal, and finally for general 𝑔 ∈ 𝐾max

𝑣 .) Then by the
Iwasawa decomposition, it is easy to check that for 𝑔 ∈ 𝐺 (𝐹𝑣 ), 𝑥 ∈ V(𝐸𝑣 ),

𝜔(𝑔)𝜙𝑣 (𝑥) = 𝑊𝔴𝑣
𝑣,𝑞 (𝑥) (𝑔). (3.26)

By (3.2) combined with (3.25), (3.3) and (3.4), 𝑊𝑣,𝑡 (0, ·, 𝜙𝑣 ) is a multiple of 𝑊𝔴𝑣
𝑣,𝑡 . Then by [YZZ13,

Proposition 2.11 (2) (4)], we have

𝑊𝑣,𝑡 (0, 𝑔, 𝜙𝑣 ) = 𝛾V(𝐸𝑣 )
(2𝜋)𝑛+1
Γ(𝑛 + 1) 𝑡

𝑛𝑊𝔴𝑣
𝑣,𝑡 (𝑔), 𝑡 > 0, (3.27)

𝑊𝑣,𝑡 (0, 𝑔, 𝜙𝑣 ) = 0, 𝑡 ≤ 0. (3.28)

Lemma 3.3.6. Both 𝐸 (0, 𝑔, 𝜙) and 𝐶 (0, 𝑔, 𝜙) are holomorphic of weight 𝔴.

Proof. For 𝐸 (0, 𝑔, 𝜙), use (3.8), (3.9), (3.26), (3.27) and (3.28). For 𝐶 (0, 𝑔, 𝜙), by Lemma 3.1.3 (3),
𝑐(𝑔, 𝜙𝑣 ) = 0 for 𝑣 ∈ ∞. Thus, 𝐶 (𝑠, 𝑔, 𝜙) (𝑣) = 0 for 𝑣 ∈ ∞. The rest of the proof is the same as the proof
for 𝐸 (0, 𝑔, 𝜙). �

For 𝑡 ∈ 𝐹×, let 𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣) be as in (3.11) so that we have the decomposition (3.12). Let

𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) =
∑
𝑣∉∞

𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣). (3.29)

By (3.27) and (3.28), if 𝑡 ∈ 𝐹>0, then 𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) is a multiple of𝑊𝔴
∞,𝑡 (𝑔∞); otherwise, 𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) = 0.

We call 𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) the holomorphic part of the Whittaker function 𝐸 ′𝑡 (0, 𝑔, 𝜙).

3.3.5. Properties of Eisenstein series
We list some properties of the above Eisenstein series for later use. The reader may skip these properties
for the moment.

By [YZ18, Lemma 7.6 (2)] (or its proof) and taking care of the difference between the modulus
characters mentioned in 2.6, we have the following lemma.

Lemma 3.3.7. Let 𝐸𝑣/𝐹𝑣 be split,W𝑣 = 𝐸𝑣 and 𝑞 = Nm. Assume 𝜙𝑣 = 𝜙𝑣,1⊗𝜙𝑣,2, where 𝜙𝑣,1 = 1O𝐸𝑣
and 𝜙𝑣,2 ∈ S

(
𝑉♯ (𝐸𝑣 )

)
. Then 𝑐(1, 𝜙𝑣 ) = 2 log |Diff𝑣 |𝑣𝜙𝑣 (0), where Diff𝑣 is the different of 𝐹𝑣/Q𝑣 .

We omit the routine proof of the following analog of (3.2).

Lemma 3.3.8. For a place v of F and 𝑘 ∈ 𝐾max
𝑣 , we have 𝐸 (𝑠, 𝑔, 𝜔(𝑘)𝜙) = 𝐸 (𝑠, 𝑔𝑘, 𝜙). The same

relation holds for 𝐶 (𝑠, 𝑔, 𝜙), 𝜃𝐸 (𝑠, 𝑔, 𝜙), 𝜃𝐸 ′chol(0, 𝑔, 𝜙), and their t-th Whittaker/Fourier coefficients,
and 𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣) (thus, 𝐸 ′𝑡 ,f (0, 𝑔, 𝜙)) for 𝑡 ∈ 𝐹×.
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Lemma 3.3.9. (1) We have 𝐸0(0, 𝑔, 𝜙) = 𝜔(𝑔)𝜙(0).
(2) If, moreover, V is incoherent, then for a finite place v, 𝐶0 (0, 𝑔, 𝜙) (𝑣) = 𝑐(𝑔𝑣 , 𝜙𝑣 )𝜔(𝑔𝑣 )𝜙𝑣 (0).
(3) In (2), assume that 𝜙𝑣 is supported outside 𝑉♯ (𝐸𝑣 ) for v in a set S of two places of F and

𝑔 ∈ 𝑃(A𝐹,𝑆)𝐺 (A𝑆
𝐹 ). Then 𝐸0(0, 𝑔, 𝜙) = 0 and 𝐶0 (0, 𝑔, 𝜙) = 0.

Proof. (1) If 𝐹 = Q, 𝑛 = 1 and V∞ is not split at some finite place, it is proved in [YZZ13, Proposition
2.9 (3)]. If 𝐹 ≠ Q so that we have at least 2 infinite places, its proof is similar to the one in [YZZ13,
Proposition 2.9 (3)] by using (3.9) and (3.28) (for 𝑡 = 0).

(2) The proof is similar, with the fact that V is not split at (at least) 2 places outside v by the
incoherence. See also [Yua22, p 65-66].

(3) follows from (1)(2) directly. �

3.3.6. Compute 𝐽 ′𝑡 ,qhol (0, 𝑔, 𝜙)
Let 𝑡 ∈ 𝐹>0. For 𝑣 ∈ ∞, let 𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) (𝑣) be the quasi-holomorphic projection of 𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣).
By (3.24), Lemma 3.3.6 and the discussion below it, to compute 𝐽 ′𝑡 ,qhol (0, 𝑔, 𝜙), we only need to compute
𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) (𝑣).

Consider the quasi-holomorphic projection 𝑊 ′𝑣,𝑡 ,qhol(0, 𝑔, 𝜙𝑣 ) of 𝑊 ′𝑣,𝑡 (0, 𝑔, 𝜙𝑣 ). By definition, it is
a multiple of 𝑊𝔴𝑣

𝑣,𝑡 (𝑔). Then by (3.27),

𝑏𝑣,𝑡 :=
𝑊 ′𝑣,𝑡 ,qhol (0, 𝑔, 𝜙𝑣 )
𝑊𝑣,𝑡 (0, 𝑔, 𝜙𝑣 )

is a well defined constant 𝑏𝑣,𝑡 . We define

𝔟 = 𝑏𝑣,1. (3.30)

Remark 3.3.10. The constant 𝔟 can be explicitly computed using [YZZ13, Proposition 2.11] and
[Yua22, Lemma 3.3] in principle. For example, if 𝑛 = 1, then 𝔟 = −(1 + log 4). (This is twice of the
corresponding number in [Yua22, Lemma 3.3 (2)] due to the difference between the modulus characters
mentioned in 2.6.) It is more complicated in general. The full computation could be tedious, and the
result in a previous version of our paper actually contains a mistake. (Fortunately, we will not need the
explict number of 𝔟.) Ziqi Guo (student of Yuan, author of [Yua22]) pointed this out to us and informed
us that he will give full details on this in his upcoming work.

Lemma 3.3.11. We have 𝑏𝑣,𝑡 = 𝑏𝑣,1 + log |𝑡 |𝑣 and 𝑏𝑣,1 is independent of v.

Proof. The lemma follows direct computations with the following ingredients. For the equation, use
(3.4) and (3.27). Note that the dependence on v is on the weight 𝔴𝑣 . We use (3.2) and (3.26) for
𝑔 ∈ 𝐾max

𝑣 . �

Then 𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) (𝑣) = (𝔟+ log |𝑡 |𝑣 )𝐸𝑡 (0, 𝑔, 𝜙). Since both 𝐸 (0, 𝑔, 𝜙) and 𝐶 (0, 𝑔, 𝜙) in (3.24) are
holomorphic of weight 𝔴, we have

𝐽 ′𝑡 ,qhol (0, 𝑔, 𝜙) = (2𝔟[𝐹 : Q] − 𝔠)𝐸𝑡 (0, 𝑔, 𝜙) − 𝐶𝑡 (0, 𝑔, 𝜙) + 2
(
𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) + 𝐸𝑡 (0, 𝑔, 𝜙) log Nm𝐹/Q𝑡

)
.

Combined with Lemma 3.3.3, we have

𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) − 2
(
𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) + 𝐸𝑡 (0, 𝑔, 𝜙) log Nm𝐹/Q𝑡

)
= 𝜃𝐸 ′chol,𝑡 (0, 𝑔, 𝜙) + (2𝔟[𝐹 : Q] − 𝔠)𝐸𝑡 (0, 𝑔, 𝜙) − 𝐶𝑡 (0, 𝑔, 𝜙).

(3.31)
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3.3.7. Quasi-holomorphic projection of 𝜃𝐸 ′𝑡 (0, 𝑔, 𝜙)
Assume thatW/E is incoherent. For 𝑣 ∈ ∞ and W the v-nearby hermitian space ofW, let 𝑉 = 𝑊 ⊕ 𝑉♯.
For 𝑥 ∈ 𝑉 (𝐸𝑣 ) −𝑉♯ (𝐸𝑣 ), define

𝑊𝜃𝑠 (𝑥) =
Γ(𝑠 + 𝑛)
Γ(𝑛) (4𝜋)𝑠 𝑃𝑠 (−𝑞(𝑥1)),

where 𝑥1 is the projection of x to 𝑊 (𝐸𝑣 ) (so that 𝑥1 ≠ 0), and

𝑃𝑠 (𝑡) :=
∫ ∞

𝑢=1

1
𝑢(1 + 𝑡𝑢)𝑠+𝑛

𝑑𝑢, 𝑡 > 0. (3.32)

(For 𝑠 ∈ C with Re𝑠 > −𝑛, 𝑃𝑠 (𝑡) converges absolutely.) Define

𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣) =
2𝑊𝔴

𝑣,𝑡 (𝑔𝑣 )
Vol([𝑈 (𝑊)])

∫
[𝑈 (𝑊 ) ]

∑
𝑥∈𝑉 𝑡−𝑉 ♯

𝑊𝜃𝑠 (ℎ−1
𝑣 𝑥)𝜔𝑣 (𝑔𝑣 )𝜙𝑣

(
ℎ𝑣,−1𝑥

)
𝑑ℎ. (3.33)

Lemma 3.3.12. For 𝑠 ∈ C with Re𝑠 > 0, (3.33) converges absolutely and 𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣) is holomor-
phic on s. Moreover, 𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣) admits a meromorphic continuation to {𝑠 ∈ C, Re𝑠 > −1} with
at most a simple pole at 𝑠 = 0.

Then the constant term l̃im
𝑠→0

𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣) of 𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣) at 𝑠 = 0 is well defined (and
used in the following proposition). We will prove Lemma 3.3.12 after Lemma 6.1.10, by comparing
𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣) to a Green function with s-variable, which has a meromorphic continuation.

Proposition 3.3.13. Let 𝑡 ∈ 𝐹>0 and let 𝜙 ∈ S (V) be a pure tensor.
(1) We have

𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) = −
∑

𝑣∉∞, nonsplit
𝜃𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣) −

∑
𝑣 ∈∞

l̃im
𝑠→0

𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣)

−
(
4
𝐿 ′f (0, 𝜂)
𝐿f (0, 𝜂)

+ 2 log |Disc𝐸/Disc𝐹 |
) ∑
𝑥∈(𝑉 ♯) 𝑡

𝜔(𝑔)𝜙(𝑥)

−
∑
𝑣∉∞

∑
𝑥∈(𝑉 ♯) 𝑡

𝑐(𝑔, 𝑥, 𝜙𝑣 )𝜔(𝑔𝑣 )𝜙𝑣 (𝑥)

+
∑

𝑥∈(𝑉 ♯) 𝑡
(2 log 𝛿(𝑔∞) + log |𝑡∞|)𝜔(𝑔)𝜙(𝑥)

. (3.34)

Here, 𝐿f (𝑠, 𝜂) is the finite part of 𝐿(𝑠, 𝜂).
(2) Assume that 𝜙𝑣 is supported outside 𝑉♯ (𝐸𝑣 ) for v in a set S of two places of F and 𝑔 ∈

𝑃(A𝐹,𝑆)𝐺 (A𝑆
𝐹 ). Then we have

𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙) = −
∑

𝑣∉∞, nonsplit in 𝐸

𝜃𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣) −
∑
𝑣 ∈∞

l̃im
𝑠→0

𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣). (3.35)

Proof. The proof of (1) is almost identical with [YZ18, Theorem 7.2] and is omitted. (Note that [YZ18,
Assumption 7.1] in [YZ18, Theorem 7.2] is only used to identify the quasi-holomorphic projection
with the cuspidal holomorphic projection and does not play a role in computing the quasi-holomorphic
projection). (2) follows from (1) immediately. �

Lemma 3.3.14. Let 𝑡 ∈ 𝐹>0 and let 𝜙 be a pure tensor such that 𝜙∞ is Q-valued. Let u be a finite
place of F of residue characteristic p. Let 𝑂 ⊂ V𝑢 be an open compact neighborhood of 0 and
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𝜙𝑂 = 𝜙𝑢 ⊗ (𝜙𝑢1V𝑢−𝑂). Given 𝑔 ∈ 𝐺 (A𝑢
𝐹 )𝑃(𝐹𝑢), for O small enough, we have

𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙)
𝑊𝔴
∞,𝑡 (𝑔∞)

=
𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙

𝑂)
𝑊𝔴
∞,𝑡 (𝑔∞)

(modQ log 𝑝).

Proof. The proof is similar to the one of Lemma 3.2.1, except that we further need (3.22), (3.26), (3.33)
and (3.34). �

By (3.34), using (3.22) and (3.33), for ℎ ∈ 𝑈 (W𝑣 ) where v is split in E,

𝜃𝐸 ′𝑡 ,qhol(0, 𝑔, 𝜔(ℎ)𝜙) = 𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜙). (3.36)

4. Special divisors

This section is about special divisors on unitary Shimura varieties. It consists of 4.1-4.4. First, we
define their generating series which are modular. Second, we introduce their Green functions and show
the modularity of the differences between the generating series of different kinds of Green functions.
Third, we raise two modularity problems for their admissible extensions on integral models. Finally, we
propose a precise conjecture and state our modularity theorems.

4.1. Generating series

Let V be a totally positive-definite incoherent hermitian space over A𝐸 (with respect to the extension
𝐸/𝐹) of dimension 𝑛 + 1 where 𝑛 > 0. Fix an infinite place 𝑣0 ∈ ∞ of F. Let 𝑉0 be the unique hermitian
space over E such that 𝑉0(A𝑣

𝐸 ) � V
𝑣 and 𝑉0(𝐸𝑣 ) is of signature (𝑛, 1). For an open compact subgroup

K of 𝑈 (V∞), let Sh(V)𝐾 be the n-dimensional smooth unitary Shimura variety associated to 𝑈 (𝑉0) of
level K over E (see [LTX+22, 3.2]), which we allow to be a Deligne-Mumford stack. (It is expected that
Sh(V)𝐾 does not depend on the choice of 𝑣0. See [LL21, Remark 1.2].) See (4.4) for its usual complex
uniformization.

◦ From now on, we always assume that Sh(V)𝐾 is proper.

Equivalently, 𝐹 ≠ Q, or 𝐹 = Q, 𝑛 = 1 and V∞ is not split at some finite place.

4.1.1. Simple special divisors
Let V∞>0 ⊂ V

∞ be the subset of x’s such that 𝑞(𝑥) ∈ 𝐹>0. For 𝑥 ∈ V∞>0, let 𝑥⊥ be the orthogonal
complement of A∞𝐸 𝑥 in V∞. Regard 𝑈 (𝑥⊥) as a subgroup of 𝑈 (V∞). Then we have a finite morphism

Sh
(
𝑥⊥

)
𝑈 (𝑥⊥)

⋂
𝐾 → Sh(V)𝐾 , (4.1)

explicated in [Kud97a, (2.4)] and [LL21, Definition 4.1]. The proper pushforward defines a divisor
𝑍 (𝑥)𝐾 on Sh(V)𝐾 that is called a simple special divisor. The following observation is trivial.

Lemma 4.1.1. We have 𝑍 (𝑥)𝐾 = 𝑍 (𝑘𝑥𝑎)𝐾 for every 𝑎 ∈ 𝐸×, 𝑘 ∈ 𝐾 .

Let 𝐿𝐾 be the Hodge line bundle on Sh(V)𝐾 . See 4.2.1 for the description in terms of the complex
uniformization of Sh(V)𝐾 . Let 𝑐1 (𝐿∨𝐾 ) be the first Chern class of the dual of 𝐿𝐾 , and [𝑍 (𝑥)𝐾 ] ∈
Ch1 (Sh(V)𝐾 ) the class of 𝑍 (𝑥)𝐾 . For 𝜙 ∈ S (V)𝐾 the subspace of K-invariant functions, define a
formal generating series of divisor classes:

𝑧(𝜙)𝐾 = 𝜙(0)𝑐1(𝐿∨𝐾 ) +
∑

𝑥∈𝐾\V∞
>0

𝜙(𝑥∞𝑥) [𝑍 (𝑥)𝐾 ],

where 𝑥∞ ∈ V∞ such that 𝑞(𝑥∞) = 𝑞(𝑥) ∈ 𝐹>0.
Let 𝔴 = 𝔴𝜒

V
which is defined in 2.9.
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Theorem 4.1.2 [Liu11a, Theorem 3.5]. For every 𝜙 ∈ S (V)𝐾 , we have

𝑧(𝜔(·)𝜙)𝐾 ∈ Ahol(𝐺,𝔴) ⊗ Ch1 (Sh(V)𝐾 )C.

Note that dim Ch1 (Sh(V)𝐾 )C < ∞.

4.1.2. Weighted special divisors
For 𝜙 ∈ S (V)𝐾 and 𝑡 ∈ 𝐹>0, define the weighted special divisor

𝑍𝑡 (𝜙)𝐾 =
∑

𝑥∈𝐾\V∞ , 𝑞 (𝑥)=𝑡
𝜙(𝑥∞𝑥)𝑍 (𝑥)𝐾 ,

which is a finite sum. Lemma 4.1.1 implies the following lemma.
Lemma 4.1.3. For every 𝑎 ∈ 𝐸×, 𝑍𝑡 (𝜙)𝐾 = 𝑍𝑎2𝑡 (𝜔(𝑎)𝜙)𝐾 .

Let 𝜙 = 𝜙∞ ⊗ 𝜙∞ be as in 2.3. We define another weighted special divisor

𝑍𝑡 (𝜙∞)𝐾 =
∑

𝑥∈𝐾\V∞ , 𝑞 (𝑥)=𝑡
𝜙∞(𝑥)𝑍 (𝑥)𝐾 .

By (3.26), for 𝑔 ∈ 𝐺 (A𝐹 ), we have

𝑍𝑡 (𝜔(𝑔)𝜙)𝐾 = 𝑍𝑡 (𝜔(𝑔∞)𝜙∞)𝐾𝑊𝔴
∞,𝑡 (𝑔∞). (4.2)

Then [𝑍𝑡 (𝜔(·)𝜙∞)𝐾 ] is the t-th Fourier coefficient of 𝑧(𝜔(·)𝜙)𝐾 . See 2.7.

Lemma 4.1.4. Let 𝜙 ∈ S (V) be a pure tensor. Let u be a finite place of F, 𝑂 ⊂ V𝑢 an open compact
neighborhood of 0 and 𝜙𝑂 = 𝜙𝑢 ⊗ (𝜙𝑢1V𝑢−𝑂). Given 𝑔 ∈ 𝐺 (A𝑢

𝐹 )𝑃(𝐹𝑢), for O small enough, if K fixes
𝜙𝑂, then 𝑍𝑡 (𝜔(𝑔)𝜙)𝐾 = 𝑍𝑡 (𝜔(𝑔)𝜙𝑂)𝐾 .

Proof. The lemma is an analog to Lemma 3.2.1, and the proof is also similar. We record the proof for the
reader’s convenience. Write 𝑔𝑢 = 𝑚(𝑎)𝑛(𝑏), where 𝑎 ∈ 𝐸×𝑢 . See 2.5. Then {𝑎𝑥 : 𝑥 ∈ V𝑡

𝑢} ⊂ V𝑎2𝑡
𝑢 . The

latter is closed in V𝑢 and does not contain 0. Thus, 𝑂 ∩ {𝑎𝑥 : 𝑥 ∈ V𝑡
𝑢} = ∅ if O is small enough. Then

the lemma follows from the definition of 𝑍𝑡 (𝜔(𝑔)𝜙)𝐾 and the Weil representation formula in 2.8. �

4.1.3. Change level
For 𝐾 ⊂ 𝐾 ′, let 𝜋𝐾 ,𝐾′ : Sh(V)𝐾 → Sh(V)𝐾 ′ be the natural projection.
Lemma 4.1.5 [Kud97a, PROPOSITION 5.10][Liu11a, Corollary 3.4]. We have 𝜋∗

𝐾 ,𝐾′
𝑍𝑡 (𝜙)𝐾 ′ = 𝑍𝑡 (𝜙)𝐾

and 𝜋∗
𝐾 ,𝐾′

𝐿𝐾 ′ = 𝐿𝐾 . In particular, 𝜋∗
𝐾 ,𝐾′

𝑧(𝜙)𝐾 ′ = 𝑧(𝜙)𝐾 .
Remark 4.1.6. We have 𝜋𝐾 ,𝐾′ ,∗𝑍 (𝑥)𝐾 = 𝑑 (𝑥)𝑍 (𝑥)𝐾 ′ where 𝑑 (𝑥) is the degree of 𝑍 (𝑥)𝐾 over 𝑍 (𝑥)𝐾 ′ .
It is easy to check that 𝑑 (𝑥) is not constant near 0. In particular, it does not extend to a smooth function
on V∞. Thus, for a general 𝜙, there seems no 𝜙′ ∈ S (V)𝐾 ′ such that 𝜋𝐾 ,𝐾′ ,∗𝑍𝑡 (𝜙)𝐾 is of the form
𝑍𝑡 (𝜙′)𝐾 ′ for every t.

Below, let 𝐿 = 𝐿𝐾 , 𝑍 (𝑥) = 𝑍 (𝑥)𝐾 , 𝑍𝑡 (𝜙) = 𝑍𝑡 (𝜙)𝐾 and 𝑧(𝜙) = 𝑧(𝜙)𝐾 for simplicity if K is clear
from the context.

4.2. Green functions

We use complex uniformization to defined automorphic Green functions for special divisors. They are
admissible. We compare them with the normalized admissible Green functions and show the modularity
of the differences between their generating series. Then we recall Kudla’s Green functions and prove the
modularity of the differences between the generating series of normalized admissible Green functions
and Kudla’s Green functions.
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4.2.1. Complex uniformization
For nonnegative integers 𝑝, 𝑞, let C𝑝,𝑞 be the 𝑝 + 𝑞 dimensional hermitian space associated to the
hermitian matrix diag(−1𝑝 , 1𝑞). Let 𝑈

(
C1,𝑛) be the unitary group of C1,𝑛 (so of signature (𝑛, 1) in the

usual convention). Let B𝑛 be the complex open unit ball of dimension n. Embed B𝑛 in P(C1,𝑛) as the set
of negative lines as follows: [𝑧1, . . . , 𝑧𝑛] ∈ B𝑛, where

∑𝑛
𝑖=1 |𝑧𝑖 |2 < 1, is the line containing the vector

(1, 𝑧1 . . . , 𝑧𝑛). Then 𝑈
(
C1,𝑛) acts on B𝑛 naturally and transitively. Let Ω be the tautological bundle of

negative lines on B𝑛, and Ω the hermitian line bundle with the metric induced from the negative of the
hermitian form. The Chern form of Ω is a 𝑈

(
C1,𝑛)-invariant Kähler form

𝑐1 (Ω) =
1

2𝜋𝑖
𝜕𝜕 log(1 −

𝑛∑
𝑖=1
|𝑧𝑖 |2). (4.3)

For an arithmetic subgroup Γ ⊂ 𝑈 (C1,𝑛), on (the orbifold) Γ\B𝑛, we have the descent ΩΓ of Ω whose
(orbifold) Chern curvature form is the descent of 𝑐1 (Ω). Define the degree

deg(ΩΓ) =
∫
Γ\B𝑛

𝑐1 (ΩΓ)𝑛.

If Γ\B𝑛 is compact, this degree is the usual degree via intersection theory.
For 𝑥 ∈ C1,𝑛, let B𝑥 ⊂ B𝑛 be the subset of negative lines perpendicular to x. Later, we will use the

following function on B𝑛 measuring ‘the distance to B𝑥’:

𝑅𝑥 (𝑧) = −
|〈𝑥, �̃�〉|2
〈̃𝑧, �̃�〉 ,

where �̃� is a nonzero vector contained in the line z. In particular, 𝑅𝑥 > 0 outside B𝑥 . If 𝑞(𝑥) < 0, then
𝑥⊥ is of signature (𝑛, 0) so that B𝑥 = ∅. Below, until 4.2.3, assume 𝑞(𝑥) > 0. Then 𝑥⊥ is of signature
(𝑛 − 1, 1). So B𝑥 is a complex unit ball of dimension 𝑛 − 1. Assume that Γ ∩𝑈 (𝑥⊥) is an arithmetic
subgroup of 𝑈 (𝑥⊥). Let 𝐶 (𝑥, Γ) be the pushforward of the fundamental cycle by(

Γ ∩𝑈 (𝑥⊥)
)
\B𝑥 → Γ\B𝑛.

Define

degΩΓ
(𝐶 (𝑥, Γ)) =

∫
𝐶 (𝑥,Γ)

𝑐1 (ΩΓ)𝑛−1.

Now we can uniformize Shimura varieties and special divisors. Let v be an infinite place of F. Let V
be the unique hermitian space over E such that𝑉 (A𝑣

𝐸 ) � V
𝑣 and𝑉 (𝐸𝑣 ) � C1,𝑛. By [LL21, Lemma 5.5],

we have the complex uniformization:

Sh(V)𝐾,𝐸𝑣 �𝑈 (𝑉)\(B𝑛 ×𝑈 (V∞)/𝐾). (4.4)

Then the Hodge bundle 𝐿𝐸𝑣 is the descent of Ω×1𝑈 (V∞)/𝐾 . Let 𝐿𝐸𝑣 be the descent of Ω×1𝑈 (V∞)/𝐾 . Let
ℎ1, ..., ℎ𝑚 be a set of representatives of 𝑈 (𝑉)\𝑈 (V∞)/𝐾 . Let Γℎ 𝑗 = 𝑈 (𝑉) ∩ ℎ 𝑗𝐾ℎ−1

𝑗 . Then (4.4) decom-
poses as the disjoint union of Γℎ 𝑗\B𝑛’s. Then for 𝑡 ∈ 𝐹>0, we have (see [Kud97a, PROPOSITION 5.4])

𝑍𝑡 (𝜙∞)𝐸𝑣 =
𝑚∑
𝑗=1

∑
𝑥∈Γℎ 𝑗 \𝑉 𝑡

𝜙∞(ℎ−1
𝑗 𝑥)𝐶 (𝑥, Γℎ 𝑗 ). (4.5)
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4.2.2. Admissible Green functions
Admissible Green functions are Green functions with harmonic curvatures. See Appendix A.3.
Admissible Green functions for special divisors are constructed by Bruinier [Bru02, Bru12], Oda and
Tsuzuki [OT03]. For 𝐹 = Q and 𝑛 = 1, it appeared in the work of Gross and Zagier [GZ86] for 𝑛 = 1.
We learned the following explicit computation from S. Zhang.

First, we start by working on B𝑛. Let 𝑥0 = (0, . . . , 0, 1) ∈ C1,𝑛. Then B𝑥0 ⊂ B𝑛 consists of points
(𝑧1, . . . , 𝑧𝑛−1, 0)’s. We want a𝑈

(
𝑥⊥0

)
-invariant smooth function G onB𝑛−B𝑥0 such that 𝐺 (𝑧1, . . . , 𝑧𝑛) +

log |𝑧𝑛 |2 extends smoothly to B𝑛, lim |𝑧 |→1 𝐺 (𝑧) = 0, and G is a solution of the following Laplacian
equation: (

𝑖

2𝜋
𝜕𝜕𝐺

)
𝑐1 (Ω)𝑛−1 =

𝑠(𝑠 + 𝑛)
2

𝐺 · 𝑐1 (Ω)𝑛. (4.6)

The quotient of B𝑛 − B𝑥0 by 𝑈
(
𝑥⊥0

)
is isomorphic to (1,∞) via

𝑧 = [𝑧1, . . . , 𝑧𝑛] ↦→ 𝑡 (𝑧) := 1 + 𝑅𝑥0 (𝑧) =
1 −

∑𝑛−1
𝑖=1 |𝑧𝑖 |2

1 −
∑𝑛

𝑖=1 |𝑧𝑖 |2
.

Thus, we look for 𝐺 = 𝑄(𝑡 (𝑧)), where Q is a smooth function on (1,∞) such that 𝑄(𝑡) + log(𝑡 − 1)
extends to a smooth function on R. By (4.3) and the 𝑈

(
𝑥⊥0

)
-invariance, (4.6) is reduced to the following

hypergeometric differential equation(
𝑡 − 𝑡2

) 𝑑2𝑄

𝑑𝑡2 + (𝑛 − (𝑛 + 1)𝑡) 𝑑𝑄
𝑑𝑡
+ 𝑠(𝑠 + 𝑛)𝑄 = 0, 𝑡 ∈ (1,∞).

For Re𝑠 > −1, there is a unique solution 𝑄𝑠 such that 𝑄𝑠 (𝑡) + log(𝑡 − 1) extends to a smooth function
on R and lim𝑡→∞𝑄𝑠 (𝑡) = 0:

𝑄𝑠 (𝑡) =
Γ(𝑠 + 𝑛)Γ(𝑠 + 1)
Γ(2𝑠 + 𝑛 + 1)𝑡𝑠+𝑛 𝐹

(
𝑠 + 𝑛, 𝑠 + 1, 2𝑠 + 𝑛 + 1;

1
𝑡
,

)
, 𝑡 > 1 (4.7)

where F is the hypergeometric function. (See also [OT03, 2.5.3]. When 𝑛 = 1, our 𝑄𝑠 is the Legendre
function of the second kind in [GZ86, 238] up to shifting s by 1).

For a general x with 𝑞(𝑥) > 0, we have the following Green function for B𝑥 :

𝐺𝑥,𝑠 (𝑧) = 𝑄𝑠 (1 + 𝑅𝑥 (𝑧)), 𝑧 ∈ B𝑛 − B𝑥 .

We will need the following explicit formula later: if 𝑥 = (𝑥1, 𝑥2) ∈ C1,𝑛 = C1,0 ⊕ C0,𝑛, then

𝐺𝑥,𝑠 ([0, . . . , 0]) = 𝑄𝑠 (1 − 𝑞(𝑥1)). (4.8)

Second, we define Green functions for 𝐶 (𝑥, Γ) on arithmetic quotient of B𝑛. Let Γ be an arithmetic
subgroup of 𝑈

(
C1,𝑛) . Let

𝑔𝑠 =
∑
𝛾∈Γ

𝛾∗𝐺𝑥,𝑠 .

Lemma 4.2.1 [OT03, Proposition 3.1.1, Remark 3.1.1, Remark 3.2.1]. For 𝑠 ∈ C with Re𝑠 > 0, the sum
𝑔𝑠 converges absolutely and defines a smooth function on Γ\B𝑛 −𝐶 (𝑥, Γ). Moreover, 𝑔𝑠 is holomorphic
on s.

It is easy to see that 𝑔𝑠 with Re𝑠 > 0 is a Green function for 𝐶 (𝑥, Γ).
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Theorem 4.2.2 [OT03, Theorem 7.8.1]. (1) There is a meromorphic continuation of 𝑔𝑠 to 𝑠 ∈ C with a
simple pole at 𝑠 = 0 and residue −

degΩΓ
(𝐶 (𝑥,Γ))

deg(ΩΓ)
.

(2) The function l̃im
𝑠→0

𝑔𝑠 is an admissible Green function for 𝐶 (𝑥, Γ).

Recall that l̃im
𝑠→0

denotes taking the constant term at 𝑠 = 0.

Remark 4.2.3. (1) We read the residue 𝜅 in [OT03, Theorem 7.8.1 (3)] as follows. Beside the obvious
differences between the choices of Green function here and in [OT03] (more precisely, s-variables and
signs), the Kähler form and ‘volume form’ here and in [OT03] are different. First, the Kähler form on the
bottom of [OT03, 514] is 𝜋𝑐1 (Ω) in our notation. Second, [OT03, Theorem 7.8.1 (3)] uses volumes to
express the residue, while we use degrees of line bundles to express the residue. The volume form for B𝑛

on the top of [OT03, 515] is 𝜋𝑛

𝑛! 𝑐1 (Ω)𝑛 in our notation. Third, there is a 𝜋 missing in (the numerator of)
the residue 𝜅 in [OT03, Theorem 7.8.1 (3)]. It should be easy to spot from [OT03, Proposition 3.1.2,
Lemma 7.2.2].

(2) When 𝑛 = 1 and Γ = SL2(Z) via SU(C1,1) � SL2(R), we have deg(ΩΓ) = 1
12 . See [K01, 4.10].

Thus, for Γ0(𝑁) a standard congruence subgroup of Γ, Theorem 4.2.2 (1) coincides with the residue
−12

[Γ:Γ0 (𝑁 ) ] in [GZ86, p 239, (2.13)]. Theorem 4.2.2 (1) is not used in any other place of the paper.

By [OT03, Proposition 3.1.2] and taking care of the differences in the remark, we have∫
Γ\B𝑛

𝑔𝑠𝑐1 (Ω)
𝑛
=

𝑛 degΩΓ
(𝐶 (𝑥, Γ))

𝑠(𝑠 + 𝑛) .

Thus, ∫
Γ\B𝑛
( l̃im
𝑠→0

𝑔𝑠)𝑐1(Ω)
𝑛
= −

degΩΓ
(𝐶 (𝑥, Γ))
𝑛

. (4.9)

Finally, we define Green functions for 𝑍𝑡 (𝜙), 𝑡 ∈ 𝐹>0. Let 𝑣 ∈ ∞ and V as in 4.2.1. For 𝑠 ∈ C with
Re𝑠 > 0, consider the following formal sum for (𝑧, ℎ) ∈ B𝑛 ×𝑈 (V∞):

G𝑍𝑡 (𝜙∞)𝐸𝑣 ,𝑠 (𝑧, ℎ) :=
∑
𝑥∈𝑉 𝑡

𝜙∞
(
ℎ−1𝑥

)
𝐺𝑥,𝑠 (𝑧).

By (4.5) and Lemma 4.2.1, if (𝑧, ℎ) is not over 𝑍𝑡 (𝜙∞)𝐸𝑣 via (4.4), the formal sum is defined and
absolutely convergent. Thus, G𝑍𝑡 (𝜙∞)𝐸𝑣 ,𝑠 descends to Sh(V)𝐾,𝐸𝑣 − 𝑍𝑡 (𝜙∞)𝐸𝑣 via (4.4), which we still
denote by G𝑍𝑡 (𝜙∞)𝐸𝑣 ,𝑠 . By (4.5) and Theorem 4.2.2, G𝑍𝑡 (𝜙∞)𝐸𝑣 ,𝑠 is a Green function for 𝑍𝑡 (𝜙∞)𝐸𝑣 . For
𝑔 ∈ 𝐺 (A𝐹 ), let

G𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣 ,𝑠 = G𝑍𝑡 (𝜔 (𝑔∞)𝜙∞)𝐸𝑣 ,𝑠𝑊
𝔴
∞,𝑡 (𝑔∞),

which is a Green function for 𝑍𝑡 (𝜔(𝑔)𝜙)𝐸𝑣 by (4.2). Define the automorphic Green functions for
𝑍𝑡 (𝜙∞)𝐸𝑣 and 𝑍𝑡 (𝜔(𝑔)𝜙)𝐸𝑣 to be

Gaut
𝑍𝑡 (𝜙∞)𝐸𝑣

= l̃im
𝑠→0

G𝑍𝑡 (𝜙∞)𝐸𝑣 ,𝑠 , G
aut
𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣

= l̃im
𝑠→0

G𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣 ,𝑠 , (4.10)

respectively, which are admissible by Theorem 4.2.2.
Let G𝐿𝐸𝑣

𝑍𝑡 (𝜙)𝐸𝑣
be the normalized admissible Green function for 𝑍𝑡 (𝜙)𝐸𝑣 with respect to 𝐿𝐸𝑣 as in

Definition A.3.3. In particular, its integration against 𝑐1 (𝐿𝐸𝑣 )𝑛 is 0.
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Lemma 4.2.4. (1) We have

Gaut
𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣

− G𝐿𝐸𝑣
𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣

= −1
𝑛

𝑐1 (𝐿)𝑛−1 · 𝑍𝑡 (𝜔(𝑔)𝜙)
𝑐1(𝐿)𝑛

.

Both sides are independent of K.
(2) We have

1
𝑛
𝜔(𝑔)𝜙(0) +

∑
𝑡 ∈𝐹>0

(
Gaut
𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣

− G𝐿𝐸𝑣
𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣

)
∈ Ahol(𝐺,𝔴).

Proof. The equation in (1) follows from (4.9) and the independence of the right-hand side follows from
the projection formula. (2) follows from Theorem 4.1.2. �

Remark 4.2.5. The automorphic form in Lemma 4.2.4 (2) can be made explicit:

𝑐1 (𝐿)𝑛−1 · 𝑧(𝜔(𝑔)𝜙) = −𝑐1 (𝐿)𝑛𝐸 (0, 𝑔, 𝜙). (4.11)

This is a geometric version of the Siegel-Weil formula (3.13). It is stated in [Kud97a, COROLLARY 10.5]
for the orthogonal case; the proof carries over to the unitary case.

4.2.3. Kudla’s Green function
We recall Kudla’s Green functions for special divisors [Kud97b], following [Liu11a, 4C] in the unitary
case. We consider simple special divisors 𝑍 (𝑥)’s, instead of weight special divisors 𝑍𝑡 (𝜙)’s. We extend
the definition of special divisors as follows. For 𝑥 ∈ V∞ such that 𝑞(𝑥) ∈ 𝐹× − 𝐹>0, let 𝑍 (𝑥) = 0.

First, we work on B𝑛. For 𝑣 ∈ ∞, V as in the end of 4.2.1 with respect to v, 𝑔 ∈ 𝐺 (𝐹𝑣 ) and 𝑥 ∈ 𝑉 ,
define

𝐺Kud (𝑥, 𝑔) (𝑧) = −Ei(−2𝜋𝛿𝑣 (𝑔)𝑅𝑥 (𝑧)), 𝑧 ∈ B𝑛\B𝑥 ,

where the exponential integral Ei(𝑡) =
∫ 𝑡

−∞
𝑒𝑠

𝑠 𝑑𝑠 on 𝑡 ∈ (−∞, 0) has a log-singularity at 0. If 𝑞(𝑥) ≠ 0
so that B𝑥 is either empty or a complex unit ball of dimension 𝑛 − 1, 𝐺Kud (𝑥, 𝑔) is a Green function for
B𝑥 . If 𝑞(𝑥) < 0, equivalently B𝑥 is empty, then 𝐺Kud is smooth.

Now we work on Sh(V)𝐾 . Let 𝑥 ∈ V∞ with 𝑞(𝑥) ∈ 𝐹×. For 𝑣 ∈ ∞, if 𝑢(𝑞(𝑥)) > 0 for every
𝑢 ∈ ∞ − {𝑣}, by the Hasse-Minkowski theorem and Witt’s theorem, there exists ℎ ∈ 𝑈 (V∞) and
𝑥 (𝑣) ∈ 𝑉 − {0}, where V is as in the last paragraph, such that 𝑥 = ℎ−1𝑥 (𝑣) . Define

GKud
𝑍 (𝑥)𝐸𝑣

(𝑔) =
𝑚∑
𝑗=1

∑
𝑦∈𝑈 (𝑉 )𝑥 (𝑣 ) ∩ℎ 𝑗𝐾ℎ−1𝑥 (𝑣 )

𝐺Kud (𝑦, 𝑔), (4.12)

where ℎ1, ..., ℎ𝑚 is a set of representatives of𝑈 (𝑉)\𝑈 (V∞)/𝐾 . By the decomposition analogous to (4.5)
(see the second equation on [Kud97a, p 56]) and [Liu11a, Proposition 4.9]), GKud

𝑍 (𝑥)𝐸𝑣
(𝑔) is absolutely

convergent and descends to Sh(V)𝐾,𝐸𝑣 via (4.4). And it is a Green function for 𝑍 (𝑥)𝐸𝑣 .
Besides Kudla’s Green functions, we will need their projections to the constant function 1 to modify

the normalized Green function. See 4.4.3.
Definition 4.2.6. For 𝑥 ∈ V∞ with 𝑞(𝑥) ∈ 𝐹×, 𝑔 ∈ 𝐺 (A𝐹,∞) and 𝑣 ∈ ∞, let

𝔨(𝑥, 𝑔𝑣 ) =
1

deg(𝐿𝐸𝑣 )

∫
Sh(V)𝐾,𝐸𝑣

GKud
𝑍 (𝑥)𝐸𝑣

(𝑔𝑣 )𝑐1(𝐿𝐸𝑣 )𝑛.

Note that if 𝑢(𝑞(𝑥)) < 0 for some 𝑢 ∈ ∞ − {𝑣}, then GKud
𝑍 (𝑥)𝐸𝑣

(𝑔) = 0. Thus, if 𝑞(𝑥) is negative at
more than one infinite places, then GKud

𝑍 (𝑥)𝐸𝑣
(𝑔) = 0 and 𝔨(𝑥, 𝑔𝑣 ) = 0 for every 𝑣 ∈ ∞.

The following can be read from [GS19, (1.12), Theorem 1.2, (1.18), (1.19), Proposition 5.9].
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Theorem 4.2.7. Let 𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣) be as in (3.11). For 𝑡 ∈ 𝐹>0 and 𝑣 ∈ ∞, we have

−𝑊𝔴
∞,𝑡 (𝑔∞)

∑
𝑥∈𝐾\V∞ , 𝑞 (𝑥)=𝑡

𝜔(𝑔∞)𝜙∞(𝑥)𝔨(𝑥, 𝑔𝑣 )

= 𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣) − 𝐸𝑡 (0, 𝑔, 𝜙) (log 𝜋 − (log Γ)′(𝑛 + 1) + log 𝑣(𝑡)).

For 𝑡 ∈ 𝐹× with 𝑣(𝑡) < 0 for exactly one infinite place v, we have

−𝑊𝔴
∞,𝑡 (𝑔∞)

∑
𝑥∈𝐾\V∞ , 𝑞 (𝑥)=𝑡

𝜔(𝑔∞)𝜙∞(𝑥)𝔨(𝑥, 𝑔𝑣 ) = 𝐸 ′𝑡 (0, 𝑔, 𝜙) (𝑣).

And for 𝑡 = 0, we have

𝜔(𝑔)𝜙(0) log 𝛿∞(𝑔∞) = 𝐸 ′0(0, 𝑔, 𝜙).

We remind the reader that ∞ is the set of infinite places of F. And our formulas differ from [GS19]
by a factor 1/2 since in loc. cit., the authors use the set of infinite places of E.

4.2.4. Modularity of difference of Green functions
We need a more general notion of modular forms.

Definition 4.2.8. Let V be a topological C-vector space and 𝑉∗ the continuous dual. Let A(𝐺,𝔴, 𝑉) be
the space of smooth V-valued function f on 𝐺 (A) such that for every 𝑙 ∈ 𝑉∗, we have 𝑙 ◦ 𝑓 ∈ A(𝐺,𝔴).

Remark 4.2.9. Note that 𝑙 ◦ 𝑓 is automatically smooth.

Clearly, if V is the topological direct sum of 𝑉1, 𝑉2 and 𝑓𝑖 ∈ A(𝐺,𝔴, 𝑉𝑖), then 𝑓1 + 𝑓2 ∈ A(𝐺,𝔴, 𝑉).
Now we define the formal generating series of Green functions. Recall that ∞ is the set of infinite

places of F, of cardinality [𝐹 : Q]. Let

𝐸∞ := 𝐸 ⊗Q R �
∏
𝑣 ∈∞

𝐸𝑣 ,

which is the product of [𝐹 : Q] many copies of C. Then

Sh(V)𝐾,𝐸∞ := Sh(V)𝐾 ⊗𝐸 𝐸∞ = Sh(V)𝐾 ⊗Q R

is the (disconnected) complex manifold that is the disjoint union of all base changes of Sh(V)𝐾 to 𝐸𝑣 ’s
(each base change itself may not be connected either!).

Let

GL (𝑔, 𝜙) =
∑
𝑡 ∈𝐹>0

∑
𝑣 ∈∞

G𝐿𝐸𝑣
𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣

,

GKud (𝑔, 𝜙) =
∑

𝑥∈V∞ , 𝑞 (𝑥) ∈𝐹×
𝜔(𝑔∞)𝜙∞(𝑥)𝑊𝔴

∞,𝑞 (𝑥) (𝑔∞)
∑
𝑣 ∈∞

GKud
𝑍 (𝑥)𝐸𝑣

(𝑔),

which are formal generating series of smooth functions on Sh(V)𝐾,𝐸∞ with logarithmic singularities
along the same formal generating series of special divisors. Then GL (𝑔, 𝜙) − GKud(𝑔, 𝜙) is a formal
generating series valued in 𝐶∞(Sh(V)𝐾,𝐸∞), the space of smooth C-valued functions on Sh(V)𝐾,𝐸∞ .

Let 𝐸1 := OSh(V)𝐾 (Sh(V)𝐾 ), which is a finite field extension of E (since Sh(V)𝐾 is connected).
Then we have a morphism Sh(V)𝐾 → Spec 𝐸1. By Stein factorization, Sh(V)𝐾 , as a variety over 𝐸1,
is geometrically connected. So the connected components of Sh(V)𝐾,𝐸∞ = Sh(V)𝐾 ⊗Q R are exactly
indexed by the underlying set of Spec 𝐸1 ⊗Q R, equivalently, the set of conjugate pairs of infinite places
of 𝐸1 (which, as a finite field extension of the CM field E, has only complex embeddings but no
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real embeddings). Let LC(Sh(V)𝐾,𝐸∞) be the space of locally constant functions on Sh(V)𝐾,𝐸∞ . Then
we have the canonical isomorphism from LC(Sh(V)𝐾,𝐸∞) to the product copies of C indexed by the
set of conjugate pairs of infinite places of 𝐸1. Now we can embed O×𝐸1

in LC(Sh(V)𝐾,𝐸∞) via this
isomorphism and the Dirichlet regulator map, so that the C-span of the image of O×𝐸1

, denoted by CO×𝐸1
is of codimension 1 in LC(Sh(V)𝐾,𝐸∞) by Dirichlet’s unit theorem. Let CO×𝐸1

be this span. Let

𝐶∞(Sh(V)𝐾,𝐸∞) = 𝐶∞(Sh(V)𝐾,𝐸∞)/CO×𝐸1
.

Equip 𝐶∞(Sh(V)𝐾,𝐸∞) with the quotient of the 𝐿∞-topology. Define an embedding

C � LC(Sh(V)𝐾,𝐸∞)/CO×𝐸1
⊂ 𝐶∞(Sh(V)𝐾,𝐸∞) (4.13)

by mapping 𝑎 ∈ C to the constant function a on Sh(V)𝐾,𝐸𝑣 for some 𝑣 ∈ ∞ (rather than Sh(V)𝐾,𝐸1,𝑤

for some infinite place w of 𝐸1). Below, by a complex number in 𝐶∞(Sh(V)𝐾,𝐸∞), we understand it as
the image by (4.13).
Theorem 4.2.10. Let 𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) be as in (3.29). For 𝑔 ∈ 𝐺 (A), the generating series of
𝐶∞(Sh(V)𝐾,𝐸∞)-valued functions on 𝐺 (A)

D(𝑔) :=
∑
𝑡 ∈𝐹>0

(
𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) + 𝐸𝑡 (0, 𝑔, 𝜙) log Nm𝐹/Q𝑡

)
+

(
GL (𝑔, 𝜙) − GKud (𝑔, 𝜙)

)
− 𝜔(𝑔)𝜙(0) (− log 𝛿∞(𝑔∞) + [𝐹 : Q] (log 𝜋 − (log Γ)′(𝑛 + 1)))

pointwise converges to an element in A
(
𝐺,𝔴, 𝐶∞(Sh(V)𝐾,𝐸∞)

)
.

Remark 4.2.11. (1) It might be interesting to study whether Theorem 4.2.10 still holds if we put Fréchet
topology on 𝐶∞(Sh(V)𝐾,𝐸∞), and if we require stronger convergence.

(2) Theorem 4.2.10 is a strengthened analog of the main result of Ehlen and Sankaran [ES18], which
is for 𝐹 = Q.
Proof. We follow [KRY06] and [MZ21]. Let 𝐶∞(Sh(V)𝐾,𝐸∞)◦ be the 𝐿2-orthogonal complement
of LC(Sh(V)𝐾,𝐸∞) in 𝐶∞(Sh(V)𝐾,𝐸∞), endowed with 𝐿∞-topology. Then 𝐶∞(Sh(V)𝐾,𝐸∞) is the
topological direct sum of 𝐶∞(Sh(V)𝐾,𝐸∞)◦ and LC(Sh(V)𝐾,𝐸∞)/CO×𝐸1

.
Let the generating series D◦ be the projection of D to 𝐶∞(Sh(V)𝐾,𝐸∞)◦. By [MZ21, Lemma 3.8]2

and the same argument in the proof [KRY06, Theorem 4.4.4],3 for every 𝑔 ∈ 𝐺 (A), D◦(𝑔) converges in
𝐿∞

(
Sh(V)𝐾,𝐸∞

)
. Particularly, D◦(𝑔) converges in 𝐿2 (

Sh(V)𝐾,𝐸∞

)
since Sh(V)𝐾,𝐸∞ is compact. So we

can consider D◦ (identified as its limit) as a function on 𝐺 (A) × Sh(V)𝐾,𝐸∞ . Then by the argument in
the proof of [MZ21, Theorem 3.9], D◦ ∈ 𝐶∞

(
𝐺 (A) × Sh(V)𝐾,𝐸∞

)
. Also note that for every 𝑔 ∈ 𝐺 (A),

D◦(𝑔) ∈ 𝐶∞
(
Sh(V)𝐾,𝐸∞

)◦. Thus, D◦ is a smooth 𝐶∞
(
Sh(V)𝐾,𝐸∞

)◦-valued function on 𝐺 (A). See
[Tré67, Theorem 40.1 and Corollary]. Then the argument in the proof of either [KRY06, Theorem
4.4.4] or [MZ21, Theorem 3.9] shows that D◦ ∈ A

(
𝐺,𝔴, 𝐶∞(Sh(V)𝐾,𝐸∞)◦

)
.

Consider the projection from 𝐶∞(Sh(V)𝐾,𝐸∞) to LC(Sh(V)𝐾,𝐸∞)/CO×𝐸1
� C – that is,

𝑓 ↦→
∑
𝑣 ∈∞

1
deg(𝐿𝐸𝑣 )

∫
Sh(V)𝐾,𝐸𝑣

𝑓 · 𝑐1 (𝐿𝐸𝑣 )𝑛.

2It is a priori only at the level of generating series of functions, but will be at the level of true 𝐿2-functions after this paragraph.
3The convergence in loc. cit. was not stated explicitly. It could come from the general property of Laplacian spectral decom-

position of a smooth function on a compact manifold, applied to the product of 𝑆1 and a compact Shimura curve in loc. cit.
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By Theorem 4.2.7 and that 𝐸0 (0, 𝑔, 𝜙) = 𝜔(𝑔)𝜙(0) (see Lemma 3.3.9 (1)), the projection of D (defined
on each of its terms) pointwise converges to an element inA(𝐺,𝔴). SinceD is the sum of this projection
and D◦, the theorem follows. �

4.3. Modularity problems

We will raise two modularity problems for admissible extensions of special divisors. Before that, we
recall some notions and Kudla’s modularity problem.

4.3.1. Preliminaries
A (regular) integral model of Sh(V)𝐾 over an integral domain R with fraction field E is a (regular)
Deligne-Mumford stack proper flat over Spec 𝑅 with a fixed isomorphism of its generic fiber to Sh(V)𝐾 .
An isomorphism between integral models is an isomorphism over Spec 𝑅 that respects the fixed iso-
morphisms to Sh(V)𝐾 .

Let X𝐾 be a regular integral model of Sh(V)𝐾 over SpecO𝐸 . Let Ĉh
1
C(X𝐾 ) be the Chow group of

arithmetic divisors with C-coefficients. See Definition A.3.4. In particular, we have an isomorphism

deg : Ĉh
1
C(SpecO𝐸 ) � C

by taking degrees (see Remark A.3.5), and an arithmetic intersection pairing

Ĉh
1
C (X𝐾 ) × 𝑍1 (X𝐾 )C → C, ( �̂�, 𝑌 ) ↦→ �̂� · 𝑌 .

See Appendix A.4. Here, we recall that 𝑍1 (X𝐾 ) is the group of 1-cycles on X𝐾 .
Let L = L𝐾 be an extension of 𝐿 = 𝐿𝐾 to X𝐾 , which we allow to be a line bundle. Let L be L

equipped with a hermitian metric. Let 𝑐1(L
∨) ∈ Ĉh

1
C(X𝐾 ) be the first arithmetic Chern class of the

dual of L. See Example A.3.7.

4.3.2. Kudla’s problem
We consider the following modularity problem of Kudla [Kud02, Kud03, Kud04]: find an arithmetic
divisor Ẑ (𝑥) on X extending 𝑍 (𝑥), explicitly and canonically, such that

𝜔(𝑔)𝜙(0)𝑐1(L
∨) +

∑
𝑥∈𝐾\V∞

>0

𝜔(𝑔)𝜙(𝑥∞𝑥)Ẑ (𝑥),

where 𝑥∞ ∈ V∞ such that 𝑞(𝑥∞) = 𝑞(𝑥) ∈ 𝐹>0 lies in Ahol(𝐺,𝔴) ⊗ Ĉh
1
C (X𝐾 ). The existence of such

Ẑ (𝑥) is obvious, by choosing a section of the natural surjection Ĉh
1
C (X𝐾 ) → Ch1 (Sh(V)𝐾 )C. However,

it is only defined at the level of divisor classes, and not explicit.

4.3.3. Admissible extensions
We consider the above modularity problem for admissible extensions. In particular, we assume
Assumption A.1.1 for X𝐾 . (Also recall that X𝐾 is connected, as Sh(V)𝐾 is.) Assume that L is ample.
Let Ĉh

1
L,C(X𝐾 ) ⊂ Ĉh

1
C(X𝐾 ) be the subgroup of arithmetic divisors that are admissible with respect

to L. See Definition A.3.4. By Lemma A.3.6, the natural map

Ĉh
1
L,C (X𝐾 ) → Ch1(X𝐾,𝐸 )C (4.14)

is surjective, and the kernel is the image of the pullback

Ĉh
1
C(SpecO𝐸 ) � Ĉh

1
C

(
SpecOX𝐾 (X𝐾 )

)
C
↩→ Ĉh

1
L,C (X𝐾 ). (4.15)

In particular, Ĉh
1
L,C (X𝐾 ) is finite dimensional.
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Definition 4.3.1. Define an embedding C ↩→ Ĉh
1
L,C (X𝐾 ) as the composition of the inverse deg−1 :

C � Ĉh
1
C(SpecO𝐸 ) of taking degree and (4.15). Below, by a complex number in Ĉh

1
L,C (X𝐾 ), we

understand it as the image by this embedding.

Remark 4.3.2. The intersection Ĉh
1
L,C (X𝐾 ) ∩ 𝐶∞(Sh(V)𝐾,𝐸∞) in ĈhC(X𝐾 ) is C, where C is in

𝐶∞(Sh(V)𝐾,𝐸∞) via (4.13).

Let 𝑍1
L,C
(X𝐾 ) the group of admissible arithmetic divisors. See Definition A.3.1. For a divisor Z on

Sh(V)𝐾 � X𝐾,𝐸 , let

𝑍L ∈ 𝑍1
L,C
(X𝐾 ) (4.16)

be the normalized admissible extension of Z with respect to L. See Definition A.3.3. Let [𝑍 (𝑥)L] be
its class in Ĉh

1
L,C (X𝐾 ). Then a preiamge of [𝑍 (𝑥)] via (4.14) is of the form [𝑍 (𝑥)L] + 𝑒(𝑥) for some

𝑒(𝑥) ∈ C. Note that 𝑐1 (L
∨) ∈ Ĉh

1
L,C (X𝐾 ). See Example A.3.7.

Problem 4.3.3. Find 𝑎 ∈ C and 𝑒 = {𝑒(𝑥) ∈ C}𝑥∈𝐾\V∞
>0

explicitly such that for every 𝜙 ∈ S (V)𝐾 , the
generating series

𝑧(𝜔(𝑔)𝜙)L𝑒,𝑎 := 𝜔(𝑔)𝜙(0)
(
𝑐1 (L

∨) + 𝑎
)
+

∑
𝑥∈𝐾\V∞

>0

𝜔(𝑔)𝜙(𝑥∞𝑥)
(
[𝑍 (𝑥)L] + 𝑒(𝑥)

)
, (4.17)

where 𝑥∞ ∈ V∞ such that 𝑞(𝑥∞) = 𝑞(𝑥) ∈ 𝐹>0, lies in Ahol(𝐺,𝔴) ⊗ Ĉh
1
L,C (X𝐾 ). Moreover, 𝑒(𝑥)

should to be naturally decomposed into a sum of ‘local components’ such that the v-component should
be 0 at all but finitely many places and∞-component should be independent of the choice of the regular
integral model.

In other words, we want a modular generating series by modifying each [𝑍 (𝑥)L] by an explicit
constant once for all 𝜙. A weaker statement is to allow the modification to depend on 𝑔, 𝜙.

Problem 4.3.4. Find 𝑎 ∈ C and a smooth function 𝑒𝑡 (𝑔, 𝜙) on 𝐺 (A𝐹 ) for 𝜙 ∈ S (V)𝐾 explicitly such
that the generating series

𝜔(𝑔)𝜙(0)
(
𝑐1 (L

∨) + 𝑎
)
+

∑
𝑡 ∈𝐹>0

(
[𝑍𝑡 (𝜔(𝑔)𝜙)L] + 𝑒𝑡 (𝑔, 𝜙)

)
(4.18)

lies in Ahol(𝐺,𝔴) ⊗ Ĉh
1
L,C (X𝐾 ). Moreover, 𝑒𝑡 (𝑔, 𝜙) should to be naturally decomposed into a sum

of ‘local components’ such that the v-component should be 0 at all but finitely many places and
∞-component should be independent of the choice of the regular integral model.

Remark 4.3.5. In (4.17) and (4.18), one may replace 𝜔(𝑔)𝜙(0)
(
𝑐1 (L

∨) + 𝑎
)

by 𝜔(𝑔)𝜙(0)𝑐1(L
∨) by

adding a suitable multiple of the degree of 𝑧(𝜔(𝑔)𝜙), which is modular by Theorem 4.1.2 and can be
made explicit by (4.11). However, we keep the freedom to have ‘a’ to get the decomposition of 𝑒𝑡 (𝑔, 𝜙)
as we will see in Section 4.4.

By Theorem 4.1.2 and Lemma A.3.6 (1), we immediately have the following lemma.

Lemma 4.3.6. For P ∈ 𝑍1 (X𝐾 )C such that degP𝐸 = 0,

𝑧(𝜔(𝑔)𝜙)L𝑒,𝑎 · P ∈ Ahol(𝐺,𝔴) (4.19)
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Remark 4.3.7. (1) This lemma is called almost modularity in [MZ21, Theorem 4.3].
(2) In the case that 𝐾 = 𝐾Λ with a different Λ, for Kudla-Rapoport arithmetic divisors and

P ∈ 𝑍1 (X𝐾 )C with P𝐸 = 0, the analogous statement is proved in [Zha21b, Theorem 14.6].

When degP𝐸 ≠ 0, the truth of (4.19) is in fact equivalent to the modularity of 𝑧(𝜔(𝑔)𝜙)L𝑒,𝑎 by
Lemma 4.3.8 below. We will not use exactly this ‘numerical criterion’, but use Lemma 4.3.8 in a more
sophisticated way to prove our modularity results in 5.2.4.

Lemma 4.3.8. Let X be a C-vector space, 𝑥 ∈ 𝑋 nonzero, and l a linear form on X such that 𝑙 (𝑥) = 1.
Let f be a formal generating series of functions on 𝐺 (A) valued in X and 𝑓 the corresponding formal
generating series of functions on 𝐺 (A) valued in 𝑋/C𝑥. Assume that 𝑓 ∈ A(𝐺,𝔴) ⊗ 𝑋/C𝑥. Then
𝑓 ∈ A(𝐺,𝔴) ⊗ 𝑋 if and only if 𝑙 ◦ 𝑓 ∈ A(𝐺,𝔴).

Proof. Define a section 𝔰 of the projection 𝑋 → 𝑋/C𝑥 by 𝔰 : 𝑧 ↦→ 𝑠(𝑧) − 𝑙 (𝑠(𝑧)) · 𝑥, where s is any
section (and 𝔰 is independent of the choice of s). Then 𝑓 = 𝔰( 𝑓 ) + (𝑙 ◦ 𝑓 ) · 𝑥, and the lemma follows. �

4.4. Conjecture and theorems

First, we define specific integral models. Then we define explicit admissible extensions. Then we will
propose a precise conjecture. Finally, we state our modularity theorems.

4.4.1. Integral models
Let us at first set up some notations and assumptions that are needed to construct our integral models.
For a finite place v of F and an O𝐸𝑣 -lattice Λ𝑣 of V(𝐸𝑣 ), the dual lattice is defined as Λ∨𝑣 = {𝑥 ∈
V(𝐸𝑣 ) : 〈𝑥,Λ𝑣〉 ⊂ O𝐸𝑣 }. Then Λ𝑣 is called

◦ self-dual if Λ𝑣 = Λ∨𝑣 ;
◦ 𝜛𝐸𝑣 -modular if Λ∨𝑣 = 𝜛−1

𝐸𝑣
Λ𝑣 ;

◦ almost 𝜛𝐸𝑣 -modular if Λ∨𝑣 ⊂ 𝜛−1
𝐸 Λ𝑣 and the inclusion is of colength 1.

Assume the following assumption in the rest of the paper.

Assumption 4.4.1. (1) At least one of the following three conditions hold:

(1.a) every finite place of E is at most tamely ramified over Q;
(1.b) 𝐸/Q is Galois;
(1.c) 𝐸 is the composition of F with some imaginary quadratic field.

(2) Every finite place v of F ramified over Q or of residue characteristic 2 is unramified in E.
(3) At every finite place v of F inert in E, there is a self-dual lattice Λ𝑣 in V(𝐸𝑣 ).
(4) At every finite place v of F ramified in E, there is a 𝜋𝑣 -modular (resp. almost 𝜋𝑣 -modular) lattice

Λ𝑣 in V(𝐸𝑣 ) if n is odd (resp. n is even).

We will classify V containing such Λ in Remark 5.1.2 below.
At every place v split in E, let Λ𝑣 be a self-dual lattice in V(𝐸𝑣 ). Let

Λ =
∏
𝑣

Λ𝑣 ⊂ V∞.

Let 𝐾Λ ⊂ 𝑈 (V∞) be the stabilizer of Λ.

Definition 4.4.2. Let 𝐾Λ be the directed poset of compact open subgroups 𝐾 ⊂ 𝐾Λ, under the inclusion
relation, such that for a finite place v of F,

(1) if 𝑣 is non-split in E, then 𝐾𝑣 = 𝐾Λ,𝑣 ;
(2) if 𝑣 is split in E, then 𝐾𝑣 is a principal congruence subgroup of 𝐾Λ,𝑣 .
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Under Assumption 4.4.1 (1.a), for 𝐾 ∈ 𝐾Λ and a finite place v of E, we have an integral model 𝒮𝑣

of Sh(V)𝐾 over SpecO𝐸, (𝑣) , as constructed in (B.2.11), B.2.25 and B.2.28. (Note that we can always
choose a CM type satisfying the matching condition (B.2.20).) We remind the reader of the differences
between the notations on the fields here and in Appendix B.

Lemma 4.4.3. (1) The integral model 𝒮𝑣 is regular.
(2) If 𝐾 = 𝐾Λ, there is an ample Q-line bundle 𝒫𝑣 on 𝒮𝑣 extending 𝐿𝐾Λ .

Proof. (1) We apply B.2.26. We use M to denote the reflex field in B.2.26, which is defined in (B.1.15)
(and denoted by E there), to avoid confusion. We use N to denote the field extension of the reflex field
in B.2.26 (denoted by L there). By the finite étaleness of the moduli space of relative dimenison 0 as in
B.1.23, we may choose 𝑁/𝑀 to be unramified at 𝜈 [Sta18, Tag 04GL]. Then by [RSZ20] and B.2.26,
𝒮𝑣,O𝑁, (𝜈) is regular for a place 𝜈 of N over v. By the descent of regularity under faithfully flat morphism
[Sta18, Tag 033D], the lemma follows.

(2) Let 𝑁/𝐸 be a finite Galois extension such that v is unramified in N and every connected component
of 𝒮𝑣,O𝑁, (𝑣 ) is geometrically connected. By its construction (B.2.11), every connected component is a
quotient of a connected component of an integral model of Hodge type over O𝑁 , (𝑣) by a finite group
action. The integral model of Hodge type is a closed subscheme of the integral Siegel moduli space
[Xu21, Xu25], on which we have a well-known ample Hodge line bundle. The restriction is an ample line
bundle on each geometrically connected component of the integral model of Hodge type. Taking norm
along the quotient map by the finite group action, we get an an ample line bundle on every component
of 𝒮𝑣,O𝑁, (𝑣 ) . See [BLR90, Section 6, Theorem 7 and Example B] and [Vis04] for the stack case. Then
taking norm map along the quotient map by the Gal(𝑁/𝐸), we have an ample line bundle 𝒫′ on 𝒮𝑣 .
Dividing 𝒫′ by the product of the order of the finite group and [𝑁 : 𝐸], we get the desired ample line
bundle on 𝒮𝑣 . �

Under Assumption 4.4.1 (1.b) or (1.c), the reflex field (B.1.15), in our notations, is E. For 𝐾 ∈ 𝐾Λ

and a finite place v of E, both sides of the morphism (B.1.30) (and the generalizations as in B.2.17 or
B.2.28) are equipped with a natural action of the finite group 𝑍Q

(
A
{𝑝}∪∞
Q

)
/𝑍Q(Z(𝑝) )𝐾 𝑝

𝑍Q
compatible

with the morphism. See [LTX+22, Definition 4.2.2]. Moreover, taking quotients by this finite group, we
get a new morphism whose target is isomorphic to SpecO𝐸, (𝑣) . Then the source of the new morphism
is an integral model of Sh(V)𝐾 over SpecO𝐸, (𝑣) , whose regularity is assured by [RSZ20] and faithfully
flat descent of regularity. We also denote this integral model by 𝒮𝑣 . Moreover, if Assumption 4.4.1 (1.a)
also holds, then the construction here and in Lemma 4.4.3 coincides, by B.2.26.

We want to glue these models to obtain a regular integral model of Sh(V)𝐾 over SpecO𝐸 .

Theorem 4.4.4. Assume Assumption 4.4.1.
(1) For 𝐾 ∈ 𝐾Λ, there is a regular integral model X𝐾 of Sh(V)𝐾 over SpecO𝐸 such that

X𝐾,O𝐸, (𝑣 ) � 𝒮𝑣 as integral models. See 4.3.2. Moreover, Assumption A.1.1 holds for X𝐾 .
(2) For 𝐾 ⊂ 𝐾 ′ in 𝐾Λ, there is a unique finite flat morphism 𝜋𝐾,𝐾 ′ : X𝐾 → X𝐾 ′ extending the

natural morphism Sh(V)𝐾 → Sh(V)𝐾 ′ .
(3) Regard X𝐾 as an X𝐾Λ -scheme and Sh(V)𝐾 as an Sh(V)𝐾Λ -scheme via 𝜋𝐾,𝐾 ′ . There is a unique

action of 𝐾Λ/𝐾 (note that K is normal in 𝐾Λ) on the X𝐾Λ -scheme X𝐾 extending the standard action of
𝐾Λ/𝐾 on the Sh(V)𝐾Λ -scheme Sh(V)𝐾 by ‘right translation’.

Proof. The construction ofX𝐾 is as follows. Continue to use the notation M in the proof of Lemma 4.4.3.
First, consider the analog of the morphism (B.1.30) over O𝑀 [𝑅−1], where R is a finite set of finite
places of Q such that 𝐾𝑣 = 𝐾Λ,𝑣 for v not over R (in particular, we do not need the generalizations
as in B.2.17 or B.2.28). See, for example, [RSZ20, 5.1] with extra level structures over R (similar
to (B.1.29)). Denote this morphism by M → M0. We use Galois descent to construct a model of
Sh(V)𝐾 outside finitely many finite places. Let 𝑁/𝑀 be a finite extension, Galois over E, such that
the base change of M0 to SpecO𝑁 [𝑅−1] is a finite disjoint union of SpecO𝑁 [𝑅−1]. Let 𝑆 ⊃ 𝑅 be a
finite set of finite places of Q such that SpecO𝑁 [𝑆−1] → SpecO𝐸 [𝑆−1] is unramified. Then the fiber
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of MO𝑁 [𝑆−1 ] →M0,O𝑁 [𝑆−1 ] over a chosen SpecO𝑁 [𝑆−1] is a regular Deligne-Mumford stack M𝑆

proper over SpecO𝑁 [𝑆−1] with generic fiber Sh(V)𝐾,𝑁 . By Zariski’s main theorem (for stacks which
easily follows from the scheme version), after possibly enlarging S, we may assume that the action of
the finite group Gal(𝑁/𝐸) on Sh(V)𝐾,𝑁 extends to an action on M𝑆 . By [BLR90, Section 6, Example]
(and [Vis04] for the stack case), after possibly enlarging S, M𝑆 descends to SpecO𝐸 [𝑆−1]. Let Y𝑆 be
the resulted Deligne-Mumford stack. By construction and B.2.26, we have Y𝑆

O𝐸, (𝑣 ) � 𝒮𝑣 for 𝑣 ∉ 𝑆. Now,
let X𝐾 be the glueing of Y𝑆 and 𝒮𝑣 with 𝑣 ∈ 𝑆. Then X𝐾,O𝐸, (𝑣 ) � 𝒮𝑣 for every finite place v.

We check Assumption A.1.1. For 𝐾 ′ ⊂ 𝐾 small enough with 𝐾 ′𝑆 = 𝐾𝑆 , the resulted Deligne-
Mumford stack Y ′𝑆 is representable by [RSZ20, 5.2]. Note that SpecO𝑁 [𝑆−1] → SpecO𝐸 [𝑆−1] is
unramified (so finite étale). Then Assumption A.1.1 (1) holds (with the current S) by construction.
Similarly, Assumption A.1.1 (2) holds.

The uniqueness in (2) and (3) follows from the separatedness of the models. The existence follows from
the construction and corresponding properties of the PEL type integral models in [RSZ20, Theorem 5.4].
We omit the details. �

Remark 4.4.5. If we drop condition (2) in Definition 4.4.2 on K, Theorem 4.4.4 (1)(2) still holds.
Indeed, to construct X𝐾 , choose 𝐾1 ∈ 𝐾Λ such that 𝐾1 ⊂ 𝐾 . Let X𝐾 be the quotient of X𝐾1 by 𝐾/𝐾1
where is the action is Theorem 4.4.4 (3).

By [RSZ20, Theorem 5.2] and our construction, we deduce the following lemma.
Lemma 4.4.6. If 𝐾𝑣 = 𝐾Λ,𝑣 , then X𝐾,O𝐸 , (𝑣) is smooth over SpecO𝐸, (𝑣) .
Remark 4.4.7. We may relax Assumption 4.4.1 (3) by allowing Λ𝑣 to be almost self-dual. See B.2.28.
Then Lemma 4.4.3 still holds. However, Lemma 4.4.6 does not hold any more.
Corollary 4.4.8. A Q-line bundle (in particular a line bundle) L𝐾Λ on X𝐾Λ extending 𝐿𝐾Λ is ample.
Moreover, it is unique as a Q-line bundle.
Proof. By Lemma 4.4.6, the corresponding divisors of two different extensions differ by a Q-linear
combination of special fibers of X𝐾Λ , which is 0 in Ch1 (

X𝐾Λ

)
Q

. The uniqueness follows. Now the
ampleness follows from Lemma 4.4.3 (2). �

Below, by a line bundle, we mean a Q-line bundle.

4.4.2. Admissible extensions
We want to define admissible extensions that are compatible as the level changes. So we consider a
system of integral models.
Definition 4.4.9. (1) Let X̃ be the system {X𝐾 }𝐾 ∈𝐾Λ

of integral models with transition morphisms
𝜋𝐾 ,𝐾′ as in Theorem 4.4.4 (1)(2).

(2) For ℎ ∈ 𝐾Λ, define the ‘right translation by h’ automorphism on X𝐾 to be the action of h as in
Theorem 4.4.4 (3).

(3) Fix an arbitrarily (Q-)line bundle L𝐾Λ on X𝐾Λ extending 𝐿𝐾Λ . Let L𝐾 = 𝜋∗
𝐾 ,𝐾 Λ

L𝐾Λ .
We use L to denote the compatible-under-pullback system {L𝐾 }𝐾 ∈𝐾Λ

of ample line bundles on
X̃ = {X𝐾 }𝐾 ∈𝐾Λ

. The ampleness follows from the ampleness of L𝐾Λ and finiteness of 𝜋𝐾 ,𝐾 Λ . While
using L for X𝐾 , we mean L𝐾 so that it has the same meaning as before (we previously used L as the
abbreviation of L𝐾 ). Let L𝐾 be the corresponding hermitian line bundle with the hermitian metric as
in 4.2.1, and define L accordingly.

By Proposition A.3.8 – that is, the compatibility of the formation of admissible (Chow) cycles under
flat pullback – we can define the direct limit group of admissible arithmetic divisors along the directed
poset 𝐾Λ

𝑍1
L,C
(X̃ ) = lim−−→

𝐾 ∈𝐾Λ

𝑍1
L,C
(X𝐾 ), (4.20)
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Ĉh
1
L,C(X̃ ) = lim−−→

𝐾 ∈𝐾Λ

Ĉh
1
L,C (X𝐾 ), (4.21)

where the transition maps are 𝜋∗
𝐾 ,𝐾′

’s. By the projection formula (which gives that the composition of
pullback by pushforward is the multiplication by the degree of the finite flat morphism), the natural maps

𝑍1
L,C
(X𝐾 ) → 𝑍1

L,C
(X̃ ), Ch1

L,C
(X𝐾 ) → Ch1

L,C
(X̃ )

are injective and we understand the formers as subspaces of the latters, respectively. The embeddings
C ↩→ Ĉh

1
L,C (X𝐾 ) (Definition 4.3.1) are then the same embedding

C ↩→ Ĉh
1
L,C (X̃ ). (4.22)

Remark 4.4.10. If we drop condition (2) in Definition 4.4.2 as in Remark 4.4.10, (4.20)–(4.22) do not
change.

Definition 4.4.11. Let S (V)𝐾Λ ⊂ S (V) consist of functions invariant by some 𝐾 ∈ 𝐾Λ.

For 𝑡 ∈ 𝐹>0, 𝜙 ∈ S (V)𝐾Λ and 𝐾 ∈ 𝐾Λ stabilizing 𝜙, consider the normalized admissible extension
𝑍𝑡 (𝜔(𝑔)𝜙)L𝐾 of 𝑍𝑡 (𝜔(𝑔)𝜙)𝐾 (as in (4.16)). By Lemma 4.1.5 and Proposition A.3.8,

𝑍𝑡 (𝜔(𝑔)𝜙)L := 𝑍𝑡 (𝜔(𝑔)𝜙)L𝐾 ∈ 𝑍1
L,C
(X𝐾 ) ⊂ 𝑍1

L,C
(X̃ ) (4.23)

is independent of K. And by definition,

𝑐1 (L
∨) := 𝑐1 (L

∨
𝐾 ) ∈ Ch1

L,C
(X𝐾 ) ⊂ Ch1

L,C
(X̃ )

is independent of K.
For ℎ ∈ 𝐾Λ, the ‘right translation by h’ in Aut

(
X𝐾 /X𝐾Λ

)
fixes L𝐾 by definition. Thus, it in-

duces an automorphism on 𝑍1
L,C
(X̃ ) and Ĉh

1
L,C(X̃ ). Since it sends 𝑍𝑡 (𝑔, 𝜙) to 𝑍𝑡 (𝑔, 𝜔(ℎ)𝜙), by

Proposition A.3.8, we have the following lemma.

Lemma 4.4.12. The ‘right translation by h’ automorphism is the identity map on the image of
C ↩→ Ĉh

1
L,C (X̃ ), fixes 𝑐1 (L

∨), and sends 𝑍𝑡 (𝑔, 𝜙)L to 𝑍𝑡 (𝑔, 𝜔(ℎ)𝜙)L.

4.4.3. Conjecture
We define generating series of admissible arithmetic divisors in two ways, essentially by choosing
different Green functions. (In fact, there will be a third one in 5.2.2.) The first (resp. second) definition
is made toward Problem 4.3.4 (resp. Problem 4.3.3).

Recall the holomorphic part 𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) of the derivative of 𝐸𝑡 (𝑠, 𝑔, 𝜙) at 𝑠 = 0. See (3.29).

Definition 4.4.13. For 𝜙 ∈ S (V)𝐾Λ , 𝑡 ∈ 𝐹>0 and 𝑔 ∈ 𝐺 (A𝐹 ), let

𝑧𝑡 (𝑔, 𝜙)L𝔢 = [𝑍𝑡 (𝜔(𝑔)𝜙)L] +
(
𝐸 ′𝑡 ,f (0, 𝑔, 𝜙) + 𝐸𝑡 (0, 𝑔, 𝜙) log Nm𝐹/Q𝑡

)
∈ Ĉh

1
L,C (X̃ ).

For 𝑎 ∈ C and 𝑔 ∈ 𝐺 (A𝐹 ), let

𝑧(𝑔, 𝜙)L𝔢,𝑎 = 𝜔(𝑔)𝜙(0)
(
𝑐1 (L

∨) + 𝑎
)
+

∑
𝑡 ∈𝐹>0

𝑧𝑡 (𝑔, 𝜙)L𝔢 .
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Remark 4.4.14. (1) We rewrite the definition of 𝑧𝑡 (𝑔, 𝜙)L𝔢 as follows, which is closer to the notation
‘
(
[𝑍L

𝑡 ] + 𝔢𝑡
)
𝑞𝑡 ’ in (1.2). For 𝑡 ∈ 𝐹>0, we have the t-th Fourier coefficient 𝐸𝑡 (0,𝑔,𝜙)

𝑊𝔴
∞,𝑡 (1)

, 𝑔 ∈ 𝐺 (A∞𝐹 ), of

𝐸 (0, 𝑔, 𝜙). See 2.7. We similarly and formally consider
𝐸′
𝑡,f (0,𝑔,𝜙)
𝑊𝔴
∞,𝑡 (1)

, 𝑔 ∈ 𝐺 (A∞𝐹 ) as the ‘t-th Fourier
coefficient’ of 𝐸 ′𝑡 ,f (0, 𝑔, 𝜙). Let

𝔢𝑡 (𝑔, 𝜙∞) =
𝐸 ′𝑡 (0, 𝑔, 𝜙)
𝑊𝔴
∞,𝑡 (1)

+
𝐸𝑡 ,f (0, 𝑔, 𝜙)
𝑊𝔴
∞,𝑡 (1)

log Nm𝐹/Q𝑡, 𝑔 ∈ 𝐺 (A∞𝐹 ). (4.24)

Then 𝔢𝑡 (1, 𝜙∞) is the constant 𝔢𝑡 in (1.4). And we can rewrite

𝑧𝑡 (𝑔, 𝜙)L𝔢 =
(
[𝑍𝑡 (𝜔(𝑔∞)𝜙∞)L] + 𝔢𝑡 (𝑔∞, 𝜙∞)

)
𝑊𝔴
∞,𝑡 (𝑔∞).

(2) We also expect that the (proposed) infinite component of 𝑒𝑡 (𝑔, 𝜙) in Problem 4.3.4 is 𝐸 ′𝑡 ,f (0, 𝑔, 𝜙)+
𝐸𝑡 (0, 𝑔, 𝜙) log Nm𝐹/Q𝑡 for any unitary Shimura variety. In particular, in the situation of this section, the
v-component is 0 for every finite place v. It is related to Lemma 4.4.6. (The smoothness is ‘exotic’ at
places where 𝐸/𝐹 is ramified.)

By (3.10), (3.14) and Lemma 4.4.12, we have the following lemma.

Lemma 4.4.15. For ℎ ∈ 𝐾Λ, the ‘’right translation by h’ automorphism on X𝐾 sends 𝑧(𝑔, 𝜙)L𝔢,𝑎 to
𝑧(𝑔, 𝜔(ℎ)𝜙)L𝔢,𝑎.

Now we specify the correct constant a to be used in 𝑧(𝑔, 𝜙)L𝔢,𝑎. Let

𝔞 = log |Disc𝐹 | −
[𝐹 : Q]

𝑛
−

(
𝔟[𝐹 : Q] − 1

2
𝔠

)
− 𝑐1 (L

∨
𝐾Λ
) · P𝐾Λ (4.25)

= 𝑐1(L𝐾Λ ) · P𝐾Λ + 2
𝐿 ′(0, 𝜂)
𝐿(0, 𝜂) + log |Disc𝐸 | − 𝔟[𝐹 : Q] − [𝐹 : Q]

𝑛
,

where 𝔟 is as in (3.30), 𝔠 is as in (3.15), Disc𝐹 is the discriminant of 𝐹/Q, and P𝐾Λ ∈ 𝑍1 (X𝐾Λ ) is a CM
cycle to be precisely defined in Definition 5.1.10.

Remark 4.4.16. (1) The definition of 𝔞 is rather complicated. The reader may skip it for the moment.
(2) Looking at [YZ18, Theorem 1.7] and [YZ18, p 590], one can deduce cancellation between the

terms in the definition of 𝔞 if one can, expectably, relate the Shimura varieties here and in loc. cit..

Conjecture 4.4.17. Assume Assumption 4.4.1. Let 𝜙 ∈ S (V)𝐾Λ . For 𝑔 ∈ 𝐺 (A), we have

𝑧(𝑔, 𝜙)L𝔢,𝔞 ∈ Ahol(𝐺,𝔴) ⊗ Ĉh
1
L,C(X̃ ). (4.26)

For the second definition, we modify the normalized admissible extensions of special divisors 𝑍 (𝑥)’s
instead of weighted special divisors 𝑍𝑡 (𝜔(𝑔)𝜙)L. Unfortunately, the modification does not only depend
on x, and the result generating series is not holomorphic.

Definition 4.4.18. For 𝑥 ∈ V∞ with 𝑞(𝑥) ∈ 𝐹×, 𝑔 ∈ 𝐺 (A𝐹,∞) and 𝐾 ∈ 𝐾Λ, let 𝑍 (𝑥)L be the divisor on
X𝐾 that is the normalized admissible extension of 𝑍 (𝑥) with respect to L, and G𝐿𝐸𝑣

𝑍 (𝑥)𝐸𝑣
the normalized

admissible Green function for 𝑍 (𝑥)𝐸𝑣 with respect to 𝐿𝐸𝑣 . Let

𝑍 (𝑥, 𝑔)L𝐾,𝔨 =
(
𝑍 (𝑥)L,

(
G𝐿𝐸𝑣
𝑍 (𝑥)𝐸𝑣

+ 𝔨(𝑥, 𝑔𝑣 )
)
𝑣 ∈∞

)
∈ 𝑍1

L,C
(X𝐾 ) ⊂ 𝑍1

L,C
(X̃ ).
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Here, 𝔨(𝑥, 𝑔𝑣 ) is defined in Definition 4.2.6. For 𝜙 ∈ S (V)𝐾 , 𝑎 ∈ C and 𝑔 ∈ 𝐺 (A𝐹 ), let

𝑧(𝑔, 𝜙)L𝔨,𝑎 = 𝜔(𝑔)𝜙(0)
(
𝑐1 (L

∨) − log 𝛿∞(𝑔∞) + [𝐹 : Q] (log 𝜋 − (log Γ)′(𝑛 + 1)) + 𝑎
)

+
∑

𝑥∈V∞ , 𝑞 (𝑥) ∈𝐹×
𝜔(𝑔∞)𝜙∞(𝑥) [𝑍 (𝑥, 𝑔∞)L𝐾,𝔨]𝑊

𝔴
∞,𝑞 (𝑥) (𝑔∞).

Though 𝑍 (𝑥, 𝑔)L𝐾,𝔨 , as an element in 𝑍1
L,C
(X̃ ), depends on K, 𝑧(𝑔, 𝜙)L𝔨,𝑎 does not. Indeed, by

Lemma 3.3.9 (1), 𝐸0(0, 𝑔, 𝜙) = 𝜔(𝑔)𝜙(0). Then by Theorem 4.2.7, we have

𝑧(𝑔, 𝜙)L𝔢,𝑎 − 𝑧(𝑔, 𝜙)L𝔨,𝑎 = 𝐸 ′(0, 𝑔, 𝜙) − 𝐸 (0, 𝑔, 𝜙) [𝐹 : Q] (log 𝜋 − (log Γ)′(𝑛 + 1)). (4.27)

Then since 𝑧(𝑔, 𝜙)L𝔢,𝑎 does not depend on K, neither does 𝑧(𝑔, 𝜙)L𝔨,𝑎.
The above reasoning also shows that (4.26) is equivalent to

𝑧(𝑔, 𝜙)L𝔨,𝔞 ∈ A(𝐺,𝔴) ⊗ Ĉh
1
L,C(X̃ ).

4.4.4. Modularity theorems
We need some notations to state our theorems. Let ℜ𝔞𝔪 be the set of finite places of F nonsplit in E,
that are ramified in E or over Q. Let

G = 𝑃(A𝐹,ℜ𝔞𝔪)𝐺 (Aℜ𝔞𝔪
𝐹 ).

Let

S (V)𝐾Λ
ℜ𝔞𝔪 ⊂ S (V)𝐾Λ

be the span of pure tensors 𝜙 such that for every finite place v of F nonsplit in E, 𝜙𝑣 = 𝜔(𝑔)1Λ𝑣 for
some 𝑔 ∈ G𝑣 . In particular, we have no condition for 𝜙 ∈ S (V)𝐾Λ

ℜ𝔞𝔪 over split places. The following
proposition and remark further show that we have no condition for 𝜙 outside ℜ𝔞𝔪.

Proposition 4.4.19. For a finite place v of F inert in E (so that Λ𝑣 is self-dual by Assumption 4.4.1)
such that 𝜒

V ,𝑣 is unramified, the span of {𝜔(𝑔)1Λ𝑣 , 𝑔 ∈ 𝐺 (𝐹𝑣 )} is S (V(𝐸𝑣 ))𝐾Λ,𝑣 .

Proof. If v has residue characteristic ≠ 2, this is a special case of [How79, Theorem 10.2]. In general, let
𝐾max

𝑣 ⊂ 𝐺 (𝐹𝑣 ) be as in (2.5). Embedding S (V(𝐸𝑣 ))𝐾Λ,𝑣×𝐾max
𝑣 in an induced representation as [Ral82,

(3.1)]. It is routine to show that S (V(𝐸𝑣 ))𝐾Λ,𝑣×𝐾max
𝑣 is generated by 1Λ𝑣 as a module over the Hecke

algebra of bi-𝐾max
𝑣 -invariant Schwartz functions on 𝐺 (𝐹𝑣 ). Then the proposition follows from Kudla’s

supercuspidal support theorem for big theta lift. See [GI14, Proposition 5.2] �

Remark 4.4.20. We may choose 𝜒
V

such 𝜒
V ,𝑣 is unramified if v is inert in E.

Let Ahol(G,𝔴) and A(G,𝔴) be the restrictions of Ahol(𝐺,𝔴) and A(𝐺,𝔴) to G, respectively.

Theorem 4.4.21. Assume Assumption 4.4.1. Let 𝜙 ∈ S (V)𝐾Λ
ℜ𝔞𝔪. For 𝑔 ∈ G, we have

𝑧(𝑔, 𝜙)L𝔢,𝔞 ∈ Ahol(G,𝔴) ⊗ Ĉh
1
L,C (X̃ ), (4.28)

and

𝑧(𝑔, 𝜙)L𝔨,𝔞 ∈ A(G,𝔴) ⊗ Ĉh
1
L,C (X̃ ). (4.29)

In fact, by (4.27), (4.28) and (4.29) are equivalent. Theorem 4.4.21 will be proved in 5.2.4.
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Remark 4.4.22. (1) The restriction of (4.28) to 𝑔 ∈ 𝐺 (A∞) ⊂ G gives Theorem 1.1.1, with a less strict
condition on 𝜙𝑣 , 𝑣 ∈ ℜ𝔞𝔪. Remark 4.4.10 allows 𝐾𝑣 to be arbitrary for v split in E.

(2) By the density of G ⊂ 𝐺 (𝐹)\𝐺 (A𝐹 ), the restriction gives

Ahol(𝐺,𝔴) � Ahol(G,𝔴), A(𝐺,𝔴) � A(G,𝔴).

In particular, 𝑧(𝑔, 𝜙)L𝔢,𝔞 with 𝑔 ∈ G extends uniquely to an element in Ahol(𝐺,𝔴) ⊗ Ĉh
1
L,C (X̃ ).

Conjecture 4.4.17 predicts that this extension is 𝑧(𝑔, 𝜙)L𝔢,𝔞 with 𝑔 ∈ 𝐺 (A). However, it seems not trivial
to check this prediction. The same discussion applies to 𝑧(𝑔, 𝜙)L𝔨,𝔞 .

Definition 4.4.23. For 𝑥 ∈ V∞ with 𝑞(𝑥) ∈ 𝐹× and 𝑔 ∈ 𝐺 (A𝐹,∞), let

𝑍 (𝑥, 𝑔)L,Kud =
(
𝑍 (𝑥)L𝐾 ,

(
GKud
𝑍 (𝑥)𝐸𝑣

(𝑔)
)
𝑣 ∈∞

)
∈ Ĉh

1
C (X𝐾 ).

Here, Kudla’s Green function GKud
𝑍 (𝑥)𝐸𝑣

is defined in (4.12).
For 𝜙 ∈ S (V)𝐾 , 𝑎 ∈ C and 𝑔 ∈ 𝐺 (A𝐹 ), let

𝑧(𝑔, 𝜙)L,Kud
𝑎 = 𝜔(𝑔)𝜙(0)

(
𝑐1 (L

∨) − log 𝛿∞(𝑔∞) + [𝐹 : Q] (log 𝜋 − (log Γ)′(𝑛 + 1)) + 𝑎
)

+
∑

𝑥∈V∞ , 𝑞 (𝑥) ∈𝐹×
𝜔(𝑔∞)𝜙∞(𝑥) [𝑍 (𝑥, 𝑔∞)L,Kud]𝑊𝔴

∞,𝑞 (𝑥) (𝑔∞).

It is directly to check that 𝑧(𝑔, 𝜙)L,Kud
𝑎 is compatible under pullbacks by 𝜋𝐾 ,𝐾′ ’s.

Define the topology on Ĉh
1
C (X𝐾 ) as follows. Let𝐶∞(Sh(V)𝐾,𝐸∞)◦ be the 𝐿2-orthogonal complement

of LC(Sh(V)𝐾,𝐸∞) in 𝐶∞(Sh(V)𝐾,𝐸∞), endowed with 𝐿∞-topology. Then Ĉh
1
C(X𝐾 ) is the direct

sum of 𝐶∞(Sh(V)𝐾,𝐸∞)◦ and the finite dimensional subspace of cycles with harmonic curvatures
at ∞. Endow Ĉh

1
C(X𝐾 ) with the direct sum topology. Let A

(
G,𝔴, Ĉh

1
C (X𝐾 )

)
be the restrictions of

A
(
𝐺,𝔴, Ĉh

1
C(X𝐾 )

)
to G.

Theorem 4.2.10 and (4.28) of Theorem 4.4.21 imply the following theorem.

Theorem 4.4.24. Let 𝜙 ∈ S (V)𝐾ℜ𝔞𝔪, where 𝐾 ∈ 𝐾Λ. The generating series 𝑧(𝑔, 𝜙)L,Kud
𝔞 of Ĉh

1
C (X𝐾 )-

valued functions on G pointwise converges to an element in A
(
G,𝔴, Ĉh

1
C(X𝐾 )

)
.

5. Arithmetic mixed Siegel-Weil formula

In this section, we prove our modularity theorem (Theorem 4.4.21) above using an arithmetic analog
of the mixed Siegel-Weil formula (3.19). First, we define CM cycles. Then, we state the formula and
use this formula to prove Theorem 4.4.21. We end this section by discussing some possible future
generalizations and applications of our results. We continue to use notations and assumptions in 4.4.

5.1. CM cycles

In this subsection, we define an orthogonal decomposition

V =W ⊕ 𝑉♯ (A𝐸 ), (5.1)
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whereW is an incoherent hermitian space over A𝐸 of dimension 1, and 𝑉♯ is a hermitian space over E
of dimension n. Then we define a CM cycle

PW,𝐾 ∈ 𝑍1 (X𝐾 )Q

associated to the 0-dimensional Shimura variety forW, normalized to be of generic degree 1.

5.1.1. Lattices at unramified places
For a finite place v of F unramified in E, by [Jac62, Section 7], there exists 𝑒 (0)𝑣 , . . . , 𝑒 (𝑛)𝑣 ∈ Λ𝑣 of unit
norms, such that Λ𝑣 is their orthogonal direct sum.

5.1.2. Lattices at ramified places
Let ℜ𝔞𝔪𝐸/𝐹 be the set of finite places of F ramified in E. For 𝑣 ∈ ℜ𝔞𝔪𝐸/𝐹 , let M𝑣 be the O𝐸𝑣 -
lattice of rank 2 with an isotropic basis {𝑋,𝑌 } such that 〈𝑋,𝑌〉 = 𝜛𝐸𝑣 . Then M𝑣 is a 𝜛𝐸𝑣 -modular
lattice in M𝑣 ⊗ 𝐸𝑣 , and its determinant with respect to this basis is −Nm(𝜛𝐸𝑣 ). The hermitian space
M𝑣 ⊗ 𝐸𝑣 has determinant −1 ∈ 𝐹×𝑣 /Nm(𝐸×𝑣 ). In the other direction, starting with a 2-dimensional
hermitian space H over 𝐸𝑣 of determinant −1 ∈ 𝐹×𝑣 /Nm(𝐸×𝑣 ), let 𝑒 (0)𝑣 , 𝑒 (1)𝑣 ∈ 𝐻 be orthogonal such that
𝑞
(
𝑒 (0)𝑣

)
, 𝑞

(
𝑒 (1)𝑣

)
∈ O×𝐹𝑣 . Then one can choose M𝑣 ⊂ O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣 to be the preimage of one of

the two isotropic lines in (O𝐸𝑣 𝑒
(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣 )/𝜛𝐸𝑣 . In particular, one easily sees that

M𝑣 ∩
(
O𝐸𝑣 𝑒

(0)
𝑣 ⊕ 𝜛𝐸𝑣O𝐸𝑣 𝑒

(1)
𝑣

)
= 𝜛𝐸𝑣O𝐸𝑣 𝑒

(0)
𝑣 ⊕ 𝜛𝐸𝑣O𝐸𝑣 𝑒

(1)
𝑣 (5.2)

and

M𝑣 ∩
(
O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O×𝐸𝑣 𝑒

(1)
𝑣

)
⊂ O×𝐸𝑣 𝑒

(0)
𝑣 ⊕ O×𝐸𝑣 𝑒

(1)
𝑣 . (5.3)

These two relations will only be used in the proof of Lemma 5.2.3.
Recall that for 𝑣 ∈ ℜ𝔞𝔪𝐸/𝐹 , 𝑣 � 2 by Assumption 4.4.1 (1), and Λ𝑣 is (almost) 𝜛𝐸𝑣 -modular as in

Assumption 4.4.1 (4). Recall that the rank of Λ𝑣 is 𝑛 + 1.

Lemma 5.1.1 [Jac62, Section 8]. (1) If n is odd, then Λ𝑣 �M⊕(𝑛+1)/2𝑣 .
(2) If n is even, then Λ𝑣 is the orthogonal direct sum of 𝑛/2-copies of M𝑣 and a rank-1 hermitian

O𝐸𝑣 -module with determinant in O×𝐹𝑣 .

Remark 5.1.2. Using Lemma 5.1.1 and computing discriminants, we can classify incoherent V
containing a lattice Λ as in Assumption 4.4.1:

(1) If n is odd, then there exist a Λ as in Assumption 4.4.1 if and only if (𝑛 + 1)/2 is odd and [𝐹 : Q]
is odd.

(2) If n is even, then there exist a Λ as in Assumption 4.4.1.

5.1.3. CM cycles
For a finite place 𝑣 ∉ ℜ𝔞𝔪𝐸/𝐹 , let 𝑒 (0)𝑣 be as in 5.1.1. For 𝑣 ∈ ℜ𝔞𝔪𝐸/𝐹 , let Λ𝑣,1 ⊂ Λ𝑣 be a copy of
M𝑣 . See Lemma 5.1.1. Let 𝑒 (0)𝑣 ∈ 𝐸𝑣Λ𝑣,1 such that

𝑞
(
𝑒 (0)𝑣

)
∈ O×𝐹𝑣 , 𝑞

(
𝑒 (0)𝑣

)
= det(V(𝐸𝑣 )) ∈ 𝐹×𝑣 /Nm(𝐸×𝑣 ).

Let W be the restricted tensor product of 𝐸𝑣𝑒
(0)
𝑣 , for every 𝑣 ∉ ∞, and a 1-dimensional subspace of

V(𝐸𝑣 ), for every 𝑣 ∈ ∞. Note that since

det(W𝑣 ) = det(V(𝐸𝑣 )) ∈ 𝐹×𝑣 /Nm(𝐸×𝑣 ),
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W is incoherent. The orthogonal complement of W in V is coherent of dimension n. We denote the
corresponding hermitian space over E by 𝑉♯. This gives (5.1).

Let 𝐾W = 𝐾 ∩ 𝑈 (W∞). The morphism Sh(W)𝐾W → Sh(V)𝐾 , analogous to (4.1), defines a zero
cycle on Sh(V)𝐾 . (Indeed, this is a ‘simple special zero cycle’ compared with 4.1.1.)

Definition 5.1.3. Let 𝑑W,𝐾 be the degree of this zero cycle. Let PW,𝐾 ∈ 𝑍1 (X𝐾 )Q be 1/𝑑W,𝐾 times the
Zariski closure of this cycle.

Recall that K is normal in 𝐾Λ (Definition 4.4.2), and for ℎ ∈ 𝐾Λ, there is the ‘right translation by h’
automorphism on X𝐾 (Definition 4.4.9 (3)).

Lemma 5.1.4. The ‘right translation by h’ automorphism on X𝐾 sends PW,𝐾 to PℎW,𝐾 .

Proof. When restricted to the generic fiber, the proof goes in the same way as [Kud97a, LEMMA 2.2
(iv)]. Taking Zariski closure, we get the lemma. �

In particular, for 𝑘 ∈ 𝐾 , 𝑑W,𝐾 = 𝑑𝑘W,𝐾 , and PW,𝐾 = P𝑘W,𝐾 . Then by the flatness of 𝜋𝐾 ,𝐾′ (and the
commutativity of taking Zariski closure and flat pullback) and [Liu11a, Proposition 3.2],

𝜋∗
𝐾 ,𝐾′

PW,𝐾 ′ =
∑

𝑘∈(𝑈 (W)∩𝐾 ′)\𝐾 ′/𝐾

𝑑𝑘−1W,𝐾

𝑑W,𝐾 ′
P𝑘−1W,𝐾 , (5.4)

where each summand is independent of the choice of the representatives k. We shall later abbreviate
(𝑈 (W) ∩ 𝐾 ′)\𝐾 ′/𝐾 as 𝑈 (W)\𝐾 ′/𝐾 .

5.1.4. Another description
We will give another description of PW,𝐾 that shows the independence of PW,𝐾Λ onW. (It will also be
used in 6.1.2 to compute intersection numbers.) Before that, we introduce new lattices, open compact
subgroups and Shimura varieties.

For 𝑣 ∈ ℜ𝔞𝔪𝐸/𝐹 , let 𝑒 (1)𝑣 ∈ Λ𝑣,1 be orthogonal to 𝑒 (0)𝑣 such that 𝑞
(
𝑒 (1)𝑣

)
∈ O×𝐹𝑣 , and let Λ⊥𝑣,1 ⊂ Λ𝑣

be the orthogonal complement of Λ𝑣,1. Then we have

𝜛𝐸𝑣

(
O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣

)
⊂ Λ𝑣,1 ⊂ O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣 ,

where each inclusion is of colength 1, and Λ𝑣 = Λ𝑣,1 ⊕ Λ⊥𝑣,1.

Let 𝐾†𝑣 ⊂ 𝑈 (V𝑣 ) be the stabilizer of O𝐸𝑣 𝑒
(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣 ⊕ Λ⊥𝑣,1, and 𝐾† = 𝐾†𝑣

∏
𝑢≠𝑣 𝐾𝑢 .

Lemma 5.1.5. We have [𝐾†𝑣 : 𝐾†𝑣 ∩ 𝐾𝑣 ] = 2.

Proof. The index is the cardinality of the isotropic lines in
(
O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣

)
/𝜛𝐸𝑣 , which is 2. �

Let 𝐾 (0)
W,𝑣 ⊂ 𝑈 (W𝑣 ) be the stabilizer of O𝐸𝑣 𝑒

(0)
𝑣 , that is, 𝐾 (0)

W,𝑣 = 𝑈 (W𝑣 ), and 𝐾 (0)
W

=

𝐾 (0)
W,𝑣

∏
𝑢≠𝑣 𝐾W,𝑢 . Then we have a diagram of morphisms of Shimura varieties

Sh(W)
𝐾 (0)
W

→ Sh(V)𝐾 † ← Sh(V)𝐾 †∩𝐾 → Sh(V)𝐾 . (5.5)

Applying pushfoward, pullback and pushfoward along the diagram (5.5) to the fundamental cycle of
Sh(W)

𝐾 (0)
W

, we obtain a zero cycle on Sh(V)𝐾 . Divide it by its degree to obtain a zero cycle of degree 1.

Lemma 5.1.6. The Zariski closure of this degree 1 zero cycle is PW,𝐾 .

Proof. By Lemma 5.1.5, [𝐾† : 𝐾† ∩ 𝐾] = 2. Since 𝐾 (0)
W,𝑣 ⊄ 𝐾 , 𝐾 (0)

W,𝑣 (𝐾
† ∩ 𝐾) = 𝐾†. Then the fiber

product of the first two morphisms in (5.5) is Sh(W)(𝐾 †∩𝐾 )∩𝑈 (W∞) (an analog of (5.4)). The natural
morphism Sh(W)(𝐾 †∩𝐾 )∩𝑈 (W∞) → Sh(V)𝐾 factors through Sh(W)𝐾W . The lemma follows. �
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Remark 5.1.7. One may define PW,𝐾 via a diagram of integral models similar to (5.5), as in [RSZ20,
(4.30)].

Lemma 5.1.8. Let ℎ ∈ 𝑈 (𝐸𝑣Λ𝑣,1) × {1𝐸𝑣Λ⊥𝑣,1
} ⊂ 𝑈 (V(𝐸𝑣 )) such that Λ𝑣,1 ⊂ ℎ

(
O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣

)
and is the preimage of one of the two isotropic lines in the reduction modulo 𝜛𝐸𝑣 . Then ℎ ∈ 𝐾†𝑣 .

Proof. Let 𝐾𝑐 = 𝐾†\𝐾 . The two preimages of the two isotropic lines in the reduction of
ℎ
(
O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣

)
are ℎΛ𝑣,1 and ℎ𝐾𝑐Λ𝑣,1. Then either ℎΛ𝑣,1 = Λ𝑣,1 or ℎ𝐾𝑐Λ𝑣,1 = Λ𝑣,1. Each

implies ℎ ∈ 𝐾†𝑣 . �

Proposition 5.1.9. The CM cycle PW,𝐾Λ does not depend on the choice ofW.

Proof. To define PW,𝐾Λ , we specify 𝑒 (0)𝑣 ∈ W as in 5.1.3. For 𝑣 ∉ ℜ𝔞𝔪𝐸/𝐹 , the choices of 𝑒 (0)𝑣 differ
by 𝐾Λ,𝑣 actions, which do not change PW,𝐾Λ by Lemma 5.1.4. For 𝑣 ∈ ℜ𝔞𝔪𝐸/𝐹 , the choices of Λ𝑣,1
differ by 𝐾Λ,𝑣 actions. See Lemma 5.1.1. By Lemma 5.1.8, we only need to show that PW,𝐾Λ = PℎW,𝐾Λ

for ℎ ∈ 𝐾†𝑣 , where 𝑣 ∈ ℜ𝔞𝔪𝐸/𝐹 . We use Lemma 5.1.6. The pushforward of the fundamental cycle of
Sh(W)

𝐾
(0)
W

by the first map in (5.5) is the same as the one obtained by replacingW by ℎW, by the analog
of Lemma 5.1.4 (on the generic fiber). �

Definition 5.1.10. We denote PW,𝐾Λ by P𝐾Λ .

This definition is only used in (4.25). Later, we will still use PW,𝐾Λ for the uniformity of the notation
as the level changes. (For 𝐾 ≠ 𝐾Λ, PW,𝐾 depends on the choice ofW.)

5.2. Formula

The arithmetic mixed Siegel-Weil formula compares the generating series of arithmetic intersection
numbers between arithmetic special divisors and CM 1-cycles on the integral models with an explicit
automorphic form. We use this formula to prove our main theorem Theorem 4.4.21.

5.2.1. Error functions
Both sides of the arithmetic mixed Siegel-Weil formula will have decompositions into local components
(we will see in the proof in Section 6). We define some functions measuring the difference between
these local components, and they will appear in the explicit automorphic form.

For a place v of F nonsplit in E, let W be the v-nearby hermitian space of W. See 2.2. Define the
orthogonal direct sum

𝑉 = 𝑊 ⊕ 𝑉♯ .

Then we have isomorpisms

𝑉 (A𝑣
𝐹 ) � V

∞,𝑣 , 𝑈 (𝑉 (A𝑣
𝐸 )) �𝑈 (V𝑣 ), (5.6)

and similar isomorphisms for W andW. Consider

𝑉 (𝐸𝑣 ) −𝑉♯ (𝐸𝑣 ) = {(𝑥1, 𝑥2) ∈ 𝑊 (𝐸𝑣 ) ⊕ 𝑉♯ (𝐸𝑣 ) : 𝑥1 ≠ 0}.

Let Λ♯
𝑣 ⊂ W𝑣 be the orthogonal complement of O𝐸𝑣 𝑒

(0)
𝑣 in Λ𝑣 . For 𝑥 = (𝑥1, 𝑥2) ∈ 𝑉 (𝐸𝑣 ) −𝑉♯ (𝐸𝑣 ),

let

𝜙′𝑣 (𝑥) := 𝑊𝜃 ′𝑣,𝑥 (0, 1, 𝜙𝑣 ) − (𝑣(𝑞(𝑥1)) + 1)1O𝐹𝑣 (𝑞(𝑥1))1Λ♯𝑣 (𝑥2) log 𝑞𝐹𝑣 , (5.7)

where the smooth function 𝑊𝜃 ′𝑣,𝑥 (0, 1, 𝜙𝑣 ) on 𝑉 (𝐸𝑣 ) −𝑉♯ (𝐸𝑣 ) is as in (3.21).
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Note that Λ𝑣 = O𝐸𝑣 𝑒
(0)
𝑣 ⊕Λ♯

𝑣 . So the computation for 𝜙′𝑣 (𝑥) is only on the component O𝐸𝑣 𝑒
(0)
𝑣 , and

we can apply computations in [YZ18, YZZ13].

Lemma 5.2.1 [YZZ13, Proposition 6.8]. Assume that 𝑣 ∉ ℜ𝔞𝔪. Then 𝜙′𝑣 = 0.

Let 𝑐(𝑔, 𝜙𝑣 ) be as below (3.23). Recall that Diff𝑣 is the different of 𝐹𝑣 over Q𝑣 .

Lemma 5.2.2 [YZ18, Lemma 9.2]. Assume that 𝑣 ∈ ℜ𝔞𝔪 −ℜ𝔞𝔪𝐸/𝐹 . Then 𝜙′𝑣 extends to a Schwartz
function on 𝑉 (𝐸𝑣 ) such that 𝑐(1, 𝜙𝑣 ) − 2𝜙′𝑣 (0) = 2 log |Diff𝑣 |𝑣 .

For 𝑣 ∈ ℜ𝔞𝔪𝐸/𝐹 , as in 5.1.4, we have

𝜛𝐸𝑣

(
O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣

)
⊂ Λ𝑣,1 ⊂ O𝐸𝑣 𝑒

(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣 ,

and Λ𝑣 = Λ𝑣,1 ⊕ Λ⊥𝑣,1. For 𝑥 = (𝑥1, 𝑥2) ∈ 𝑉 (𝐸𝑣 ) −𝑉♯ (𝐸𝑣 ), let

𝜙′𝑣 (𝑥) := 𝑊𝜃 ′𝑣,𝑥 (0, 1, 𝜙𝑣 ) − (𝑣(𝑞(𝑥1)) + 1)1O𝐹𝑣 (𝑞(𝑥1))1𝜛𝐸𝑣O𝐸𝑣 𝑒
(1)
𝑣 ⊕Λ⊥𝑣

(𝑥2) log 𝑞𝐹𝑣 .

Lemma 5.2.3. Assume that 𝑣 ∈ ℜ𝔞𝔪𝐸/𝐹 . Then 𝜙′𝑣 extends to a Schwartz function on 𝑉 (𝐸𝑣 ) such that
𝑐(1, 𝜙𝑣 ) − 2𝜙′𝑣 (0) = 2 log |Diff𝑣 |𝐹𝑣 .

Proof. The computation for 𝜙′𝑣 (𝑥) is indeed only on the component Λ𝑣,1 of Λ𝑣 . For simplicity, we as-
sume that 𝑛 = 2 so that we do not have the component Λ⊥𝑣,1.

Consider a larger lattice 𝐴 = O𝐸𝑣 𝑒
(0)
𝑣 ⊕ O𝐸𝑣 𝑒

(1)
𝑣 . For 𝑥 = (𝑥1, 𝑥2) ∈ 𝑉 (𝐸𝑣 ) −𝑉♯ (𝐸𝑣 ), let

𝜑(𝑥) = 𝑊𝜃 ′𝑣,𝑥 (0, 1, 1𝐴) − (𝑣(𝑞(𝑥1)) + 1)1O𝐹𝑣 (𝑞(𝑥1))1O𝐸𝑣 𝑒 (1)𝑣 (𝑥2) log 𝑞𝐹𝑣 .

By [YZ18, Lemma 9.2], 𝜑 extends to a Schwartz function on 𝑉 (𝐸𝑣 ) such that 𝑐(1, 1𝐴) − 2𝜑(0) =
2 log |Diff𝑣 |𝐹𝑣 . It is enough to extend 𝜑(𝑥)1

𝜛𝐸𝑣O𝐸𝑣 𝑒
(1)
𝑣
(𝑥2) − 𝜙′𝑣 (𝑥) to a Schwartz function on 𝑉 (𝐸𝑣 ),

and show that the twice of its value at 0 is 𝑐(1, 1𝐴) − 𝑐(1, 𝜙𝑣 ). First,

𝜑(𝑥)1
𝜛𝐸𝑣O𝐸𝑣 𝑒

(1)
𝑣
(𝑥2) − 𝜙′𝑣 (𝑥)

= 𝑊𝜃 ′𝑣,𝑥 (0, 1, 1𝐴)1𝜛𝐸𝑣O𝐸𝑣 𝑒
(1)
𝑣
(𝑥2) −𝑊𝜃 ′𝑣,𝑥 (0, 1, 𝜙𝑣 )

= 𝑊𝜃 ′𝑣,𝑥 (0, 1, 1𝐴)1𝜛𝐸𝑣O𝐸𝑣 𝑒
(1)
𝑣
(𝑥2) −𝑊𝜃 ′𝑣,𝑥 (0, 1, 𝜙𝑣 )1𝜛𝐸𝑣O𝐸𝑣 𝑒

(1)
𝑣
(𝑥2)

−𝑊𝜃 ′𝑣,𝑥 (0, 1, 𝜙𝑣 )1O×𝐸𝑣 𝑒
(1)
𝑣
(𝑥2).

By Lemma 3.1.2 and (5.3), 𝑊𝜃 ′𝑣,𝑥 (0, 1, 𝜙𝑣 )1O×𝐸𝑣 𝑒
(1)
𝑣
(𝑥2) extends to a Schwartz function on 𝑉 (𝐸𝑣 ). It is

supported on {𝑥2 ∈ O×𝐸𝑣 𝑒
(1)
𝑣 } so that its value at 0 is 0. By (3.5), (3.21) and (5.2),

𝑊𝜃 ′𝑣,𝑥 (0, 1, 1𝐴)1𝜛𝐸𝑣O𝐸𝑣 𝑒
(1)
𝑣
(𝑥2) −𝑊𝜃 ′𝑣,𝑥 (0, 1, 𝜙𝑣 )1𝜛𝐸𝑣O𝐸𝑣 𝑒

(1)
𝑣
(𝑥2) (5.8)

= 𝛾−1
W𝑣

1
Vol(𝑈 (𝑊 (𝐸𝑣 ))

𝑊𝑣,𝑞 (𝑥1)
′(0, 1, 1O×𝐸𝑣 𝑒

(0)
𝑣
)1

𝜛𝐸𝑣O𝐸𝑣 𝑒
(1)
𝑣
(𝑥2).

Here, we used that 𝐿(𝑠, 𝜂𝑣 ) = 1 due to the ramification of v in E. By Lemma 3.1.2, (5.8) extends to a
Schwartz function on 𝑉 (𝐸𝑣 ).

Second, by a direct computation using (3.6), Lemma 3.1.2 and (5.2), we have

𝑐(1, 1𝐴) − 𝑐(1, 𝜙𝑣 ) = 𝛾−1
W𝑣
|Diff𝑣Disc𝑣 |−1/2

𝐹𝑣
𝑊𝑣,0

′(0, 1, 1O×𝐸𝑣 𝑒
(0)
𝑣
).

By [YZZ13, p 23], which says Vol(𝑈 (𝑊 (𝐸𝑣 )) = 2|Diff𝑣Disc𝑣 |1/2𝐹𝑣
, the lemma follows. �
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5.2.2. Generating series with automorphic Green functions
For 𝑡 ∈ 𝐹>0, let 𝑍𝑡 (𝜙)L,aut ∈ 𝑍1

L,C
(X𝐾 ) be the admissible extension of 𝑍𝑡 (𝜙) that is normalized at all

finite places with respect to L and equals the automorphic Green function (4.10) at all infinite places.
Comparing with (4.23), by Lemma 4.2.4 (1),

𝑍𝑡 (𝜙)L,aut ∈ 𝑍1
L,C
(X𝐾 ) ⊂ 𝑍1

L,C
(X̃ )

only depends on 𝜙, but not on K. For 𝑔 ∈ 𝐺 (A𝐹 ) and 𝑎 ∈ C, define 𝑧𝑡 (𝑔, 𝜙)L,aut
𝔢 (resp. 𝑧(𝑔, 𝜙)L,aut

𝔢,𝑎 ) by
the formula defining 𝑧𝑡 (𝑔, 𝜙)L𝔢 (resp. 𝑧(𝑔, 𝜙)L𝔢,𝑎) in Definition 4.4.13, replacing 𝑍𝑡 (𝜙)L by 𝑍𝑡 (𝜙)L,aut.
By Lemma 4.2.4 (2), (4.26) is equivalent to

𝑧(𝑔, 𝜙)L,aut
𝔢,𝔞+ [𝐹 :Q]

𝑛

∈ Ahol(𝐺,𝔴) ⊗ Ĉh
1
L,C (X̃ ).

Formally define the ‘t-th Fourier coefficient’ (and compare with Remark 4.4.14 (1))

𝑧𝑡 (𝑔, 𝜙∞)L,aut
𝔢 =

𝑧𝑡 (𝑔, 𝜙)L,aut
𝔢

𝑊𝔴
∞,𝑡 (1)

.

5.2.3. Arithmetic mixed Siegel-Weil formula
Let 𝜙 ∈ S (V)𝐾Λ . See Definition 4.4.11. Assume that 𝜙 is a pure tensor for simplicity. Define the
automorphic form to appear in the formula as follows. For 𝐾 ∈ 𝐾Λ stabilizing 𝜙, and 𝐾 ′ ∈ 𝐾Λ containing
K, let

𝑓 𝐾W,𝐾 ′ (𝑔) =
∑

𝑘∈𝑈 (W)\𝐾 ′/𝐾

𝑑𝑘−1W,𝐾

𝑑W,𝐾 ′

(
− 𝜃𝐸 ′chol(0, 𝑔, 𝜔(𝑘)𝜙) − (2𝔟[𝐹 : Q] − 𝔠)𝐸 (0, 𝑔, 𝜔(𝑘)𝜙)

+ 𝐶 (0, 𝑔, 𝜔(𝑘)𝜙) −
∑

𝑣 ∈ℜ𝔞𝔪
𝜃𝐸

(
0, 𝑔, 𝜔(𝑘)𝜙𝑣 ⊗ 𝜙′𝑣

) )
.

(5.9)

Here, the index set and coefficients are the ones in (5.4). We choose a representative k such that 𝑘𝑣 = 1
if 𝐾𝑣 = 𝐾 ′𝑣 . In particular, 𝜔(𝑘) (𝜙𝑣 ⊗ 𝜙′𝑣 ) = (𝜔(𝑘)𝜙𝑣 ) ⊗ 𝜙′𝑣 for v nonsplit in E, which is what we
wrote 𝜔(𝑘)𝜙𝑣 ⊗ 𝜙′𝑣 for. Inside the bracket, we have 4 automorphic forms in Ahol(𝐺,𝔴). Here, we use
the orthogonal decomposition V = W ⊕ 𝑉♯ (A𝐸 ) to define 𝜃𝐸 ′chol(. . . ) and 𝐶 (. . . ), and for a given
𝑣 ∈ ℜ𝔞𝔪, we use the orthogonal decomposition 𝑉 = 𝑊 ⊕ 𝑉♯ as in (5.6) to define 𝜃𝐸 (. . . ). See 3.2.1,
3.3.1 and 3.3.3 for their definitions. In particular, 𝑓 𝐾

W,𝐾 ′ ∈ Ahol(𝐺,𝔴). Finally, the constant 𝔟 is as in
(3.30), 𝔠 is as in (3.15) and the term 2𝔟[𝐹 : Q] − 𝔠 appears in both (3.31) and (4.25).
Remark 5.2.4. The bracketed automorphic form indexed by 𝑘 ∈ 𝑈 (W)\𝐾 ′/𝐾 on the right-hand side
of (5.9) is independent of the choice of k. Indeed, the 4th automorphic form 𝜃𝐸

(
0, 𝑔, 𝜔(𝑘)𝜙𝑣 ⊗ 𝜙′𝑣

)
is

independent of the choice of k, by the 𝐾 𝑣 -invariance of 𝜙𝑣 and the mixed Siegel-Weil formula (3.19).
By (3.31), for 𝑡 ∈ 𝐹>0, the 𝜓𝑡 -Whittaker function of the rest 3 terms becomes

𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜔(𝑘)𝜙) − 2
(
𝐸 ′𝑡 ,f (0, 𝑔, 𝜔(𝑘)𝜙) + 𝐸𝑡 (0, 𝑔, 𝜔(𝑘)𝜙) log Nm𝐹/Q𝑡

)
.

Then the independence of the choice of k follows from (3.10), (3.14) and (3.36). Then the independence
of the choice of k follows from the automorphy.

Theorem 5.2.5. Let 𝜙 ∈ S (V)𝐾Λ be a pure tensor such that 𝜙𝑣 = 1Λ𝑣 for every finite place v of F
nonsplit in E. Let 𝐾 ∈ 𝐾Λ stabilize 𝜙. For 𝑡 ∈ 𝐹>0 and 𝑔 ∈ 𝑃

(
A𝐹,ℜ𝔞𝔪

)
𝐺

(
Aℜ𝔞𝔪∪∞

𝐹

)
, we have

2𝑧𝑡 (𝑔, 𝜙∞)L,aut
𝔢 · 𝜋∗

𝐾 ,𝐾 Λ
PW,𝐾Λ = 𝑓 𝐾,∞

W,𝐾Λ ,𝑡
(𝑔), (5.10)
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where the arithmetic intersection on the left-hand side is taken on X𝐾 , and 𝑓 𝐾,∞
W,𝐾Λ ,𝑡

is the t-th Fourier
coefficient of 𝑓 𝐾

W,𝐾Λ
. See 2.7.

Theorem 5.2.5 will be proved in (the end of) Section 6.

Remark 5.2.6. (1) By the projection formula, given 𝜙 and 𝐾 ′, the truth of (5.10) does not depend on
the choice of K (stabilizing the given 𝜙).

(2) We use 𝜋∗
𝐾 ,𝐾′

PW,𝐾 ′ with 𝐾 ′ = 𝐾Λ, instead of the more natural CM cycle PW,𝐾 (i.e., 𝐾 ′ = 𝐾), in
order to apply Corollary A.2.6 to avoid computing normalized admissible extensions. (One may expect
to reduce the whole Theorem 5.2.5 to the level 𝐾Λ by the projection formula. However, this is not
possible due to Remark 4.1.6.)

(3) We can also consider Theorem 5.2.5 for 𝐾 ′ = 𝐾 . Taking advantage of Theorem 4.4.21, the only
difficulty in proving Theorem 5.2.5 for 𝐾 ′ = 𝐾 is computing normalized admissible extensions at split
place. By considering admissible 1-cycles, the difficulty could be solved as in [YZZ13, 8.5.1]. Note that
we do not need Assumption 5.4 in loc. cit. Rather we will get an extra Eisenstein series.

5.2.4. Proof of Theorem 4.4.21
Assuming Theorem 5.2.5, we prove Theorem 4.4.21 as follows. Recall that as we have discussed
immediately after Theorem 4.4.21, that (4.28) and (4.29) of Theorem 4.4.21 are equivalent. We will
prove (4.28), assuming that 𝜙 is a pure tensor such that 𝜙𝑣 = 1Λ𝑣 for every finite place v nonsplit in E
(so that Theorem 5.2.5 applies to 𝜙). So (4.29) holds. It follows from Definition 4.4.18 that (4.29) holds
for 𝜔(𝑔)𝜙 with 𝑔 ∈ G∞. Thus, Theorem 4.4.21 holds by the definition of S (V)𝐾Λ

ℜ𝔞𝔪 above it.
So now we assume that 𝜙 is a pure tensor such that 𝜙𝑣 = 1Λ𝑣 for every finite place v nonsplit in E

and want to prove (4.28); that is,(
𝜔(𝑔)𝜙(0)𝑐1(L

∨) + 𝜔(𝑔)𝜙(0)𝔞
)
+

∑
𝑡 ∈𝐹>0

𝑧𝑡 (𝑔, 𝜙)L𝔢 ∈ Ahol(G,𝔴) ⊗ Ĉh
1
L,C (X̃ ). (5.11)

Let 𝐾 ∈ 𝐾Λ such that 𝜙 is K-invariant. Let 𝑓 𝐾
W,𝐾Λ ,0 be the 0-th Whittaker coefficient of 𝑓 𝐾

W,𝐾Λ
. Let

𝐴(·, 𝜙)𝐾 be the C-valued function on 𝐺 (A), understood as valued Ĉh
1
L,C (X̃ ) via C ↩→ Ĉh

1
L,C(X̃ ) as in

(4.22), defined by

2
(
𝜔(𝑔)𝜙(0)

(
𝑐1 (L

∨) + [𝐹 : Q]
𝑛

)
+ 𝐴(𝑔, 𝜙)𝐾

)
· 𝜋∗

𝐾 ,𝐾 Λ
PW,𝐾Λ = 𝑓 𝐾W,𝐾Λ ,0(𝑔),

that is,

𝐴(𝑔, 𝜙)𝐾 =
1

2 deg 𝜋𝐾 ,𝐾 Λ

(
𝑓 𝐾W,𝐾Λ ,0(𝑔) − 2𝜔(𝑔)𝜙(0)

(
𝑐1(L

∨) + [𝐹 : Q]
𝑛

)
· 𝜋∗

𝐾 ,𝐾 Λ
PW,𝐾Λ

)
. (5.12)

By Lemma 4.3.8 (with G and 𝐺 (A) replaced by G) and Theorem 5.2.5,(
𝜔(𝑔)𝜙(0)

(
𝑐1 (L

∨) + [𝐹 : Q]
𝑛

)
+ 𝐴(𝑔, 𝜙)𝐾

)
+

∑
𝑡 ∈𝐹>0

𝑧𝑡 (𝑔, 𝜙)L,aut
𝔢 ∈ Ahol(G,𝔴) ⊗ Ĉh

1
L,C (X̃ ).

Then by Lemma 4.2.4 (2), we have(
𝜔(𝑔)𝜙(0)𝑐1(L

∨) + 𝐴(𝑔, 𝜙)𝐾
)
+

∑
𝑡 ∈𝐹>0

𝑧𝑡 (𝑔, 𝜙)L𝔢 ∈ Ahol(G,𝔴) ⊗ Ĉh
1
L,C (X̃ ). (5.13)

Thus, (5.11) is reduced to the following lemma, whose proof requires some preparations.

Lemma 5.2.7. We have 𝐴(𝑔, 𝜙)𝐾 = 𝜔(𝑔)𝜙(0)𝔞.
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To determine 𝐴(𝑔, 𝜙)𝐾 , one a priori needs to compute 𝑓 𝐾
W,𝐾Λ ,0(𝑔), which could be complicated.

Indeed, by (3.20) for 𝑡 = 0 and Lemma 3.3.9 (1) (2), we have

𝑓 𝐾W,𝐾Λ ,0(𝑔) = deg 𝜋𝐾 ,𝐾 Λ

(
− (2𝔟[𝐹 : Q] − 𝔠)𝜔(𝑔)𝜙(0)

+
∑
𝑣

𝑐(𝑔𝑣 , 𝜙𝑣 )𝜔(𝑔𝑣 )𝜙𝑣 (0) − 2
∑

𝑣 ∈ℜ𝔞𝔪
𝜔(𝑔)

(
𝜙𝑣 ⊗ 𝜙′𝑣

)
(0)

)
.

(5.14)

The terms in the second line cause the complicatedness.
We take a different approach. We study the invariance properties of 𝐴(𝑔, 𝜙)𝐾 . We need a notation.

Let 𝑊0 (G) be the space of 𝜓0-Whittaker functions on G (i.e., smooth C-valued functions f such that
𝑓 (𝑛𝑔) = 𝑓 (𝑔) for 𝑛 ∈ 𝑁 (A)). Then

𝑊0 (G) ∩A(G,𝔴) = {0}. (5.15)

By (5.14) and Lemma 3.3.4 (2), we have 𝑓 𝐾
W,𝐾Λ ,0 ∈ 𝑊0 (G). Then by (5.12), we have 𝐴(𝑔, 𝜙)𝐾 ∈

𝑊0 (G). For 𝐾 ′ ∈ 𝐾Λ such that 𝜙 is 𝐾 ′-invariant, by (5.13), 𝐴(𝑔, 𝜙)𝐾 − 𝐴(𝑔, 𝜙)𝐾 ′ ∈ Ahol(G,𝔴). Thus,
by (5.15), 𝐴(𝑔, 𝜙)𝐾 does not depend on K. Let us denote 𝐴(𝑔, 𝜙)𝐾 by 𝐴(𝑔, 𝜙).

Lemma 5.2.8. (1) For 𝑔′ ∈ G∞, 𝐴(𝑔𝑔′, 𝜙) = 𝐴(𝑔, 𝜔(𝑔′)𝜙).
(2) For ℎ ∈ 𝐾Λ, 𝐴(𝑔, 𝜔(ℎ)𝜙) = 𝐴(𝑔, 𝜙).

Proof. (1) Since 𝐴(𝑔, 𝜙), 𝜔(𝑔)𝜙(0) ∈ 𝑊0 (G),

𝐵(𝑔, 𝜙) := 𝐴(𝑔, 𝜙) + 𝜔(𝑔)𝜙(0)
(
− log 𝛿∞(𝑔∞) + [𝐹 : Q] (log 𝜋 − (log Γ)′(𝑛 + 1))

)
∈ 𝑊0(G).

Claim:

𝐵(𝑔, 𝜙) +
∑

𝑥∈V∞ , 𝑞 (𝑥) ∈𝐹×
𝜔(𝑔∞)𝜙∞(𝑥) [𝑍 (𝑥, 𝑔∞)L𝔱 ]𝑊

𝔴
∞,𝑞 (𝑥) (𝑔∞) ∈ A(G,𝔴) ⊗ Ĉh

1
L,C (X̃ ). (5.16)

Indeed, by Theorem 4.2.7, the difference between the generating series in (5.13) and (5.16) equals

𝐸 ′(0, 𝑔, 𝜙) − 𝐸 (0, 𝑔, 𝜙) [𝐹 : Q] (log 𝜋 − (log Γ)′(𝑛 + 1)).

(This is the analog of (4.27).) Then the claim follows from (5.13).
Now we prove (1). Apply (5.16) in two ways: first, replace 𝜙 by 𝜔(𝑔′)𝜙 and call the resulted series

𝑆1; second, replace g by 𝑔𝑔′ and call the resulted series 𝑆2. Then 𝑆1, 𝑆2 ∈ A(G,𝔴) ⊗ Ĉh
1
L,C (X̃ ). So

𝐵(𝑔, 𝜔(𝑔′)𝜙) − 𝐵(𝑔𝑔′, 𝜙) = 𝑆1 − 𝑆2 ∈ A(G,𝔴).

Thus, it must be 0 by (5.15). This gives (1).
(2) By Lemma 4.4.12, after the ‘right translation by h’, (5.13) becomes(

𝜔(𝑔)𝜙(0)𝑐1(L
∨) + 𝐴(𝑔, 𝜔(ℎ)𝜙)

)
+

∑
𝑡 ∈𝐹>0

𝑧𝑡 (𝑔, 𝜔(ℎ)𝜙)L𝔢 ∈ Ahol(G,𝔴) ⊗ Ĉh
1
L,C(X̃ ).

(This is similar to Lemma 4.4.15.) Since (5.13) holds with 𝜙 replaced by 𝜔(ℎ)𝜙, taking the difference,
we have 𝐴(𝑔, 𝜔(ℎ)𝜙) − 𝐴(𝑔, 𝜙) ∈ Ahol(G,𝔴). It is 0 by (5.15). �

To prove Lemma 5.2.7, we need a final ingredient, whose proof is easy and left to the reader.

Lemma 5.2.9. For v split in E, identifyW𝑣 = 𝐸𝑣 and 𝐾Λ,𝑣 ∩𝑈 (W𝑣 ) = O×𝐸𝑣 . Then S (W𝑣 )𝐾Λ,𝑣∩𝑈 (W𝑣 )

is spanned by 𝑓𝑎’s, where 𝑓𝑎 (𝑥) := 1O𝐸𝑣 (𝑥𝑎), 𝑎 ∈ 𝐸×𝑣 .
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Proof of Lemma 5.2.7. We have some reduction steps about 𝜙. By Lemma 5.2.8 (2), we may assume
that 𝜙 is 𝐾Λ-invariant. In particular, for v split in E, 𝜙𝑣 is 𝐾Λ,𝑣 ∩𝑈 (W𝑣 )-invariant. IdentifyW𝑣 = 𝐸𝑣

and 𝑞 = Nm. By Lemma 5.2.8 (1), Lemma 5.2.9 and the first Weil representation formula in 2.8, we may
further assume that 𝜙𝑣 = 𝜙𝑣,1 ⊗ 𝜙𝑣,2 where 𝜙𝑣,1 = 1O𝐸𝑣 and 𝜙𝑣,2 ∈ S

(
𝑉♯ (𝐸𝑣 )

)
(recall that 𝑉♯ (𝐸𝑣 ) is

the orthogonal complement ofW𝑣 ).
Now we look at 𝑓 𝐾

W,𝐾Λ ,0(𝑔) given by (5.14). By the definition (3.23) and Lemma 3.1.3 (2) (3),
𝑐(𝑔𝑣 , 𝜙𝑣 ) = 0 unless 𝑣 ∈ ℜ𝔞𝔪 or v split in E (by the same argument as in Lemma 3.3.4). By Lemma
5.2.8 (1), we may assume 𝑔∞ = 1. Then by Lemma 3.3.7, Lemma 5.2.2, Lemma 5.2.3,

𝑓 𝐾W,𝐾Λ ,0(𝑔) = deg 𝜋𝐾 ,𝐾 Λ

(
− (2𝔟[𝐹 : Q] − 𝔠)𝜔(𝑔)𝜙(0) + 2 log |Disc𝐹 |𝜔(𝑔)𝜙(0)

)
.

Since 𝑐1 (L
∨
𝐾 ) = 𝜋∗

𝐾 ,𝐾 Λ
L∨𝐾Λ

, by the projection formula,

𝑐1 (L
∨
𝐾 ) · 𝜋∗𝐾 ,𝐾 Λ

PW,𝐾Λ = deg 𝜋𝐾 ,𝐾 Λ𝑐1 (L
∨
𝐾Λ
) · PW,𝐾Λ .

Now by the definition of 𝐴(𝑔, 𝜙)𝐾 in (5.12) and the definition of 𝔞 in the first line of (4.25), the lemma
follows. �

5.3. Generalizations and applications

5.3.1. Higher codimensions
Based on their modularity result for generating series of special divisors, Yuan, S. Zhang and W. Zhang
[YZZ09] proved the modularity for higher-codimensional special cycles inductively, assuming the
convergence. One would like to mimic their proof in the arithmetic situation. Then one needs a modularity
theorem for divisors with general level structures and test functions, even if the given test function is
very good. Thus, the generality of our results is necessary toward modularity in the arithmetic situation
in higher codimensions.

In the codimension n case (i.e., for arithmetic 1-cycles), S. Zhang’s theory of admissible cycles is
unconditional modulo vertical 1-cycles that are numerically trivial [Zha20]. Then the method in the
current paper is still applicable to approach the modularity in the arithmetic situation.

5.3.2. Almost-self dual lattice
There is another lattice level structure at a finite place considered in [RSZ20], defined by an almost-
self dual lattice. The integral model is not smooth, but is explicitly described in [LTX+22]. We hope to
include this level structure in a future work. In fact, if we also use admissible 1-cycles, our approach
combined with a recent result of Z. Zhang [Zha21b, Theorem 14.6] is already applicable to prove the
analog of Theorem 4.4.21, after replacing normalized admissible extensions of special divisors by the
‘admissible projections’ of the Kudla-Rapoport divisors at these new places (provided that they can also
be suitably defined on our models). However, the difference between two extensions is not clear so far.

5.3.3. Faltings heights of Shimura varieties and Arithmetic Siegel-Weil formula
Following Kudla [Kud03, Kud04], we propose the arithmetic analog of the geometric Siegel Weil
formula (4.11).

Problem 5.3.1. Match 𝑐1 (L)𝑛 · 𝑧(𝑔, 𝜙)L,Kud
𝔞 with a linear combination of 𝐸 (0, 𝑔, 𝜙) and 𝐸 ′(0, 𝑔, 𝜙)

(possibly up to some error terms).

The modularity of 𝑧(𝑔, 𝜙)L,Kud
𝔞 helps to attack this problem as follows. The constant term of 𝑐1 (L)𝑛 ·

𝑧(𝑔, 𝜙)L,Kud
𝔞 is indeed the Faltings height ofX𝐾 itself, while the non-constant terms are given by Faltings

heights of Shimura subvarieties with the numbers in Definition 4.2.6. (Here, by the Faltings height of
X , we mean deg 𝑐1 (L)𝑛+1.) There is clearly an inductive scheme to compute the Faltings heights/attack
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arithmetic Siegel-Weil formula, by applying the modularity of the generating series. Moreover, we only
need to compute enough terms. This might enable us to avoid dealing with Shimura subvarieties of
general level structures from the inductive steps. We can also use 𝑧(𝑔, 𝜙)L𝔨,𝔞 to attack Problem 5.3.1,
since by a direct computation,

𝑐1 (L)𝑛 · 𝑧(𝑔, 𝜙)L,Kud
𝔞 = 𝑐1 (L)𝑛 · 𝑧(𝑔, 𝜙)L𝔨,𝔞 . (5.17)

For quaternionic Shimura curves, Faltings heights are computed in [KRY06] [Yua22]. For unitary
Shimura varieties, in the case 𝐹 = Q, the Faltings height of X𝐾Λ (for a different lattice Λ) was computed
in [BH21] using Borcherds’ theory. See [BH21] for other related results.

5.3.4. Arithmetic theta lifting and Gross-Zagier type formula
Consider the Petersson inner product between the modular generating series of special divisors on
the generic fiber and a cusp form f of G [Kud03, Kud04]. When 𝑛 = 1, it is cohomological trivial
and its Beilinson-Bloch height was studied in [Liu11a, Liu11b]. However, when 𝑛 > 1, the Picard
group of Sh(V)𝐾 is CM by [MR92], so that the inner product is 0 in most cases after cohomological
trivialization. Thus, it is necessary to consider arithmetic intersection pairing on an integral model
(without cohomological trivialization).

The arithmetic intersection pairing with our CM 1-cycle as in Theorem 5.2.5 is simply the Petersson
inner product between (5.9) and f. Such a pairing appeared in the work of Gross and Zagier [GZ86] and
leads to their celebrated formula. We hope to get a Gross-Zagier type formula. In the case 𝐹 = Q and
𝜙∞ = 1Λ (for a different Λ), a Gross-Zagier type formula was obtained in [BHY15] and [BHK+20b]. See
also [BY09]. For general F and test functions as in our case, a general theory of Shimura-type integrals
is to be developed.

6. Intersections

In this section, we prove the arithmetic mixed Siegel-Weil formula (Theorem 5.2.5). First, we prove
local analogs of the formula, under some regularity assumption which forces improper intersections
to disappear. Then, to prove Theorem 5.2.5, we use a global argument involving admissibility of our
arithmetic divisors and modularity on the generic fiber (more precisely, Lemma 4.3.6).

6.1. Proper intersections

In order to state the local analogs of the Arithmetic mixed Siegel-Weil formula (Proposition 6.1.4), we
need some preliminaries.

We use the CM cycles in 5.1, as well as the notations there – in particular, the orthogonal decompo-
sition V =W ⊕ 𝑉♯ (A𝐸 ).

Definition 6.1.1. For a finite place v of F, a Schwartz function onV(𝐸𝑣 ) isW𝑣 -regular if it is supported
outside the orthogonal complementW⊥𝑣 = 𝑉♯ (𝐸𝑣 ).

Let 𝜙 ∈ S (V) be a pure tensor such that 𝜙𝑣 = 1Λ𝑣 for every finite place v nonsplit in E. Let 𝐾 ∈ 𝐾Λ

such that 𝜙 is K-invariant.
We assume the following assumption throughout this subsection.

Assumption 6.1.2. There is a nonempty set R of places of F such that 𝜙𝑣 isW𝑣 -regular for 𝑣 ∈ 𝑅.

Since 𝜙𝑣 = 1Λ𝑣 for every finite place v nonsplit in E, R necessarily contains only places split in E.
As we have seen in the proof of Lemma 4.4.3, for a finite place v of E, there exists a finite unramified

extension 𝑁/𝐸𝑣 such that X𝐾,O𝑁 is (part of) a PEL moduli space, and the supersingular locus is thus
defined and obviously independent of the choice of N. Let 𝑡 ∈ 𝐹>0.
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Lemma 6.1.3. For 𝑔 ∈ 𝑃
(
A𝐹,𝑅

)
𝐺

(
A𝑅

𝐹

)
, the supports of the Zariski closure of 𝑍𝑡 (𝜔(𝑔)𝜙)zar and PW,𝐾

on X𝐾 only intersect on the supersingular loci at finite places of E nonsplit over F.

Proof. The regularity of 𝜙 at R is preserved by the action of 𝑃
(
A𝐹,𝑅

)
on 𝜙. By the regularity of 𝜔(𝑔)𝜙,

the lemma follows from the same proof as [KR14, Lemma 2.21]. Or one may reduce the lemma to
(the version over a general CM field of) [KR14, Lemma 2.21] as follows. Choose n vectors 𝑥1, . . . , 𝑥𝑛
spanning 𝑉♯. Then PW,𝐾 ,𝐸 ⊂ 𝑍 (𝑥1) ∩ . . . ∩ 𝑍 (𝑥𝑛). Since 𝑍𝑡 (𝜔(𝑔)𝜙) is a finite sum of 𝑍 (𝑥)’s with 𝑥
outside 𝑉♯ (A𝐸 ), [KR14, Lemma 2.21] applies. �

For 𝑘 ∈ 𝑈 (V∞∪𝑅), that is, 𝑘𝑣 = 1 for 𝑣 ∈ 𝑅. Then W𝑣 = (𝑘W)𝑣 and 𝜙𝑣 is (𝑘W)𝑣 -regular. By
Lemma 6.1.3, the intersection number

(
𝑍𝑡 (𝜔(𝑔)𝜙)zar · P𝑘−1W,𝐾

)
X𝐾,O𝐸𝑣

of the restrictions of the cycles
to X𝐾,O𝐸𝑣 is well defined as in (A.1).

Proposition 6.1.4. Recall the set ℜ𝔞𝔪 of finite places of F nonsplit in E, and ramified in E or over Q.
Let 𝑔 ∈ 𝑃

(
A𝐹,ℜ𝔞𝔪∪𝑅

)
𝐺

(
Aℜ𝔞𝔪∪𝑅

𝐹

)
. Let v be a place of F nonsplit in E and 𝑘 ∈ 𝑈 (V∞∪𝑅∪{𝑣 }). For

𝑣 ∉ ℜ𝔞𝔪 ∪∞, resp. 𝑣 ∈ ℜ𝔞𝔪, resp. 𝑣 ∈ ∞, we respectively have

2
(
𝑍𝑡 (𝜔(𝑔)𝜙)zar · P𝑘−1W,𝐾

)
X𝐾,O𝐸𝑣

log 𝑞𝐸𝑣 = 𝜃𝐸 ′𝑡 (0, 𝑔, 𝜔(𝑘)𝜙) (𝑣), (6.1)

2
(
𝑍𝑡 (𝜔(𝑔)𝜙)zar · P𝑘−1W,𝐾

)
X𝐾,O𝐸𝑣

log 𝑞𝐸𝑣 = 𝜃𝐸 ′𝑡 (0, 𝑔, 𝜔(𝑘)𝜙) (𝑣) − 𝜃𝐸
(
0, 𝑔, 𝜔(𝑘)𝜙𝑣 ⊗ 𝜙′𝑣

)
, (6.2)

2
∫(

P𝑘−1W,𝐾

)
𝐸𝑣

Gaut
𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣

= l̃im
𝑠→0

𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜔(𝑘)𝜙) (𝑣). (6.3)

We will prove Proposition 6.1.4 for 𝑘 = 1, in Proposition 6.1.6 (𝑣 ∉ ℜ𝔞𝔪 ∪ ∞), Proposition 6.1.7
and Proposition 6.1.9 (𝑣 ∈ ℜ𝔞𝔪), Proposition 6.1.11 (𝑣 ∈ ∞). The proof for the general k is the same,
except one needs to keep track of k. For simplicity, let

P = PW,𝐾 .

We prepare more notations for later computations. For a finite place v of F nonsplit in E, let 𝐸ur
𝑣

be the complete maximal unramified extension of 𝐸𝑣 . Let E be the unique formal O𝐹𝑣 -module of
relative height 2 and dimension 1 over Spec 𝐸ur

𝑣 /𝜛𝐸𝑣 . The endomorphism ring of E is the maximal
order of the unique division quaternion algebra B over 𝐹𝑣 . Fixing an embedding 𝜄 : 𝐸𝑣 ↩→ 𝐵 such
that 𝜄(O𝐸𝑣 ) is in the maximal order of B. Then E becomes a formal O𝐸𝑣 -module of relative height 1
and dimension 1, which we still donote by E. Let 𝜄 be 𝜄 precomposed with the nontrivial Gal(𝐸𝑣/𝐹𝑣 )-
conjugation. It produces another O𝐸𝑣 -module E. Fix an O𝐹𝑣 -linear principal polarization 𝜆E on E. Let
E and E be the canonical liftings of E and E respectively, as O𝐸𝑣 -modules. They are isomorphic as
formal O𝐹𝑣 -modules, and equipped with a unique O𝐹𝑣 -linear principal polarization 𝜆E lifting 𝜆E.

6.1.1. Finite places of F inert in E
For such a v, Λ𝑣 is self-dual.

Before we can compute the intersection number, we need to uniformize the integral model, CM cycle
and special divisors using Rapoport-Zink spaces.

For a nonnegative integer m, let N𝑚 be the unramified relative unitary Rapoport-Zink space of
signature (𝑚, 1) [KR11] [LZ21, 2.1] over Spf O𝐸ur

𝑣
. It is the deformation space of the polarized hermitian

O𝐸𝑣 -moduleX𝑚 := E×E𝑚 with the product polarization 𝜆𝑚. It is formally smooth of relative dimension
m. The space HomO𝐸𝑣 (E,X𝑚)Q carries a natural hermitian pairing

(𝑥, 𝑦) ↦→ 𝜆−1
E ◦ 𝑥

∨ ◦ 𝜆𝑚 ◦ 𝑦 ∈ HomO𝐸𝑣 (E,E)Q � 𝐸𝑣 . (6.4)

For 𝑚 = 𝑛, we let N = N𝑛. By [LZ21, 2.2], we have HomO𝐸𝑣 (E,X𝑛)Q � 𝑉 (𝐸𝑣 ). And 𝑈 (𝑉 (𝐸𝑣 ))
is isomorphic to the group of O𝐸𝑣 -linear self-quasi-isogenies of X𝑛 preserving 𝜆𝑛 [RSZ18, (4.3)].
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In particular, 𝑈 (𝑉 (𝐸𝑣 )) acts on N . For every 𝑥 ∈ 𝑉 (𝐸𝑣 ) − {0}, we have the Kudla-Rapoport divisor
Z (𝑥) on N [KR11] [LZ21, 2.3] that is the locus where x lifts to a quasi-isogeny. It is a (possibly empty)
relative Cartier divisor. See [KR11, Proposition 3.5], which is only stated for 𝐹𝑣 = Q𝑝 but holds in the
general case.

Let �X 𝑠𝑠
𝐾 ,O𝐸ur

𝑣

be the formal completion of X𝐾,O𝐸ur
𝑣

along the supersingular locus. Then we have the
following formal uniformization [LZ21, 13.1]:�X 𝑠𝑠

𝐾 ,O𝐸ur
𝑣

�𝑈 (𝑉)\(N ×𝑈 (V∞,𝑣 )/𝐾 𝑣 ). (6.5)

For 𝑥 ∈ 𝑉 (𝐸𝑣 ) − {0} and ℎ ∈ 𝑈 (V∞,𝑣 ), we have a relative cartier divisor [Z (𝑥), ℎ] of �X 𝑠𝑠
𝐾 ,O𝐸ur

𝑣

.
The Rapoport-Zink space N0 is naturally a closed formal subscheme of N by adding canonical

liftings; that is, the morphism N0 → N is given by 𝑋 ↦→ 𝑋 × E𝑛. The subspace

HomO𝐸𝑣 (E,E)Q ⊂ HomO𝐸𝑣 (E,X𝑛)Q � 𝑉 (𝐸𝑣 )

becomes the subspace 𝑊 (𝐸𝑣 ) of 𝑉 (𝐸𝑣 ), and the subgroup 𝑈 (𝑊 (𝐸𝑣 )) stabilizes N0. We have

PO𝐸ur
𝑣
=

1
𝑑W,𝐾

𝑈 (𝑊)\
(
N0 ×𝑈 (W∞,𝑣 )/𝐾 𝑣

W

)
, (6.6)

where 𝑑W,𝐾 is the degree of the fundamental cycle of Sh(W)𝐾W . See Definition 5.1.3), and the right-
hand side is defined using the formal uniformization (6.5) of �X 𝑠𝑠

𝐾 ,O𝐸ur
𝑣

with N0 understood as a 1-cycle
on N .

Recall that 𝑉 𝑡 is the subset of 𝑉 (𝐸) of elements of norm t.

Proposition 6.1.5. Under the formal uniformization (6.5) of �X 𝑠𝑠
𝐾 ,O𝐸ur

𝑣

, for 𝑔 ∈ 𝐺 (A𝑣
𝐹 ), we have

𝑍𝑡 (𝜔(𝑔)𝜙)zar | �X 𝑠𝑠
𝐾,O𝐸ur

𝑣

=
∑

𝑥∈𝑈 (𝑉 )\𝑉 𝑡

∑
ℎ∈𝑈 𝑣

𝑥 \𝑈 (V∞,𝑣 )/𝐾 𝑣

𝜔(𝑔)𝜙𝑣 (ℎ−1𝑥) [Z (𝑥), ℎ] . (6.7)

Proof. This follows from [LL21, (8.3)] and the flatness of Z (𝑥). �

Let (Z (𝑥) ·N0)N be the Euler-Poincaré characteristic of the derived tensor product OZ (𝑥) ⊗L
ON0 . Since ℎ ∈ 𝑈 (𝑊 (𝐸𝑣 )) stabilizes N0, (Z (𝑥) ·N0)N = (Z (ℎ𝑥) ·N0)N . By Lemma 6.1.3, (6.6),
Proposition 6.1.5 and a direct computation, for 𝑔 ∈ 𝑃(A𝐹,𝑅∪{𝑣 })𝐺 (A𝑅∪{𝑣 }

𝐹 ),

(𝑍𝑡 (𝜔(𝑔)𝜙)zar · P)X𝐾,O𝐸𝑣 =
1

Vol([𝑈 (𝑊)])

∫
ℎ∈[𝑈 (𝑊 ) ]

∑
𝑥∈𝑉 𝑡−𝑉 ♯

(
Z (ℎ−1

𝑣 𝑥) ·N0

)
N
𝜔(𝑔)𝜙𝑣 (ℎ−1𝑥)𝑑ℎ

(6.8)

Proposition 6.1.6. If v is unramified over Q, for 𝑔 ∈ 𝑃(A𝐹,𝑅)𝐺 (A𝑅
𝐹 ) and 𝑘 = 1, (6.1) holds.

Proof. First, we compute (Z (𝑥) ·N0)N (i.e., we need to compute the length of the locus on N0 to
which x lifts). Recall that Λ♯

𝑣 ⊂ V(𝐸𝑣 ) is the orthogonal complement of O𝐸𝑣 𝑒
(0)
𝑣 in Λ𝑣 . Under the

isomorphism HomO𝐸𝑣 (E,X𝑛)Q � 𝑉 (𝐸𝑣 ), the image of HomO𝐸𝑣 (E,E
𝑛) is Λ♯

𝑣 . Then for 𝑥 = (𝑥1, 𝑥2) ∈
𝑊 (𝐸𝑣 ) ⊕ 𝑉♯ (𝐸𝑣 ) with 𝑥1 ≠ 0, if it lifts, then 𝑥2 ∈ Λ♯

𝑣 . Moreover, by Gross’ result on canonical lifting
[Gro86, Proposition3.3], we have

(Z (𝑥) ·N0)N =
𝑣(𝑞(𝑥1)) + 1

2
1O𝐹𝑣 (𝑞(𝑥1))1Λ♯𝑣 (𝑥2). (6.9)
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Second, if 𝑔𝑣 = 1, express the left-hand side of (6.1) by (6.8) and (6.9). Compare it with the expression
of the right-hand side of (6.1) given by (3.22). By Lemma 5.2.1, (6.1) follows.

Finally, we reduce the general case to the case 𝑔𝑣 = 1 in two reduction steps. (I) We claim the
following: replacing 𝑔𝑣 by 𝑔𝑣𝑛(𝑏𝑣 ) for 𝑏𝑣 ∈ 𝐹𝑣 or by 𝑔𝑣 𝑘𝑣 for 𝑘𝑣 ∈ 𝐾max

𝑣 (see 2.5), both sides of (6.1)
are multiplied by the same constant. Indeed, for the left-hand side of (6.1), we directly use the definition
of the Weil representation. For the right-hand side, besides the definition, we further need (3.2) and
Lemma 3.2.2. (II), By Corollary 3.2.3 and Lemma 4.1.3, we can replace g by 𝑚(𝑎)𝑔 for some 𝑎 ∈ 𝐸×.
By the Iwasawa decomposition, the fact that 𝐸×𝑣 = 𝐸×O×𝐸𝑣 , and the claim in the first reduction step, we
may assume that 𝑔𝑣 = 1. The proposition is proved. �

Proposition 6.1.7. If v is ramified over Q, for 𝑔 ∈ 𝑃(A𝐹,𝑅∪{𝑣 })𝐺 (A𝑅∪{𝑣 }
𝐹 ), (6.2) holds.

Proof. The proof is the same with the proof of Proposition 6.1.6 with the following exceptions:
◦ Lemma 5.2.1 should be replaced by Lemma 5.2.2;
◦ in the claim in the reduction step (I), remove ‘or by 𝑔𝑣 𝑘𝑣 for 𝑘𝑣 ∈ 𝐾max

𝑣 ’;
◦ in the reduction step (II), ‘Corollary 3.2.3’ should be replaced by ‘Corollary 3.2.3 and that

𝜃𝐸
(
0, 𝑚(𝑎)𝑔, 𝜙𝑣 ⊗ 𝜙′𝑣

)
= 𝜃𝐸

(
0, 𝑔, 𝜙𝑣 ⊗ 𝜙′𝑣

)
for 𝑎 ∈ 𝐸×’. �

6.1.2. Finite places of F ramified in E
For such a v, Λ𝑣 is a 𝜋𝑣 -modular or almost 𝜋𝑣 -modular lattice. This case is more complicated.

We still need formal uniformization using Rapoport-Zink spaces. For a nonnegative integer m, let
N𝑚 be the exotic smooth relative unitary Rapoport-Zink space of signature (𝑚, 1) over Spf O𝐸ur

𝑣
. See

[RSZ18, Section 6,7], [RSZ17, 3.5] and [LL22, 2.1]. It will also be specified below. It is formally
smooth over Spf O𝐸ur

𝑣
of relative dimension m. (Note that the case 𝑚 = 0 is not covered in either

[RSZ17] or [LL22], but is specifically indicated in [RSZ18, Example 7.2].) Let N = N𝑛. We will use
N for the formal uniformization of X𝐾 . The analog of the formal uniformization (6.6) of P using N0
is more subtle: we will use N1 to define morphisms N0 → N1 → N , which will lead us to the formal
uniformization (6.11) of P .
Remark 6.1.8. The reason for this subtlety might be explained as follows. Recall that the construction
of P requires an additional rank 2 sub-lattice Λ𝑣,1 as in 5.1.3 at each finite place, which is a direct
summand of Λ𝑣 . And 𝐸𝑣Λ𝑣,1 contains a distinguished vector 𝑒 (0)𝑣 of unit norm. One might consider
O𝐸𝑣 𝑒

(0)
𝑣 ⊂ 𝐸𝑣Λ𝑣,1 and Λ𝑣,1 ⊂ Λ𝑣 as being parallel to the morphisms N0 → N1 and N1 → N . Note

that O𝐸𝑣 𝑒
(0)
𝑣 is not contained in Λ𝑣,1 ( or Λ𝑣 ). This makes it nontrivial to define a morphism N0 → N1

or N0 → N . See also [RSZ18, Remark 12.3]. The morphism N0 → N1 we use is given by [RSZ18,
Section 12].

We have 6 steps before the main result Proposition 6.1.9 of this 6.1.2.
First, we specify N1, N and N1 → N . Assume that 𝜛2

𝐸𝑣
= 𝜛𝐹𝑣 . The framing object X1 for the

deformation space N1 is the Serre tensor O𝐸𝑣 ⊗O𝐹𝑣 E, which is the conjugate of the framing object
[RSZ17, (3.5)], with the polarization conjugate to the one in [RSZ17, (3.6)]. In the case that n is odd
(the case of Lemma 5.1.1 (1)), the framing object for N is X𝑛 := X1 × (E2) (𝑛−1)/2 with the product
polarization 𝜆𝑛, where the polarization on E2 is given by

𝜆 =

[
0 𝜆E𝜄(𝜛𝐸𝑣 )

−𝜆E𝜄(𝜛𝐸𝑣 ) 0

]
. (6.10)

In the same way, we have a polarization 𝜆 on E2 using 𝜆E . This gives us a morphism N1 → N by
𝑋 ↦→ 𝑋 × (E2) (𝑛−1)/2 with the polarization 𝜆 on each of E2. In the case that n is even (the case of
Lemma 5.1.1 (2)), the framing object for N is X𝑛 := X1 × (E2) (𝑛−2)/2 × E where the polarization 𝜆′

E

on the last component is a multiple of 𝜆E so that the induced hermitian pairing on Hom(E,E)Q (defined
as in (6.4)) has determinant 𝑞(𝑒𝑣 ) as in Lemma 5.1.1 (2). This gives us a morphism N1 → N by
𝑋 ↦→ 𝑋 × (E2) (𝑛−1)/2 × E with the unique lifting of 𝜆′

E
on the last component E .
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Second, the uniformizations of �X 𝑠𝑠
𝐾 ,O𝐸ur

𝑣

and 𝑍𝑡 (𝜙)zar are as follows. By [RSZ17, (3.10)],
𝑉 (𝐸𝑣 ) � HomO𝐸𝑣 (E,X𝑛)Q and𝑈 (𝑉 (𝐸𝑣 )) is isomorphic to the group ofO𝐸𝑣 -linear self-quasi-isogenies
of X𝑛 preserving 𝜆𝑛. In particular, 𝑈 (𝑉) acts on N . The analog of the formal uniformization (6.5) of�X 𝑠𝑠

𝐾 ,O𝐸ur
𝑣

holds by [LL22, (4.9)]. For every 𝑥 ∈ 𝑉 (𝐸𝑣 ) − {0}, we have the Kudla-Rapoport divisor
Z (𝑥) on N , which is a (possibly empty) relative Cartier divisor [LL22, Lemma 2.41]. The analog of
Proposition 6.1.5 holds by [LL22, Proposition 4.29] combined with the argument in the proof of
Proposition 6.1.5. Though [LL22] only uses even dimensional hermitian spaces, the specific results that
we cite hold in the general case by the same proof.

Third, we recall the morphisms N0 → N1 defined in [RSZ18, Section 12]. This is rather complicated
for general N2𝑚 → N2𝑚+1. Fortunately, in our case, we have the following convenient description.
By [RSZ18, Example 12.2], N1 is isomorphic to the disjoint union of two copies of the Lubin-Tate
deformation space for the formal O𝐹𝑣 -module E. We write N1 = N +1

∐N −1 . Recall that B is the unique
division quaternion algebra over 𝐹𝑣 , and its maximal order O𝐵 is the endomorphism ring of E. For
𝑐 ∈ 𝐵×, we have two closed embeddings (moduli of the canonical lifting) N0 → N ±1 associated to
𝑐𝜄𝑐−1 : 𝐸𝑣 ↩→ 𝐵. Let N 𝑐,±

0 be the union of the images.
Fourth, we need to specify c so that we can use N 𝑐,±

0 to uniformize P . See (6.11) below. Let 𝑒 (1)𝑣 be
as in 5.1.4. Then

𝐵 = HomO𝐹𝑣 (E,E)Q � HomO𝐸𝑣 (E,X1)Q �𝑊 (𝐸𝑣 ) ⊕ 𝐸𝑣𝑒
(1)
𝑣 ,

where the middle is the adjunction isomorphism, and the last isomorphism is compatible with
HomO𝐸𝑣 (E,X𝑛)Q � 𝑉 (𝐸𝑣 ). And the hermitian form on 𝑊 (𝐸𝑣 ) ⊕ 𝐸𝑣𝑒

(1)
𝑣 corresponds to −2𝜛𝐹𝑣Nm𝐵

(see the proof of [RSZ17, Lemma 3.5]), where Nm𝐵 is the reduced norm on B. Let c correspond to
𝜛𝐸𝑣 𝑒

(1)
𝑣 . Since 𝑞

(
𝑒 (1)𝑣

)
∈ O×𝐹𝑣 (see 5.1.2), 𝑐 ∈ O×𝐵 (note that 𝑣 � 2 here).

Fifth, we uniformize P . By Lemma 5.1.6, we have another description of P via the diagram (5.5) of
morphisms of Shimura varieties. See also Remark 5.1.7. Comparing it with the moduli interpretation
of N0 → N1 in [RSZ18, Proposition 12.1], we have the following analog of (6.6):

PO𝐸ur
𝑣
=

1
2𝑑

𝐾
(0)
W

𝑈 (𝑊)\
(
N 𝑐,±

0,O𝐸ur
𝑣

×𝑈 (W∞,𝑣 )/𝐾 𝑣
W

)
, (6.11)

where 𝑑
𝐾
(0)
W

is the degree of the fundamental cycle of Sh(W)
𝐾
(0)
W

. See (5.5). Here, the extra factor 2
comes from Lemma 5.1.5.

Finally, we compute
(
Z (𝑥) ·N 𝑐,±

0

)
N

. Since 𝑐 ∈ O×𝐵, by [RSZ17, Lemma 6.5, Proposition 7.1],

N 𝑐,±
0 = Y

(
𝜛𝐸𝑣 𝑒

(1)
𝑣

)
. (6.12)

Here, Y
(
𝜛𝐸𝑣 𝑒

(1)
𝑣

)
is the Kudla-Rapoport divisor on N1, where 𝜛𝐸𝑣 𝑒

(1)
𝑣 lifts. Let X⊥ be the direct

complement of X1 in X𝑛, that is, X⊥ = (E2) (𝑛−1)/2 if n is odd, and X⊥ = (E2) (𝑛−2)/2 × E is n is even.
Let Λ⊥𝑣,1 be as in 5.1.4. By Lemma 5.1.1 and (6.10),

HomO𝐸𝑣 (E,X
⊥) ⊂ HomO𝐸𝑣 (E,X𝑛)Q � 𝑉 (𝐸𝑣 )

corresponds to Λ⊥𝑣 . Then (similar to the deduction of (6.9)) by (6.12) and Gross’ result on canonical
lifting [Gro86, Proposition 3.3], we have(

Z (𝑥) ·N 𝑐,±
0

)
N

= 2(𝑣(𝑞(𝑥1)) + 1)1O𝐹𝑣 (𝑞(𝑥1))1𝜛𝐸𝑣O𝐸𝑣 𝑒
(1)
𝑣 ⊕Λ⊥𝑣

(𝑥2) (6.13)
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for 𝑥 = (𝑥1, 𝑥2) ∈ 𝑊 (𝐸𝑣 ) ⊕ 𝑉♯ (𝐸𝑣 ) with 𝑥1 ≠ 0. Here, the extra factor 2 comes from that N 𝑐,±
0 has 2

components.

Proposition 6.1.9. Assume that 𝑔 ∈ 𝑃(A𝐹,𝑅∪{𝑣 })𝐺 (A𝑅∪{𝑣 }
𝐹 ) and 𝑘 = 1. Then (6.2) holds.

Proof. As an analog of (6.8), we have

(𝑍𝑡 (𝜔(𝑔)𝜙)zar · P)X𝐾,O𝐸𝑣 =
1

2Vol([𝑈 (𝑊)])

∫
ℎ∈[𝑈 (𝑊 ) ]

∑
𝑥∈𝑉 𝑡

(
Z (ℎ−1

𝑣 𝑥) ·N0

)
N
𝜔(𝑔)𝜙𝑣 (ℎ−1𝑥)𝑑ℎ.

The rest of the proof is the same as the proof of Proposition 6.1.7, after replacing Lemma 5.2.2 by
Lemma 5.2.3. �

6.1.3. Infinite places of F
Let 𝑣 ∈ ∞. Under the complex uniformization (4.4) of Sh(V)𝐾,𝐸𝑣 ,

P𝐸𝑣 =
1

𝑑W,𝐾
𝑈 (𝑊)\({𝑜} ×𝑈 (W∞)/𝐾W),

where 𝑜 := [0, ..., 0] ∈ B𝑛, and 𝑑W,𝐾 is the degree of the fundamental cycle of Sh(W)𝐾W . For
𝑔 ∈ 𝑃(A𝐹,𝑅)𝐺 (A𝑅

𝐹 ), by the definition of G𝑍𝑡 ( ·)𝐸𝑣 ,𝑠 (above (4.10)), a direct computation gives∫
P𝐸𝑣

G𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣 ,𝑠 =
𝑊𝔴

𝑣,𝑡 (𝑔𝑣 )
Vol([𝑈 (𝑊)])

∫
[𝑈 (𝑊 ) ]

∑
𝑥∈𝑉 𝑡−𝑉 ♯

𝐺ℎ−1
𝑣 𝑥,𝑠 (𝑜)𝜔(𝑔𝑣 )𝜙𝑣 (ℎ𝑣,−1𝑥)𝑑ℎ. (6.14)

Now we compare the inner sums in (3.33) and (6.14). Recall the involved functions 𝑃𝑠 and 𝑄𝑠 . See
(3.32) and (4.7), respectively. From (3.32), we have

𝑃𝑠 (𝑢) =
1

(𝑠 + 𝑛)𝑢𝑠+𝑛 𝐹

(
𝑠 + 𝑛, 𝑠 + 𝑛, 𝑠 + 𝑛 + 1,

−1
𝑢

)
,

where F is the hypergeometric function. In particular,

𝑃𝑠 (𝑢) =
1

(𝑠 + 𝑛)𝑢𝑠+𝑛 +𝑂
(

1
𝑢𝑠+𝑛+1

)
, 𝑢 →∞, (6.15)

where the constant for 𝑂 (·) is uniform near 𝑠 = 0. We also have

𝑃0 (𝑢) = log(1 + 𝑢) − log 𝑢 −
𝑛−1∑
𝑖=1

1
𝑖(1 + 𝑢)𝑖 , 𝑢 > 0. (6.16)

From (4.7), we have

𝑄𝑠 (1 + 𝑢) = Γ(𝑠 + 𝑛)Γ(𝑠 + 1)
Γ(2𝑠 + 𝑛 + 1)𝑢𝑠+𝑛 +𝑂

(
1

𝑢𝑠+𝑛+1

)
, 𝑢 →∞, (6.17)

where the constant for 𝑂 (·) is uniform near 𝑠 = 0. We also have

𝑄0 (1 + 𝑢) = log(1 + 𝑢) − log 𝑢 −
𝑛−1∑
𝑖=1

1
𝑖(1 + 𝑢)𝑖 , 𝑢 > 0. (6.18)
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Lemma 6.1.10. For 𝑠0 > −1, on {𝑠 ∈ C, Re𝑠 > 𝑠0}, the sum∑
𝑥∈𝑉 𝑡−𝑉 ♯

((
Γ(𝑠 + 𝑛 + 1)Γ(𝑠 + 1)

Γ(2𝑠 + 𝑛 + 1)

)−1
𝐺ℎ−1

𝑣 𝑥,𝑠 (𝑜) −
(
Γ(𝑠 + 𝑛)
Γ(𝑛) (4𝜋)𝑠

)−1
𝑊𝜃𝑠 (ℎ−1

𝑣 𝑥)
)
𝜔(𝑔𝑣 )𝜙𝑣

(
ℎ𝑣,−1𝑥

)
converges uniformly and absolutely. And its value at 𝑠 = 0 is 0.

Proof. We compare the sum in the lemma with the sum in (6.14), which is absolutely convergent by
Lemma 4.2.1. By (6.15) and (6.17), the sum in the lemma for s is dominated by a multiple of the sum in
(6.14) with s replaced by 𝑠 + 1. The convergence in the lemma follows. By (6.16) and (6.18), the value
at 𝑠 = 0 is 0. �

By Theorem 4.2.2, the integration on the right-hand side of (6.14) admits a meromorphic continuation
to s around 0 with a simple pole at 𝑠 = 0.

Proof of Lemma 3.3.12. For this moment, we consider a general 𝜙 ∈ S (V) (without any regularity
assumption). The above discussion still holds replacing 𝑍𝑡 (𝜙) by

𝑍𝑡 (𝜙) −
∑

𝑥∈𝐾\𝐾𝑉 ♯ , 𝑞 (𝑥)=𝑡

𝜙(𝑥)𝑍 (𝑥).

Then Lemma 3.3.12 follows from (6.14) and the first part of Lemma 6.1.10. �

Recall the definition of Gaut
𝑍𝑡 ( ·)𝐸𝑣

in (4.10). Then

2
∫
P𝐸𝑣

Gaut
𝑍𝑡 (𝜔 (𝑔)𝜙)𝐸𝑣

= 2l̃im
𝑠→0

(
Γ(𝑠 + 𝑛 + 1)Γ(𝑠 + 1)

Γ(2𝑠 + 𝑛 + 1)

)−1 ∫
P𝐸𝑣

G𝑍𝑡 (𝜙)𝐸𝑣 ,𝑠

= l̃im
𝑠→0

(
Γ(𝑠 + 𝑛)
Γ(𝑛) (4𝜋)𝑠

)−1
𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣) = l̃im

𝑠→0
𝜃𝐸 ′𝑡 ,𝑠 (0, 𝑔, 𝜙) (𝑣),

where both multipliers (·)−1 go to 1 as 𝑠 → 0 (this gives the first and third ‘=’), and the second ‘=’
follows from Lemma 6.1.10. Thus, we have proved the following proposition.

Proposition 6.1.11. For 𝑔 ∈ 𝑃(A𝐹,𝑅)𝐺 (A𝑅
𝐹 ), (6.3) holds for v.

6.2. Improper intersections

In this subsection, we prove the arithmetic mixed Siegel-Weil formula (Theorem 5.2.5). The proof starts
in 6.2.1. Before that, let us discuss the strategy.

Lemma 6.2.1. Let 𝑌 = 𝑋 ⊕ 𝑋 ′ be the orthogonal direct sum of two non-degenerate quadratic spaces
over a non-archimedean local field of characteristic ≠ 2. Let Ŝ (𝑌 − 𝑋 ′)

Q
be the space of the Fourier

transforms of functions in the space S (𝑌 − 𝑋 ′)
Q

of Q-valued Schwartz functions on Y supported on
𝑌 − 𝑋 ′ (the Fourier transforms are clearly also Q-valued). Then

S (𝑌 )
Q
= S (𝑌 − 𝑋 ′)

Q
+ Ŝ (𝑌 − 𝑋 ′)

Q
.

Proof. Since Fourier transform respects orthogonal direct sum, one may assume that 𝑋 ′ = {0}. Then
the lemma is well known and also easy to check directly. �

We will use the following notation. For a finite set 𝑆 of finite places of F, let

Q log 𝑆 := Q{log 𝑝 : 𝑣 |𝑝 for some 𝑣 ∈ 𝑆} ⊂ C. (6.19)
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Table 1.

CM cycle

W W′

Regularity W L
W′ B L′
No C

The table displays the modQ log𝑆-version of Theorem 5.2.5 under
different conditions. The second row indicates that we consider the
CM cycle associated toW orW′. The second column indicates that
we impose the regularity assumption on 𝜙 associated toW orW′,
or no regularity assumption. Then a cell indexed by them indicates
the modQ log𝑆-version of Theorem 5.2.5 for the corresponding
CM cycle under the corresponding regularity assumption on 𝜙.

Table 2.

CM cycle

W W′ Difference

Regularity W L
W′ L′+P/W′ ⇒ B L′ P/W′
No C P

The main difficulty in proving Theorem 5.2.5 is from improper-intersections. However, if we choose
a Q-valued pure tensor 𝜙 that isW𝑣 -regular at some places v in S, we can prove a modQ log 𝑆-version
of Theorem 5.2.5 for 𝜙, see Lemma 6.2.3. Note that both the CM cycle and the regularity assumption
are associated to W. The same result holds if we replace W by some W′ (and use the corresponding
CM cycle and regularity assumption). Accordingly, we make Table 1.

Lemma 6.2.3 gives the cell L of Table 1. ReplacingW byW′, we get L′.
We want to arrive at the cell C (proved in Corollary 6.2.9), the modQ log 𝑆-version of Theorem 5.2.5

for the general 𝜙. We use the cell B the bridge from L to C. The relation between this cell B and L′ is
the ‘switch CM cycles’ indicated in the last paragraph above 1.3. The relation between B and L could
be considered as ‘switch regularity assumptions’.

Instead of considering this cell B directly, we consider the generating series of arithmetic intersection
numbers with the difference of the two CM cycles, which is modular by Lemma 4.3.6. Then using
Lemma 6.2.1, we prove the modQ log 𝑆-version of Theorem 5.2.5 for the general 𝜙, after replacing the
CM cycle by the difference. See Proposition 6.2.5. This gives P of Table 2. Then the combination of L′
and P/W′ proves the cell B. Here, P/W′ is the special case of P under the extra regularity assumption
associated toW′.

We need to remove ‘(modQ log 𝑆)’. We will use the following theorem. It is a corollary of Baker’s
celebrated theorem on transcendence of logarithms of algebraic numbers (see [Wal03, Theorem 1.1]),
and the fact that logarithms of prime numbers are Q-linearly independent.

Theorem 6.2.2. Let 𝑝1, . . . , 𝑝𝑚 be distinct prime numbers, then log 𝑝1, . . . , log 𝑝𝑚 are Q-linearly
independent.

6.2.1. Set-up
We need the following convenient notation. For a set T of finite places of F, let

G𝑇 = 𝑃
(
A𝐹,ℜ𝔞𝔪∪𝑇

)
𝐺

(
Aℜ𝔞𝔪∪𝑇∪∞

𝐹

)
.

For example, G∅ = 𝐺
(
Aℜ𝔞𝔪∪∞

𝐹

)
𝑃

(
A𝐹,ℜ𝔞𝔪

)
is the group appearing in Theorem 5.2.5.
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Below, let 𝜙 ∈ S (V)𝐾Λ be a pure tensor such that 𝜙∞ is Q-valued and 𝜙𝑣 = 1Λ𝑣 for every finite place
v of F nonsplit in E. Let 𝐾 ∈ 𝐾Λ stabilize 𝜙. Let S be a set of finite places of F, and 𝐾 ′ = 𝐾𝑆𝐾

𝑆
Λ. Let

PW = 𝜋∗
𝐾 ,𝐾′

PW,𝐾 ′ .

Let 𝑓W = 𝑓 𝐾
W,𝐾 ′ be defined as in (5.9). We remind the reader that we will use other incoherent hermitian

spacesW′ over A𝐸 of dimension 1. These notations apply toW′ in the same way.
Let 𝑡 ∈ 𝐹>0. Our goal is to prove that for 𝑔 ∈ G∅ and a suitable set S of finite places of F,

2𝑧𝑡 (𝑔, 𝜙∞)L,aut
𝔢 · PWmodQ log 𝑆 = 𝑓∞W,𝑡 (𝑔)modQ log 𝑆. (6.20)

We also introduce an equation equivalent to (6.20), and both will play roles in the proof of
Theorem 5.2.5. The 𝜓𝑡 -Whittaker function of the right-hand side of (5.9) (which is the definition of 𝑓W),
coincides with the right-hand side of (3.31) up to the last term. Comparing the definition of 𝑧𝑡 (𝑔, 𝜙)L,aut

𝔢
with the left-hand side of (3.31), (6.20) is equivalent to the following equation:

2[𝑍𝑡 (𝜔(𝑔)𝜙)L,aut] · PW
𝑊𝔴
∞,𝑡 (1)

modQ log 𝑆 =∑
𝑘∈𝑈 (W)\𝐾 ′/𝐾

(
−
𝜃𝐸 ′𝑡 ,qhol (0, 𝑔, 𝜔(𝑘)𝜙)

𝑊𝔴
∞,𝑡 (1)

−
∑

𝑣 ∈ℜ𝔞𝔪

𝜃𝐸 𝑡
(
0, 𝑔, 𝜔(𝑘)𝜙𝑣 ⊗ 𝜙′𝑣

)
𝑊𝔴
∞,𝑡 (1)

)
modQ log 𝑆.

(6.21)

6.2.2. Regular test functions
We use Assumption 6.1.2 on regularity here.

Lemma 6.2.3. Assume that S contains a nonempty subset R such that 𝜙𝑣 isW𝑣 -regular for 𝑣 ∈ 𝑅 (i.e.,
Assumption 6.1.2 holds). Then for 𝑔 ∈ G𝑅, (6.20) holds. Equivalently, (6.21) holds.

Remark 6.2.4. The statement in Lemma 6.2.3 becomes more transparent if 𝑆 = 𝑅. However, we need
the flexibility to vary such R in S later.

Proof. Recall (5.4),

𝜋∗
𝐾 ,𝐾′

PW,𝐾 ′ =
∑

𝑘∈(𝑈 (W)∩𝐾 ′)\𝐾 ′/𝐾

𝑑𝑘−1W,𝐾

𝑑W,𝐾 ′
P𝑘−1W,𝐾 .

Here, we choose k such that 𝑘𝑣 = 1 for 𝑣 ∈ 𝑆 or nonsplit in E. (This is possible since 𝐾 ′ = 𝐾𝑆𝐾
𝑆
Λ

and 𝐾𝑣 = 𝐾Λ,𝑣 for v nonsplit in E.) Then Assumption 6.1.2 still holds with W replaced by 𝑘−1W. So
by Lemma 6.1.3, 𝑍𝑡 (𝜔(𝑔)𝜙∞) and P𝑘−1W,𝐾 do not meet on the generic fiber. Then by Lemma 4.4.6,
we can apply Corollary A.2.6 at finite places 𝑣 ∉ 𝑆 (nothing happens if 𝐾𝑣 = 𝐾Λ,𝑣 ). Then we have

[𝑍𝑡 (𝜔(𝑔)𝜙∞)L,aut] · PWmodQ log 𝑆 =�����
∑

𝑣∉𝑆∪∞,
nonsplit in 𝐸

(
𝑍𝑡 (𝜔(𝑔)𝜙∞)zar · P𝑘−1W,𝐾

)
X𝐾,O𝐸𝑣

log 𝑞𝐸𝑣 +
∑
𝑣 ∈∞

∫(
P𝑘−1W,𝐾

)
𝐸𝑣

Gaut
𝑍𝑡 (𝜔 (𝑔)𝜙∞)𝐸𝑣

����� modQ log 𝑆.

Comparing this equation with (3.35), (6.21) is implied by Proposition 6.1.4. �
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6.2.3. CM cycles of degree 0
Let W′ be another incoherent hermitian subspace of W and PW′ the CM cycle defined accordingly
as in 5.1. Since the automorphic Green function is admissible and PW,𝐸 − PW′,𝐸 has degree 0, by
Lemma 4.3.6,

𝑧(·, 𝜙)L,aut
𝔢,𝑎 · (PW − PW′ ) ∈ Ahol(𝐺,𝔴). (6.22)

Moreover, (6.22) is independent of the choice of a. We abbreviate 𝑧(𝑔, 𝜙)L𝔢,𝑎 to 𝑧(𝑔, 𝜙)L𝔢 . The 0-th Fourier
coefficient of (6.22) is 0. Indeed, by Lemma 4.4.12, the action of 𝐾Λ on Ĉh

1
L,C (X̃ ) fixes 𝑐1 (L

∨
𝐾 ). The

vanishing of the 0-th Fourier coefficient follows from Lemma 5.1.4.

Proposition 6.2.5. Assume that the cardinality of S is at least 2. Given 𝜙 as in 6.2.1, if 𝐾𝑆 is small
enough (depending on 𝜙𝑆), then for all 𝑔 ∈ 𝐺 (A∞𝐹 ),

2𝑧𝑡 (𝑔, 𝜙∞)L,aut
𝔢 · (PW − PW′ )modQ log 𝑆 =

(
𝑓∞W,𝑡 (𝑔) − 𝑓∞W′,𝑡 (𝑔)

)
modQ log 𝑆. (6.23)

Proof. For 𝐺der = 𝑆𝑈 (1, 1), 𝐺 (𝐹𝑣 ) = 𝐺der (𝐹𝑣 )𝐾max
𝑣 . By Lemma 3.3.8, it is enough to prove (6.23) for

𝑔 ∈ 𝐺der (A𝐹 ).
We need a lemma whose statement requires some more notations. Since 𝐺der � SL2,𝐹 , by the

q-expansion principle for SL2,𝐹 [Cha90], we have

Ahol(𝐺der,𝔴) = Ahol(𝐺der,𝔴)
Q
⊗
Q
C.

Here, Ahol(𝐺der,𝔴)
Q

is as in 2.7 with G replaced by 𝐺der, and 𝔴 is understood as the restriction of 𝔴
to 𝐺der (𝐹∞) ∩ 𝐾max

𝑣 for 𝑣 ∈ ∞. Thus, we have Fourier coefficients as in 2.7. For 𝑓 ∈ Ahol(𝐺der,𝔴), let
[ 𝑓 ] be its image in Ahol(𝐺der,𝔴)

Q
⊗
Q
C/Q log 𝑆. Then the C/Q log 𝑆-valued locally constant function

𝑓∞𝑡 modQ log 𝑆 on 𝐺der (A∞𝐹 ) coincides with the t-th Fourier coefficient of [ 𝑓 ].

Lemma 6.2.6. Assume that 𝜙𝑅 is W𝑅-regular, where 𝑅 ⊂ 𝑆 consists of a single element, and 𝜙𝑅′ is
W′𝑅′-regular, where 𝑅′ ⊂ 𝑆\𝑅 consists of a single element. Then we have the following equality in
Ahol(𝐺der,𝔴)

Q
⊗
Q
C/Q log 𝑆 after restriction from G to 𝐺der:[

2𝑧(·, 𝜙)L,aut
𝔢 · (PW − PW′ )

]
= [ 𝑓W − 𝑓W′ ] . (6.24)

Proof. Consider the difference

𝑓 = 2𝑧(·, 𝜙)L,aut
𝔢 · (PW − PW′ ) − ( 𝑓W − 𝑓W′ ) ∈ Ahol(𝐺,𝔴)

of the two sides of (6.24), before passing to Ahol(𝐺der,𝔴)
Q
⊗
Q
C/Q log 𝑆. By the cuspidality of (6.22)

and Lemma 3.3.9 (3), the 0-th Fourier coefficient 𝑓∞0 (𝑔) = 0 for 𝑔 ∈ G{𝑣1 ,𝑣2 } . Write

[ 𝑓 |𝐺der (A𝐹 ) ] =
∑
𝑖

𝑓𝑖 ⊗ 𝑎𝑖 (6.25)

as a finite sum, where 𝑓𝑖 ∈ Ahol(𝐺der,𝔴)
Q

and 𝑎𝑖 ∈ C/Q log 𝑆 are Q-linearly independent. Then
for 𝑡 ∈ 𝐹>0 ∪ {0}, the t-th Fourier coefficient of (6.25) is

∑
𝑖 𝑓∞𝑖,𝑡𝑎𝑖 . For 𝑔 ∈ G𝑅∪𝑅′ ∩ 𝐺der (A𝐹 ),∑

𝑖 𝑓∞𝑖,𝑡 (𝑔)𝑎𝑖 = 0 for 𝑡 ∈ 𝐹>0 by Lemma 6.2.3 (applied to W,W′ respectively), and also for 𝑡 = 0 by
the above discussion for the constant term. Thus, 𝑓∞𝑖,𝑡 (𝑔) = 0 by the Q-linear independence of 𝑎𝑖’s.
So 𝑓𝑖 (𝑔) = 0. By the density of G𝑅∪𝑅′ ∩ 𝐺der (A𝐹 ) in 𝐺der (𝐹)\𝐺der (A𝐹 ), 𝑓𝑖 (𝑔) = 0 for 𝐺der (A𝐹 ).
So (6.24) holds. �
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Remark 6.2.7. The density argument can not be applied directly to [ 𝑓 |𝐺der (A𝐹 ) ] .

Now we continue the proof of the proposition. Recall that 𝑤𝑣 ∈ 𝐺der (𝐹𝑣 ) ⊂ 𝐺 (𝐹𝑣 ) as in 2.5
acts on S (V𝑣 ) by Fourier transform (multiplied by the Weil index) via the Weil representation 𝜔.
See 2.8. By Lemma 6.2.1, for a finite place v of F, there exists a W𝑣 -regular Schwartz function Φ𝑣

on V(𝐸𝑣 ) such that 𝜙𝑣 = Φ𝑣 + 𝜔(𝑤𝑣 )Φ𝑣 . Choose 𝐾𝑅, 𝐾𝑅′ small enough to stabilize Φ𝑅,Φ𝑅′ . By
Lemma 6.2.6, (6.23) with 𝜙𝑅, 𝜙𝑅′ replaced by Φ𝑅,Φ𝑅′ holds for 𝑔 ∈ 𝐺der (A𝐹 ), and thus, it holds for
𝑔𝑤𝑅, 𝑔𝑤𝑅′ , 𝑔𝑤𝑅𝑤𝑅′ ∈ 𝐺der (A𝐹 ) replacing g as well. Then by Lemma 3.3.8, (6.23) with one or both of
𝜙𝑅, 𝜙𝑅′ replaced by𝜔(𝑤𝑅)Φ𝑅, 𝜔(𝑤𝑅′ )Φ𝑅′ respectively holds for 𝑔 ∈ 𝐺der (A𝐹 ). Thus, including (6.23),
we have four equations in total. Taking their sum, we have (6.23) for the original 𝜙 and 𝑔 ∈ 𝐺der (A𝐹 ). �

6.2.4. Remove regularity and log S
Lemma 6.2.8. Assume that the cardinality of S is at least 2. Assume that 𝑅 ⊂ 𝑆 consists of a single
element and 𝜙𝑅 isW′𝑅-regular. If 𝐾𝑆 is small enough (depending on 𝜙𝑆), then for 𝑔 ∈ G𝑅, (6.20) holds
(literally, forW rather thanW′). Equivalently, (6.21) holds.
Proof. By Lemma 6.2.3 (withW replaced byW′), for 𝑔 ∈ G𝑅, we have

2𝑧𝑡 (𝑔, 𝜙∞)L,aut
𝔢 · PW′ modQ log 𝑆 = 𝑓∞W′,𝑡 (𝑔)modQ log 𝑆. (6.26)

Taking the difference between (6.23) and (6.26), (6.20) follows for 𝑔 ∈ G𝑅. �

Corollary 6.2.9. If K is small enough, then for 𝑔 ∈ G∅, (6.20) holds.
Proof. We prove (6.21), which is equivalent to (6.20). Let 𝑅 ⊂ 𝑆 consist of a single element. By
Lemma 3.3.8 and the Iwasawa decomposition, it is enough to prove (6.21) for 𝑔 ∈ G𝑅. Then by
Lemma 3.2.1, Lemma 3.3.14 and Lemma 4.1.4, we may assume that 𝜙𝑅 (0) = 0. Such a 𝜙𝑅 can be
written as a sum ofW′𝑅-regular functions for finitely manyW′’s (in fact, only depending onW′𝑅). Since
(6.21) is linear on 𝜙𝑅, the corollary follows from Lemma 6.2.8 withW′𝑅 =W𝑅 andW′𝑅 varying. �

Proof of Theorem 5.2.5. We may assume that 𝜙∞ is Q-valued. It is enough to prove (5.10) modulo
Q log 𝑆. Indeed, choosing another set 𝑆′ of 4 places split in E modulo Q log 𝑆′ and requiring S and
𝑆′ to have no same residue characteristics, then (5.10) follows from Theorem 6.2.2 (i.e., the Q-linear
independence of log 𝑝’s).

Now we prove (5.10) moduloQ log 𝑆 by decomposing it into equations established in Corollary 6.2.9
for 𝑙−1W’s where 𝑙 ∈ 𝑈 (W)\𝐾Λ/𝐾 ′ (instead of a single W, and the double coset is clarified below
(5.4)). Note that by Remark 5.2.6, we may shrink K freely. For the left-hand side of (5.10), that is,
2𝑧𝑡 (𝑔, 𝜙∞)L,aut

𝔢 · 𝜋∗
𝐾 ,𝐾 Λ

PW,𝐾Λ , by (5.4), we have

𝜋∗
𝐾 ,𝐾 Λ

PW,𝐾Λ = 𝜋∗
𝐾 ,𝐾′

𝜋∗
𝐾′ ,𝐾 Λ

PW,𝐾Λ

=
∑

𝑙∈𝑈 (W)\𝐾Λ/𝐾 ′

𝑑𝑙−1W,𝐾 ′

𝑑W,𝐾Λ

𝜋∗
𝐾 ,𝐾′

P𝑙−1W,𝐾 ′ .
(6.27)

Now we consider the right-hand side of (5.10); that is, 𝑓 𝐾,∞
W,𝐾Λ ,𝑡

(𝑔). We choose l such that 𝑙𝑣 = 1 for
𝑣 ∉ 𝑆 (this is possible since 𝐾 ′ = 𝐾𝑆𝐾

𝑆
Λ). In particular, (𝑙W)𝑣 =W𝑣 for 𝑣 ∈ ℜ𝔞𝔪 so that 𝜙′𝑣 defined in

(5.7) in terms ofW𝑣 is the same as that defined in (5.7) in terms of (𝑙W)𝑣 . By the coset decomposition

𝑈 (W)\𝐾Λ/𝐾 =
∐

𝑙∈𝑈 (W)\𝐾Λ/𝐾 ′
𝑙
(
𝑈 (𝑙−1W)\𝐾 ′

)
/𝐾,

and
𝑑𝑘−1𝑙−1W,𝐾

𝑑W,𝐾Λ

=
𝑑𝑘−1𝑙−1W,𝐾

𝑑𝑙−1W,𝐾 ′

𝑑𝑙−1W,𝐾 ′

𝑑W,𝐾Λ

, 𝑘 ∈ 𝑈 (𝑙−1W)\𝐾 ′,
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we deduce from the definition (5.9) of 𝑓 𝐾
W,𝐾Λ

that

𝑓 𝐾W,𝐾Λ
=

∑
𝑙∈𝑈 (W)\𝐾Λ/𝐾 ′

𝑑𝑙−1W,𝐾 ′

𝑑W,𝐾Λ

𝑓 𝐾
𝑙−1W,𝐾 ′

. (6.28)

By Corollary 6.2.9, (6.27) and (6.28) imply (5.10) modulo Q log 𝑆. �

A. Admissible divisors

We recall S. Zhang’s theory of admissible cycles on a polarized arithmetic variety [Zha20]. They
are cycles with ‘harmonic curvatures’. We only consider admissible divisors [Zha20, 2.5, Admissible
cycles]. In particular, for a divisor on the generic fiber, we have its admissible extensions. With an
extra local condition, we have the normalized admissible extension. The functoriality of (normalized)
admissibile cycles under flat morphisms is important for us.

It is worth mentioning that while the normalized admissible extension is defined purely locally and
at the level of divisors, a global lifting of a divisors class on the generic fiber is defined (and it is
called L-lifting) in [Zha20, Corollary 2.5.7]. It is an admissible extension [Zha20, Corollary 2.5.7 (1)]
with vanishing Faltings height [Zha20, Corollary 2.5.7 (2)]. They will not be further discussed in this
appendix, and are not needed in this paper.

A.1. Deligne-Mumford stacks over a Dedekind domain

Let O be a Dedekind domain. Let M be a connected regular Deligne-Mumford stack proper flat over
SpecO of relative dimension n. Let M be its generic fiber. Definitions of cycles, rational equivalence,
proper pushforward and flat pullback for (Chow) cycles are applicable to Deligne-Mumford stacks over
SpecO. See [Gil09]. Let 𝑍∗(𝑀) (resp. 𝑍∗(M)) be the graded Q-vector space of cycles on M (resp. M)
with Q-coefficients. Let Ch∗(𝑀) and Ch∗(M) be the Q-vector spaces of Chow cycles.

We shall only work under the following convenient assumption, which simplifies the local intersection
theory. For every closed point 𝑠 ∈ SpecO, let O𝑠 be the completed local ring.

Assumption A.1.1. (1) There is a finite subset 𝑆 ⊂ SpecO, a regular scheme M̃ proper flat over
SpecO − 𝑆 and a finite étale morphism 𝜋 : M̃→M|SpecO−𝑆 over SpecO − 𝑆.

(2) For every 𝑠 ∈ 𝑆, there is a regular scheme M̃ proper flat over SpecO𝑠 and a finite étale morphism
𝜋 : M̃→MSpecO𝑠 over SpecO𝑠 .

In either case (1) or (2), we call M̃ a covering of M|SpecO−𝑆 or MSpecO𝑠 . For another covering M̃′,
the fiber product is regular and proper flat over SpecO − 𝑆 or SpecO𝑠 , making a third covering.

A line bundle L on M is ample if in both cases (1) and (2), its pullback to some covering is ample.
And it is relatively positive if degL|𝐶 > 0 for every closed curve (1-dimensional closed substack) C
in every special fiber of M. It is routine to check that the definition does not depend on the choice of
covering by making a third covering. The following notions, which are used in the whole paper, are also
defined via coverings: intersection number, Chern class and Zariski closure.

A.2. Local cycles

Assume that O is a completed local ring (so a DVR). Let s be the unique closed point of SpecO. We
will use two intersection pairings. First, for 𝑋 ∈ 𝑍 𝑖 (M) and 𝑌 ∈ 𝑍𝑛+1−𝑖 (M) with disjoint supports
on M, define

𝑋 · 𝑌 =
1

deg 𝜋
𝜋∗(𝑋) · 𝜋∗(𝑌 ) ∈ Q, (A.1)
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where 𝜋 is a covering morphism and the latter intersection number is a usual one, defined either using
Serre’s Tor-formula (equivalently rephrased as the Euler-Poincaré characteristic of the derived tensor
product O𝜋∗ (𝑋 )

⊗LO𝜋∗ (𝑌 ) ([GS90, 4.3.8 (iv)]), or as a cohomological pairing.
Second, let M𝑠 be the special fiber of M and 𝑍1

𝑠 (M) ⊂ 𝑍1 (M) the subspace of divisors supported
on M𝑠 . We use the intersection pairing between 𝑍1

𝑠 (M) and an n-tuple of Q-Cartier divisors as in
[Ful84, Example 6.5.1] (defined using a covering as in (A.1)):

𝑍1
𝑠 (M) × 𝑍1 (M)𝑛 → Q.

It only depends on the rational equivalence classes of the Cartier divisors. (In particular, by fixing
𝑛 − 1 rational equivalence classes of Cartier divisors, we get a pairing between 𝑍1

𝑠 (M) and 𝑍1 (M).
This view point might be helpful.) In this subsection, we will use this second intersection pairing until
Corollary A.2.6.

Let L be a line bundle on M. Let 𝐵1
L (M) ⊂ 𝑍1

𝑠 (M be the kernel of the linear form 𝑍1
𝑠 (M) → Q

defined by intersection with 𝑐1 (L)𝑛. Assume that the generic fiber of L is ample and L is relatively
positive. The local index theorem [Zha20, Lemma 2.5.1] (see also [YZ17]) implies the following lemma.

Lemma A.2.1. The pairing (𝑋,𝑌 ) ↦→ 𝑋 · 𝑐1 (L)𝑛−1 · 𝑌 on 𝐵1
L (M) is negative definite.

Let 𝑍1
L (M) be the orthogonal complement of 𝐵1

L (M) under the pairing 𝑋 · 𝑐1 (L)𝑛−1 · 𝑌 ; that is,

𝑍1
L (M) = {𝑌 ∈ 𝑍1 (M) : 𝑋 · 𝑐1 (L)𝑛−1 · 𝑌 = 0 for every 𝑋 ∈ 𝐵1

L (M)}.

Then by definition, we have a decomposition

𝑍1 (M) = 𝑍1
L (M) ⊕ 𝐵1

L (M), (A.2)

and an exact sequence

0→ QM𝑠 → 𝑍1
L (M) → 𝑍1 (𝑀) → 0. (A.3)

For a prime cycle X on M, let 𝑋zar be its Zariski closure on M. Extend the definition by linearity.

Definition A.2.2. (1) We call 𝑍1
L (M) the space of admissible divisors with respect to L.

(2) For 𝑋 ∈ 𝑍1 (𝑀), an admissible extension with respect to L is an element in its preimage by
𝑍1
L (M) → 𝑍1 (𝑀). Define the normalized admissible extension 𝑋L of X with respect to L to be the

projection of 𝑋zar to 𝑍1
L (M) in (A.2).

Remark A.2.3. In terms of [Zha20, Corollary 2.5.7 (1)], 𝑍1
L (M) ⊂ 𝑍1 (M) is the subspace of cycles X

with ‘harmonic curvatures’ (compare with Remark A.3.2 (3)); that is, the element in HomQ
(
𝑍1
𝑠 (M),Q

)
defined by intersection with 𝑋 · 𝑐1 (L)𝑛−1 is a multiple of the one defined by intersection with 𝑐1 (L)𝑛.

Then by definition, we have the following lemma.

Lemma A.2.4. Assume thatM is smooth over SpecO. Then 𝐵1
L (M) = 0. In particular, for 𝑋 ∈ 𝑍1 (𝑀),

𝑋zar is the normalized admissible extension.

By the projection formula (and the commutativity of taking Zariski closure and closed pushfor-
ward/flat pullback), we easily deduce the following lemma.

Lemma A.2.5. Let M′ be a regular Deligne-Mumford stack and 𝑓 : M′ →M a finite flat morphism.
Let L′ be the pullback of L to M′. Consider M′ as a Deligne-Mumford stack over SpecO via f
and M. Then 𝑓 ∗

(
𝐵1
L (M)

)
⊂ 𝐵1

L′ (M′), 𝑓∗
(
𝐵1
L′ (M′)

)
= 𝐵1

L (M), 𝑓 ∗
(
𝑍1
L (M)

)
⊂ 𝑍1

L′ (M′) and
𝑓∗

(
𝑍1
L′ (M′)

)
= 𝑍1

L (M). In particular, the decomposition (A.2) and the formation of normalized
admissible extension are preserved under pullback and pushforward by f.
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Corollary A.2.6. In Lemma A.2.5 with f finite, let 𝑀 ′ be the generic fiber of M′ and assume that
M → SpecO is smooth. Let 𝑋 ∈ 𝑍1 (𝑀 ′) and 𝑌 ∈ 𝑍𝑛 (M) such that X and 𝑓 ∗(𝑌 ) have disjoint
supports. Then we have 𝑋L · 𝑓 ∗(𝑌 ) = 𝑋zar · 𝑓 ∗(𝑌 ).

Proof. By Lemma A.2.4 and Lemma A.2.5, we have 𝑓∗(𝑋L) = ( 𝑓 |𝑀 ′,∗𝑋)L = ( 𝑓 |𝑀 ′,∗𝑋)zar = 𝑓∗(𝑋zar).
The corollary follows from the projection formula. �

A.3. Admissible arithmetic Chow group of divisors

Now let O be the ring of integers of a number field. In particular, MC := M ⊗Z C = 𝑀 ⊗Q C is a
complex orbifold. Let L = (L, ‖ · ‖) be a hermitian line bundle on M such that the generic fiber of L is
ample, L is relatively positive, and the hermitian metric ‖ · ‖ is invariant under the involution induced
by complex conjugation. See [GS90, 3.1.2]. In particular, endowing MC with the Chern curvature form
curv

(
LC

)
, it is a smooth Kähler orbifold.

Definition A.3.1. (1) The group 𝑍1
L,C
(M) of admissible (with respect to L) arithmetic divisors on M

with C-coefficients is the C-vector space of pairs (𝑋, 𝑔) where

◦ 𝑋 ∈ 𝑍1 (M)C such that for every closed point 𝑠 ∈ SpecO, the restriction of X to MO𝑠 is contained
in 𝑍1

LO𝑠

(
MO𝑠

)
C

,
◦ g is a Green function for 𝑋C on MC, admissible with respect to LC, and invariant under the involution

induced by complex conjugation. Here, admissibility means that the curvature form 𝛿𝑋 + 𝑖
2𝜋 𝜕𝜕𝑔 is

harmonic.

(2) For 𝑋 ∈ 𝑍1 (𝑀)C, an admissible extension of X with respect to L is an element in the preimage
of X by the natural surjection 𝑍1

L,C
(M) → 𝑍1 (𝑀)C.

Remark A.3.2. (1) A Green current on Deligne-Mumford stacks is defined in [Gil09, Section 1]. In our
situation, a Green function is simply an orbifold function whose pullback to the finite étale cover by a
smooth variety is a usual Green function.

(2) Admissible Green functions for 𝑋C always exists and are the same modulo locally constant
functions, and (A.3) is the non-archimedean analog of this fact.

(3) By [Zha20, 2.2], a closed (1, 1)-form 𝛼 is harmonic if and and only if on each connected

component of MC, 𝛼 ∧ curv
(
LC

)𝑛−1
is a constant multiple of curv

(
LC

)𝑛
.

Definition A.3.3. (1) An admissible Green function is normalized with respect to LC if it has vanishing
harmonic projection; that is, on each connected component of MC, its integration against curv(LC)𝑛
is 0.

(2) An element in 𝑍1
L,C
(M) is normalized with respect to L if it is normalized at every place. For

𝑋 ∈ 𝑍1 (𝑀)C, let 𝑋L ∈ 𝑍1
L,C
(M) be its normalized admissible extension with respect to L.

Then the normalized admissible extension of a divisor on M exists and is unique.
For every nonzero rational function f on M, (div( 𝑓 ),− log | 𝑓 |2) is contained in 𝑍1

L,C
(M).

Definition A.3.4. (1) Let Ĉh
1
C (M) be the quotient of the space of arithmetic divisors withC-coefficients

by the C-span of (div( 𝑓 ),− log | 𝑓 |2)’s for all nonzero rational functions.
(2) Let Ĉh

1
L,C(M) be the quotient of 𝑍1

L,C
(M) by the C-span of (div( 𝑓 ),− log | 𝑓 |2)’s.

Remark A.3.5. Let Ĉh
1
(M) be the Chow group of arithmetic divisors with Z-coefficients defined by

Gillet and Soulé [GS90] for schemes, which is extended to the stacky case in [Gil09]. Then Ĉh
1
C(M)
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is the quotient of Ĉh
1
(M)C by the pullback of the kernel of the degree map Ĉh

1
(SpecO)C → C. In

particular, we have an isomorphism Ĉh
1
C(SpecO) � C by taking degrees.

Lemma A.3.6. (1) The natural map Ĉh
1
L,C (M) → Ch1(𝑀)C is surjective. Its kernel is generated by

connected components of special fibers of M at all finite places and locally constant functions on MC.
(2) Assume that M is connected. Then the kernel of Ĉh

1
L,C (M) → Ch1 (𝑀)C is 1-dimensional, and

is the pullback of Ĉh
1
C(SpecO).

Proof. By (A.3) and Remark A.3.2 (2), (1) holds. If M is connected, then 𝐸1 := O𝑀 (𝑀) is a finite
field extension of the fraction field of O. Then M over SpecO𝐸1 has geometrically connected fibers by
Stein factorization. By (1), the kernel is the pullback of Ĉh

1
C

(
SpecO𝐸1

)
, which is 1-dimensional by the

finiteness of the class number of 𝐸1 and Dirichlet’s unit theorem. See [GS90, 3.4.3]. And it equals the
pullback of Ĉh

1
C(SpecO). �

Example A.3.7. The arithmetic first Chern class 𝑐1 (L) of L is the class of (div(𝑠),− log ‖𝑠‖2) for
a nonzero rational section s. By Remark A.2.3 (or one may follow our definition), one immediately
sees that div(𝑠) has ‘harmonic curvature’ at every finite place. The curvature form of − log ‖𝑠‖2 is by
definition the Kähler form. So 𝑐1 (L) ∈ Ĉh

1
C,L (M).

Now we consider the functoriality. By Lemma A.2.5, we have the following proposition.

Proposition A.3.8. Let M′ be a regular Deligne-Mumford stack and 𝑓 : M′ → M a finite flat
morphism over SpecO, such that the restriction of f to the generic fibers is finite étale. Let L′ be the
pullback of L to M′. Consider M′ as a Deligne-Mumford stack over SpecO via f and M. Then the
formation of 𝑍1

C,L
(M), Ĉh

1
C,L (M) and normalized admissible extension with respect to L is preserved

under pullback and pushforward by f.

A.4. Arithmetic intersection pairing

Let 𝑍1 (M)C be the group of 1-cycles on M. We define an arithmetic intersection pairing following
[BGS94, 2.3.1]:

Ĉh
1
(M)C × 𝑍1 (M)C → C, (�̂�, 𝑌 ) ↦→ �̂� · 𝑌 .

We reduce the pairing to the arithmetic intersection pairing between Ĉh
1
(M)C and Ĉh

𝑛
(M)C, which

is defined in [Gil09] for general Deligne-Mumford stacks (without Assumption A.1.1). Let 𝜔(�̂�) be the
curvature form of �̂�, which is a smooth (1, 1) form on the orbifold 𝑀C independent of the choice of a
representative of �̂�. Choose �̂� = (𝑌, 𝑔𝑌 ) ∈ Ĉh

𝑛

C (M). Then �̂� · 𝑌 is the arithmetic intersection number
�̂� · �̂� minus

∫
MC

𝜔(�̂�)𝑔𝑌 .
Now assume Assumption A.1.1 and that (𝑋, 𝑔𝑋 ) is a representative of �̂� such that 𝑋 ∩𝑌 is empty on

the generic fiber of M. Then �̂� · 𝑌 is the sum of the intersection numbers of the restrictions of X and Y
to MO𝑠 over all closed points 𝑠 ∈ SpecO defined in (A.1), and

∫
𝑌C

𝑔𝑋 .

The pullback of the kernel of the degree map Ĉh
1
(SpecO)C → C to Ĉh

1
(M)C is annihilated by

the arithmetic intersection pairing with 𝑍1(M)C. By Remark A.3.5, the above arithmetic intersection
pairing factors through an arithmetic intersection pairing

Ĉh
1
C (M) × 𝑍1 (M)C → C, ( �̂�, 𝑌 ) ↦→ �̂� · 𝑌 .

Similar to Corollary A.2.6, Proposition A.3.8 implies the following result.
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Corollary A.4.1. In Proposition A.3.8, let 𝑀 ′ be the generic fiber ofM′ and assume thatM→ SpecO𝐸

is smooth. Then for 𝑋 ∈ 𝑍1 (𝑀 ′)C and 𝑌 ∈ 𝑍𝑛
C
(M), we have

[𝑋L] · 𝑓 ∗(𝑌 ) = [(𝑋zar, 𝑔L𝑋 )] · 𝑓
∗(𝑌 ),

where 𝑔L𝑋 is the normalized admissible Green function for X.

B. A comparison of the ‘closure’ model with Rapoport–Smithling–Zhang model (appendix by
Yujie Xu)

B.1. Preliminaries

B.1.1.
Let F be a CM field and 𝐹0 its maximal totally real subfield of index 2. Let 𝑎 ↦→ 𝑎 be the nontrivial
automorphism of 𝐹/𝐹0. We fix a presentation 𝐹 = 𝐹0 (

√
Δ) for some totally negative element Δ ∈ 𝐹0.

Let Φ denote the CM type for F determined by
√
Δ; that is,

Φ := {𝜑 : 𝐹 → C|𝜑(
√
Δ) ∈ R>0 ·

√
−1}. (B.1.2)

Let W be a non-degenerate 𝐹/𝐹0-hermitian space of dimension 𝑛 ≥ 2. Let

𝐺 := Res𝐹0/Q𝑈 (𝑊). (B.1.3)

As in [RSZ20, §2.1], we use the symbol c to denote the similitude factor of a point on a unitary similitude
group. We consider the following algebraic groups over Q:

𝑍Q := {𝑧 ∈ Res𝐹/QG𝑚 |Nm𝐹/𝐹0 (𝑧) ∈ G𝑚} (B.1.4)

𝐺Q := {𝑔 ∈ Res𝐹0/QGU(𝑊) |𝑐(𝑔) ∈ G𝑚} (B.1.5)

𝐺 := 𝑍Q ×G𝑚 𝐺Q = {(𝑧, 𝑔) ∈ 𝑍Q × 𝐺Q |Nm𝐹/𝐹0 (𝑧) = 𝑐(𝑔)}. (B.1.6)

Note that 𝑍Q is naturally a central subgroup of 𝐺Q, and we have the following product decompositions

𝐺 −→ ∼𝑍Q × 𝐺, (𝑧, 𝑔) ↦−→ (𝑧, 𝑧−1𝑔). (B.1.7)

B.1.8.
From now on, we assume, moreover, that the hermitian space W has the following signatures at the
archimedean places of 𝐹0: for a distinguished element 𝜑0 ∈ Φ, the signature of 𝑊𝜑0 is (1, 𝑛−1); and for
all other 𝜑 ∈ Φ, the signature of 𝑊𝜑 is (0, 𝑛). In order to define a Shimura datum (𝐺Q, {ℎ𝐺Q }), by the
canonical inclusions 𝐺Q

R
⊂

∏
𝜑∈Φ

GU(𝑊𝜑), it suffices to define the components ℎ𝐺Q ,𝜑 of ℎ𝐺Q . Consider

the matrices

𝐽𝜑 :=

{
diag(1, (−1) (𝑛−1) ), 𝜑 = 𝜑0,

diag(−1,−1, · · · ,−1), 𝜑 ∈ Φ \ {𝜑0}.
(B.1.9)

We also choose bases 𝑊𝜑 � C𝑛 such that the hermitian form on 𝑊𝜑 is given by 𝐽𝜑 . Consider the
R-algebra homomorphisms

C −→ End(𝑊𝜑),
√
−1 ↦−→

√
−1𝐽𝜑 , (B.1.10)
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which induce our desired component maps ℎ𝐺Q ,𝜑 : C× → GU(𝑊𝜑) (R). This gives us our desired
Shimura datum (𝐺Q, {ℎ𝐺Q }).

B.1.11.
For the group 𝑍Q defined in B.1.4, the CM type Φ induces an identification

𝑍Q(R) �
{
(𝑧𝜑) ∈ (C×)Φ

���|𝑧𝜑 | = |𝑧𝜑′ | for all 𝜑, 𝜑′ ∈ Φ
}
, (B.1.12)

which allows us to define ℎ𝑍Q : C× → 𝑍Q (R) as the diagonal embedding (via the identification B.1.12)
precomposed with complex conjugation. This gives us a Shimura datum (𝑍Q, {ℎ𝑍Q }) with reflex field

𝐸 (𝑍Q, {ℎ𝑍Q }) = 𝐸Φ, (B.1.13)

which is the reflex field for the CM type Φ. Recall that this can be computed as the fixed field in C of
the group {𝜎 ∈ Aut(C) = |𝜎 ◦Φ = Φ}.

For the group 𝐺 defined in B.1.6, we consider the map

ℎ𝐺 : C×
(ℎ
𝑍Q

,ℎ
𝐺Q
)

−−−−−−−−−→ 𝐺 (R), (B.1.14)

which gives us a Shimura datum (𝐺, {ℎ𝐺}). Let

𝐸 := 𝐸 (𝐺, {ℎ𝐺}) (B.1.15)

be the reflex field for (𝐺, {ℎ𝐺}), by definition it is computed via

Aut(C/𝐸) = {𝜎 ∈ Aut(C) |𝜎 ◦Φ = Φ, 𝜎 ◦ 𝜑0 = 𝜑0}. (B.1.16)

Note that E is the compositum of 𝐸Φ (as in B.1.13) and F. By [Del71], we have canonical models
Sh𝐾𝐺

(𝐺, {ℎ𝐺}) over E, for compact open subgroups 𝐾𝐺 ⊂ 𝐺 (A 𝑓 ). By [Kis10] (resp. [KP18] depending
on the level structure), we have integral models 𝒮𝐾𝐺

(𝐺, {ℎ𝐺}) over O𝐸, (𝑣) .

B.1.17.
We introduce a Shimura datum (𝐺, {ℎ𝐺}). Let ℎ𝐺 be the map

ℎ𝐺 : C×
ℎ𝐺−−→ 𝐺 (R) 𝐵.1.7−−−−−→ 𝐺 (R) (B.1.18)

defined by composing ℎ𝐺 (from B.1.14) with the projection onto the second factor in the map B.1.7.
The reflex field for (𝐺, {ℎ𝐺}) is F, embedded into C via 𝜑0.

Moreover, the decomposition in B.1.7 induces a decomposition of Shimura data

(𝐺, {ℎ𝐺}) = (𝑍
Q, {ℎ𝑍Q }) × (𝐺, {ℎ𝐺}). (B.1.19)

Let 𝐾𝐺 be decomposed via B.1.7 into

𝐾𝐺 = 𝐾𝑍Q × 𝐾𝐺 . (B.1.20)

The natural projections in B.1.19 then induce morphisms of Shimura varieties

Sh𝐾𝐺
(𝐺, {ℎ𝐺}) → Sh𝐾

𝑍Q
(𝑍Q, {ℎ𝑍Q })𝐸 , (B.1.21)

Sh𝐾𝐺
(𝐺, {ℎ𝐺}) → Sh𝐾𝐺 (𝐺, {ℎ𝐺})𝐸 . (B.1.22)
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Note that the Shimura variety Sh𝐾𝐺 (𝐺, {ℎ𝐺}), which originally appeared in [GGP12], is not of PEL
type. However, it is of abelian type, and we have an integral model 𝒮𝐾𝐺 (𝐺, {ℎ𝐺}) defined over O𝐹, (𝜈)
by [Kis10] (resp. [KP18] depending on the level structure4).

B.1.23.
Let 𝜈 |𝑝 be a place of E. Let M0 be the moduli functor which associates to each locally Noetherian
O𝐸,𝜈-scheme S the groupoid of tuples M0 (𝑆) := (𝐴0, 𝜆0, 𝜄0) where

(i) 𝐴0 is an abelian scheme over S;
(ii) 𝜄0 : O𝐹 → End𝑆 (𝐴0) is an O𝐹 -endomorphism structure on 𝐴0 satisfying the Kottwitz condition

of signature ((0, 1)𝜑∈Φ); that is,

Char(𝜄0 (𝑎) |Lie𝐴0) =
∏
𝜑∈Φ
(𝑇 − 𝜑(𝑎)) for all 𝑎 ∈ O𝐹 ;

(iii) 𝜆0 is a principal polarization of 𝐴0 such that the associated Rosati involution induces the nontrivial
Galois automorphism of 𝐹/𝐹0 on O𝐹 via 𝜄0.

Then M0 is representable by a Deligne-Mumford stack M0 finite étale over SpecO𝐸,𝜈 . Moreover,
we assume 𝐾 𝑝 is small enough, so that M0 is nonempty. We shall assume throughout the rest of this
appendix that M0 is nonempty.

Lemma B.1.24 [RSZ20, Lemma 3.4]. The stack M0 admits the following decompositon into open and
closed substacks5:

M0 =
⊔

𝜉 ∈LΦ/∼
M𝜉

0 (B.1.25)

such that the generic fiber of M𝜉
0 is canonically isomorphic to Sh𝐾

𝑍Q
(𝑍Q, {ℎ𝑍Q })𝐸 .

B.1.26.
Let 𝐹0,𝑣 be the v-adic completion of 𝐹0, and we set 𝐹𝑣 := 𝐹 ⊗𝐹0 𝐹0,𝑣 . Suppose for now that the place
𝑣0 of 𝐹0 is unramified over p, and that 𝑣0 either splits in F or is inert in F. Suppose, moreover, that the
hermitian space 𝑊𝑣0 is split. If there exists a prime v of 𝐹0 above p that is non-split in F, we assume
additionally that 𝑝 ≠ 2. We choose a vertex lattice Λ𝑣 in the 𝐹𝑣/𝐹0,𝑣 -hermitian space 𝑊𝑣 . For now, we
assume that Λ𝑣0 is self-dual. We recall that an O𝐹,𝑣 -lattice Λ in an 𝐹𝑣/𝐹0,𝑣 -hermitian space is called a
vertex lattice of type r if Λ ⊂𝑟 Λ∗ ⊂ 𝜋−1

𝑣 Λ.6 An O𝐹,𝑣 -lattice Λ in an 𝐹𝑣/𝐹0,𝑣 -hermitian space is called
a vertex lattice if it is a vertex lattice of type r for some r. Here, 𝜋𝑣 is a uniformizer in 𝐹𝑣 := 𝐹 ⊗𝐹 𝐹0,𝑣 ,
where 𝐹0,𝑣 is the v-adic completion of 𝐹0 for a place v of 𝐹0. In particular, a self-dual lattice is simply
a vertex lattice of type 0. Assume that 𝐾𝐺,𝑣 = Stab(Λ𝑣 ) ⊂ 𝐺 (𝐹0,𝑣 ).

B.1.27.
Let M𝐾𝐺

(𝐺) be the moduli functor which associates to each locally Noetherian O𝐸, (𝜈) -scheme S the
groupoid of triples M𝐾𝐺

(𝐺) (𝑆) := (𝐴0, 𝜄0, 𝜆0, 𝐴, 𝜄, 𝜆, 𝜂
𝑝), where

◦ (𝐴0, 𝜄0, 𝜆0) ∈M𝜉
0 (𝑆) as is defined in B.1.25;

◦ (𝐴, 𝜄) is an abelian scheme over S, equipped with an O𝐹 ⊗ Z(𝑝) -endomorphism structure 𝜄 satisfying

4Note that the construction of [KP18] assumes that 𝑝 > 2, and that G splits over a tamely ramified extension of Q𝑝 , and that p
does not divide the order |𝜋1 (𝐺der) | of the algebraic fundamental group of the derived group 𝐺der over Q𝑝 . We expect that the
condition ‘G splits over a tamely ramified extension of Q𝑝’ can certainly be relaxed using [KZ21].

5Here the index set LΦ/∼ need not be specified for our purposes, for more details see [RSZ20]
6Here, the notation Λ ⊂𝑟 Λ∗ means that Λ is an R-submodule of Λ∗ of finite colength r
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the Kottwitz condition of signature ((1, 𝑛 − 1)𝜑0 , (0, 𝑛)𝜑∈Φ\{𝜑0 }); that is,

Char(𝜄(𝑎) |Lie𝐴) = (𝑇 − 𝜑0(𝑎)) (𝑇 − 𝜑0 (𝑎))𝑛−1
∏

𝜑∈Φ\{𝜑0 }
(𝑇 − 𝜑(𝑎))𝑛 for all 𝑎 ∈ 𝐹;

◦ 𝜆 is a polarization of A such that the associated Rosati involution induces the nontrivial Galois
automorphism of 𝐹/𝐹0 on O𝐹 ⊗ Z(𝑝) via 𝜄, and such that the following additional assumption in
[RSZ20, (4.2)] is also satisfied: the action of O𝐹0 ⊗ Z𝑝 �

∏
𝑣 |𝑝

O𝐹0 ,𝑣 on the p-divisible group 𝐴[𝑝∞]

induces a decomposition 𝐴[𝑝∞] =
∏
𝑣 |𝑝

𝐴[𝑣∞], where v ranges over the places of 𝐹0 above p; the

polarization 𝜆 then induces a polarization

𝜆𝑣 : 𝐴[𝑣∞] → 𝐴∨[𝑣∞] � 𝐴[𝑣∨]∨ (B.1.28)

for each v; we require ker𝜆𝑣 to be contained in 𝐴[𝜄(𝜋𝑣 )] of rank #(Λ∗𝑣/Λ𝑣 ) for each place v of 𝐹0
above p;

◦ 𝜂𝑝 is a 𝐾 𝑝
𝐺-orbit of the A𝑝

𝐹, 𝑓 -linear isometry

Hom𝐹 (𝑉 𝑝 (𝐴0), 𝑉 𝑝 (𝐴)) � −𝑊 ⊗𝐹 A𝑝
𝐹, 𝑓 , (B.1.29)

where the hermitian form on the left-hand side is (𝑥, 𝑦) ↦→ 𝜆−1
0 ◦ 𝑦

∨ ◦ 𝜆 ◦ 𝑥.
◦ For each 𝑣 ≠ 𝑣0 over p, we impose the sign condition and Eisenstein condition at v [RSZ20, (4.4),

(4.10)].

By [RSZ20, Theorem 4.1], the forgetful map (𝐴0, 𝜄0, 𝜆0, 𝐴, 𝜄, 𝜆, 𝜂
𝑝) ↦→ (𝐴0, 𝜄0, 𝜆0) is representable

and induces a morphism of O𝐸, (𝜈) -schemes

M𝐾𝐺
(𝐺, {ℎ𝐺}) →M𝜉

0 := M𝐾
𝑍Q
(𝑍Q) � 𝒮𝐾

𝑍Q
(𝑍Q, {ℎ𝑍Q }). (B.1.30)

On the level of generic fibres, (B.1.30) recovers the map (B.1.21).

B.2. Comparison of integral models

B.2.1.
Let 𝒮𝐾𝐺

(𝐺, {ℎ𝐺}) be the integral model defined over O𝐸, (𝜈) for Sh𝐾𝐺
(𝐺, {ℎ𝐺}) as constructed in

[KP18, §4.6]. Recall that the abelian type integral model 𝒮𝐾𝐺
(𝐺, {ℎ𝐺}) is built out of the integral

model 𝒮(𝐺Q, {ℎ𝐺Q }) for a corresponding Hodge type Shimura variety associated to the abelian type
Sh𝐾𝐺

(𝐺, {ℎ𝐺}), which, as in [KP18, 4.6.21] (see also [Kis10, 3.4.13] and [Del79] for more details),
is Sh𝐾

𝐺Q
(𝐺Q, {ℎ𝐺Q }). Recall that 𝒮(𝐺Q, {ℎ𝐺Q }) is the O𝐹, (𝜈) -scheme constructed by taking the flat

closure 𝒮−(𝐺Q, {ℎ𝐺Q }) of the generic fibre Sh(𝐺Q, {ℎ𝐺Q }) inside some suitable Siegel integral model
𝒮𝐾 ′ (GSp, 𝑆±)O𝐹, (𝜈) for some prime 𝜈 of F above a fixed prime p. For convenience of expositions, we
shall fix a symplectic embedding 𝑖 : (𝐺Q, {ℎ𝐺Q }) ↩→ (GSp(𝑉, 𝜓), 𝑆±).7 By [Xu21, Xu25],8 this flat
closure 𝒮−(𝐺Q, {ℎ𝐺Q }) � 𝒮(𝐺Q, {ℎ𝐺Q }) is the desired integral model.9 We shall use the model for
Sh(𝐺Q, {ℎ𝐺Q }) as building blocks for integral models for Sh𝐾𝐺

(𝐺, {ℎ𝐺}) and Sh𝐾𝐺 (𝐺, {ℎ𝐺}).

7Note that the independence on symplectic embeddings of Hodge type integral models was first proven in [Kis10, Theorem
2.3.8]. For the parahoric integral models constructed in [KP18], it was later proven in [Pap21, Theorem 8.1.6] that the Kisin-
Pappas models (constructed under the assumption that the group G in (𝐺, 𝑋 ) splits over a tamely ramified extension of Q𝑝) are
independent of the choice of a symplectic embedding. In our case, we use the same symplectic space (𝑉 , 𝜓) to construct the
right-hand side of Lemmas B.2.5 and B.2.12 as the one used on the left-hand side compatible with W from (B.1.3).

8which reference to use depends on the specific level structure at p
9and it is moreover normal when in the setting of [Xu21].
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Fix a connected component {ℎ𝐺Q }+ ⊂ {ℎ𝐺Q }, and let Sh(𝐺Q, {ℎ𝐺Q })+ ⊂ Sh(𝐺Q, {ℎ𝐺Q }) be the
geometrically connected component which is the image of {ℎ𝐺Q }+ × 1. Let 𝐹 𝑝 ⊂ 𝐹 be the maximal
extension of F that is unramified at primes dividing p. By [Del79, Theorem 2.6.3], the action of
Gal(𝐹/𝐹) on Sh𝐾

𝐺Q , 𝑝
(𝐺Q, {ℎ𝐺Q })+ factors through Gal(𝐹 𝑝/𝐹). We abuse the notation and still denote

Sh𝐾
𝐺Q , 𝑝
(𝐺Q, {ℎ𝐺Q })+ as the 𝐹 𝑝-scheme obtained via descent. Let 𝒮𝐾

𝐺Q , 𝑝
(𝐺Q)+ be the closure of

Sh𝐾
𝐺Q , 𝑝
(𝐺Q, {ℎ𝐺Q })+ in 𝒮−𝐾

𝐺Q , 𝑝
(𝐺Q, {ℎ𝐺Q }) ⊗O𝐹, (𝜈) O𝐹 𝑝 , (𝜈) . Here, the notation O𝐹 𝑝 , (𝜈) denotes the

ring of integers of 𝐹 𝑝 localized at (𝑝).10
Let 𝒜(𝐺Z(𝑝) ) (resp. 𝒜(𝐺Q

Z(𝑝)
)◦) be the group defined in [KP18, 4.6.8] for 𝐺 (resp. 𝐺Q), which was

originally defined in [Del79]. We recall that

𝒜(𝐺Z(𝑝) ) := 𝐺 (A𝑝
𝑓 )/𝑍𝐺 (Z(𝑝) )

− ∗𝐺◦ (Z(𝑝) )+/𝑍𝐺 (Z(𝑝) ) (𝐺
Q)ad◦(Z(𝑝) )+, (B.2.2)

and 𝒜(𝐺Q
Z(𝑝)
)◦ := (𝐺Q)◦(Z(𝑝) )−+ /𝑍 (Z(𝑝) )− ∗(𝐺Q)◦ (Z(𝑝) )+/𝑍 (Z(𝑝) ) (𝐺

Q)ad◦(Z(𝑝) )+, where (𝐺Q)◦(Z(𝑝) )−+
is the closure of (𝐺Q)◦(Z(𝑝) )+ in (𝐺Q) (A𝑝

𝑓 ). By [KP18, Lemma 4.6.10], we have an inclusion

𝒜(𝐺Q
Z(𝑝)
)◦\𝒜(𝐺Z(𝑝) ) ↩→ 𝒜(𝐺Q)◦\𝒜(𝐺)/𝐾𝐺,𝑝 . (B.2.3)

Here, 𝒜(𝐺) := 𝐺 (A 𝑓 )/𝑍 (Q)− ∗𝐺 (Q)+/𝑍 (Q) 𝐺
ad (Q)+, where 𝑍 (Q)− denotes the closure of 𝑍𝐺 (Q) in

𝐺 (A 𝑓 ), and

𝒜(𝐺Q)◦ := 𝐺Q(Q)−+ /𝑍 (Q)− ∗𝐺Q+ /𝑍 (Q) (𝐺
Q)ad(Q)+,

where 𝐺Q(Q)−+ denotes the closure of 𝐺Q(Q)+ in 𝐺Q(A 𝑓 ). Let 𝐽 ⊂ 𝐺 (Q𝑝) denote a set which maps
bijectively to a set of coset representatives for the image of 𝒜(𝐺Z(𝑝) ) in 𝒜(𝐺Q)◦\𝒜(𝐺)/𝐾𝐺,𝑝 under
(B.2.3). Recall from [KP18, 4.6.15], we have

𝒮𝐾𝐺,𝑝
(𝐺, {ℎ𝐺}) =

[
[𝒜(𝐺Z(𝑝) ) ×𝒮𝐾

𝐺Q , 𝑝
(𝐺Q)+]/𝒜(𝐺Q

Z(𝑝)
)◦

] |𝐽 |
. (B.2.4)

Note that by analogous arguments as loc.cit., the right-hand side of (B.2.4) has a natural structure of a
O𝐸, (𝜈) := O𝐸 ⊗O𝐹 O𝐹, (𝜈) -scheme with 𝐺 (A𝑝

𝑓 )-action and is a model for Sh𝐾𝐺,𝑝
(𝐺, {ℎ𝐺}). Moreover,

for sufficiently small 𝐾 𝑝

𝐺
, the quotient 𝒮𝐾𝐺,𝑝

(𝐺, {ℎ𝐺})/𝐾
𝑝

𝐺
:= 𝒮𝐾𝐺

(𝐺, {ℎ𝐺}) is a finite type O𝐸, (𝜈) -
scheme extending Sh𝐾𝐺

(𝐺, {ℎ𝐺}).

Lemma B.2.5. M𝐾𝐺
(𝐺, {ℎ𝐺}) � 𝒮𝐾𝐺

(𝐺, {ℎ𝐺}) as SpecO𝐸, (𝜈) -schemes.

Proof. The moduli description for M𝐾𝐺
(𝐺, {ℎ𝐺}) in B.1.26 induces a natural map

M𝐾𝐺,𝑝
(𝐺, {ℎ𝐺}) → 𝒮𝐾

𝐺Q , 𝑝
(𝐺Q) (B.2.6)

(𝐴0, 𝜄0, 𝜆0, 𝐴, 𝜄, 𝜆, 𝜂
𝑝) ↦→ (𝐴, 𝜄, 𝜆) (B.2.7)

by simply forgetting the component (𝐴0, 𝜄0, 𝜆0, 𝜂
𝑝) in the tuple. Note that the map (B.2.6) is proper, and

in particular closed. We fix an arbitrary (𝐴★, 𝜄★, 𝜆★) ∈ 𝒮𝐾
𝐺Q , 𝑝
(𝐺Q)+, and suppose

(𝐴★
0 , 𝜄

★
0 , 𝜆

★
0 , 𝐴

★, 𝜄★, 𝜆★, 𝜂★) ↦→ (𝐴★, 𝜄★, 𝜆★)

10Here, we are abusing the notation 𝜈 to always denote the prime above p in the relevant fields.
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under the map (B.2.6). Take any (ℎ, 𝛾−1) ∈ 𝒜(𝐺Z(𝑝) ). As in [KP18, 4.5.3], let P̃𝛾 ⊂ 𝐺 be the torsor
given by the fibre over 𝛾 ∈ 𝐺ad (Z(𝑝) ). First we check that

(ℎ, 𝛾−1) · (𝐴★
0 , 𝜆

★
0 , 𝜄

★
0 , 𝜂

★) = ((𝐴★
0 )

P̃𝛾 , (𝜆★
0 )

P̃𝛾 , (𝜄★0 )
P̃𝛾 , (𝜂★)P̃𝛾 )

gives another point in the fibre over (𝐴★, 𝜄★, 𝜆★) under the map (B.2.6). This is clear as we only need to
check that (𝜂★)P̃𝛾 are A𝐹, 𝑓 -linear isometries

(𝜂★)P̃𝛾 : 𝑉
(
(𝐴★

0 )
P̃𝛾 , 𝐴★

)
� −𝑊 ⊗𝐹 A𝐹, 𝑓 , (B.2.8)

but this is simply given by the composite �̃�−1 ◦ 𝜂★ ◦ 𝜄−1
𝛾

, where 𝜄𝛾 is as defined in [KP18, 4.5.3].
It then remains to check that ker(𝒜(𝐺Q

Z(𝑝)
)◦ → 𝒜(𝐺Z(𝑝) )) acts freely on 𝒮𝐾

𝐺Q , 𝑝
(𝐺Q)+, and

this follows from [KP18, 4.6.17] and the fact that ker(𝒜(𝐺Q
Z(𝑝)
)◦ → 𝒜(𝐺Z(𝑝) )) is a subgroup of

Δ (𝐺Q, (𝐺Q)ad) := ker(𝒜(𝐺Q
Z(𝑝)
) → 𝒜(𝐺Qad

Z(𝑝)
)). Thus,

M𝐾𝐺,𝑝
(𝐺, {ℎ𝐺}) �

[
[𝒜(𝐺Z(𝑝) ) ×𝒮𝐾

𝐺Q , 𝑝
(𝐺Q)+]/𝒜(𝐺Q

Z(𝑝)
)◦

] |𝐽 |
� 𝒮𝐾𝐺,𝑝

(𝐺, {ℎ𝐺}). (B.2.9)

In particular, M𝐾𝐺
(𝐺, {ℎ𝐺}) � 𝒮𝐾𝐺

(𝐺, {ℎ𝐺}). �

B.2.10.
For an arbitrary extension 𝐿/𝐸 , taking the fibre in (B.1.30) over a fixed O𝐿, (𝜈) -point (𝐴★

0 , 𝜄
★
0 , 𝜆

★
0 )

of MO𝐹 , 𝜉
0 gives a flat integral model M★

𝐾𝐺
(𝐺, {ℎ𝐺}) over O𝐿 . Here, we use the upper script ★ to

emphasize that the model M★
𝐾𝐺
(𝐺, {ℎ𝐺}) thus obtained a priori depends on the choice of a base point

(𝐴★
0 , 𝜄

★
0 , 𝜆

★
0 ). However, recall from B.1.17 that the reflex field for (𝐺, {ℎ𝐺}) is F, by [KP18] we also

have a normal integral model 𝒮𝐾𝐺 (𝐺, {ℎ𝐺}) over SpecO𝐹, (𝑣) , which is given by

𝒮𝐾𝐺,𝑝 (𝐺, {ℎ𝐺}) :=
[
[𝒜(𝐺Z(𝑝) ) ×𝒮𝐾

𝐺Q , 𝑝
(𝐺Q)+O𝐿, (𝜈) ]/𝒜(𝐺

Q

Z(𝑝)
)◦

] |𝐽 |
. (B.2.11)

Here, 𝒜(𝐺Z(𝑝) ) is the analogous group for G as defined in (B.2.2), and 𝐽 ⊂ 𝐺 (Q𝑝) denotes the set
analogous to 𝐽 defined above (B.2.4), using the analogous map for G as in (B.2.3).

Lemma B.2.12. M𝐾𝐺 (𝐺, {ℎ𝐺}) � 𝒮𝐾𝐺 (𝐺, {ℎ𝐺})O𝐿, (𝜈) as SpecO𝐿, (𝜈) -schemes.

Proof. Consider the map

M★
𝐾𝐺,𝑝
(𝐺, {ℎ𝐺}) → 𝒮𝐾

𝐺Q , 𝑝
(𝐺Q)O𝐿, (𝜈) (B.2.13)

(𝐴★
0 , 𝜄

★
0 , 𝜆

★
0 , 𝐴, 𝜄, 𝜆, 𝜂

𝑝) ↦→ (𝐴, 𝜄, 𝜆) (B.2.14)

given by forgetting the component (𝐴★
0 , 𝜄

★
0 , 𝜆

★
0 ) in the tuple. Let 𝒮★

𝐾
𝐺Q , 𝑝
(𝐺Q)O𝐿, (𝜈) denote the image

of the map (B.2.13). We take an arbitrary (𝐴, 𝜄, 𝜆) ∈ 𝒮★
𝐾
𝐺Q , 𝑝
(𝐺Q)+O𝐿, (𝜈) , and thus by construction of

M★
𝐾𝐺
(𝐺, {ℎ𝐺}), we clearly have

(𝐴★
0 , 𝜄

★
0 , 𝜆

★
0 , 𝐴, 𝜄, 𝜆, 𝜂

𝑝) ∈M𝐾𝐺,𝑝
(𝐺). (B.2.15)

Take any (ℎ, 𝛾−1) ∈ 𝒜(𝐺Z(𝑝) ). In particular, 𝛾 ∈ 𝐺ad � (𝐺Q)ad. Again as in [KP18, 4.5.3], let
P𝛾 ⊂ 𝐺Q be the torsor given by the fibre over 𝛾 ∈ (𝐺Q)ad(Z(𝑝) ). By the same reasoning as in the
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proof of Lemma B.2.5, we also have

(ℎ, 𝛾−1) · (𝐴★
0 , 𝜄

★
0 , 𝜆

★
0 , 𝐴, 𝜄, 𝜆, 𝜂

𝑝) = (𝐴★
0 , 𝜄

★
0 , 𝜆

★
0 , 𝐴

P𝛾 , 𝜆P𝛾 , 𝜄P𝛾 , 𝜂P𝛾 ) ∈M𝐾𝐺,𝑝
(𝐺)

gives another point in the fibre over (𝐴★
0 , 𝜄

★
0 , 𝜆

★
0 ) under the map (B.1.30). The rest of the argument

proceeds similarly as in the proof of Lemma B.2.5 – that is, the kernel ker(𝒜(𝐺Q
Z(𝑝)
)◦ → 𝒜(𝐺Z(𝑝) ))

acts freely on 𝒮𝐾
𝐺Q , 𝑝
(𝐺Q)+. In particular, we have

M★
𝐾𝐺,𝑝
(𝐺) �

[
[𝒜(𝐺Z(𝑝) ) ×𝒮

★
𝐾
𝐺Q , 𝑝
(𝐺Q)+O𝐿, (𝜈) ]/𝒜(𝐺

Q

Z(𝑝)
)◦

] |𝐽 |
, (B.2.16)

and thus, M★
𝐾𝐺
(𝐺) � 𝒮𝐾𝐺 (𝐺)O𝐿, (𝜈) . (Since the choice of base point ★ does not affect the proof, we

may drop the upper script ★ from our notations.) �

B.2.17.
We consider the Drinfeld level structure integral models analogous to those in [RSZ20, § 4.3]. Consider
the embedding �̃� : Q ↩→ Q𝑝 , which identifies

HomQ(𝐹,Q) � HomQ(𝐹,Q𝑝). (B.2.18)

The above identification (B.2.18) then gives an identification

{𝜑 ∈ HomQ(𝐹,Q) |𝑤𝜑 = 𝑤} � HomQ𝑝 (𝐹𝑤 ,Q𝑝), (B.2.19)

where 𝑤𝜑 denotes the p-adic place in F induced by �̃� ◦ 𝜑.
We fix a place 𝑣0 of F over p that is split in F (and possibly ramified over p) into 𝑤0 and another

place 𝑤0 in F. We require, moreover, that the CM type Φ considered in (B.1.2) and the chosen place 𝜈
of E above p satisfy the following matching condition:

{𝜑 ∈ Hom(𝐹,Q) |𝑤𝜑 = 𝑤0} ⊂ Φ. (B.2.20)

This condition (B.2.20) only depends on the place 𝜈 of E induced by �̃�.
Now we introduce a Drinfeld level structure at 𝑣0. Recall the level structure subgroup 𝐾𝐺 from

(B.1.20). We define a variant compact open subgroup 𝐾𝑚
𝐺 ⊂ 𝐺 (A𝐹0 , 𝑓 ) in exactly the same way as

𝐾𝐺 , except that, in the 𝑣0-factor, we require 𝐾𝑚
𝐺,𝑣0
⊂ 𝐺 (𝐹0,𝑣0 ) to be the principal congruence subgroup

modulo 𝔭𝑚
𝑣0 inside 𝐾𝐺,𝑣0 . Clearly, 𝐾𝐺 = 𝐾𝑚=0

𝐺 . As in (B.1.20), we define 𝐾𝑚

𝐺
= 𝐾𝑍Q × 𝐾𝑚

𝐺 .
Let Λ𝑣0 = Λ𝑤0 ⊕ Λ𝑤0 denote the natural decomposition of the lattice Λ𝑣0 attached to the split place

𝑣0. For a point (𝐴0, 𝜄0, 𝜆0, 𝐴, 𝜄, 𝜆, 𝜂
𝑝) ∈M𝐾𝐺

(𝐺) (𝑆), we have a decomposition of p-divisible groups

𝐴[𝑝∞] =
∏
𝑤 |𝑝

𝐴[𝑤∞], (B.2.21)

where w ranges over the places of F lying over p. Moreover, we further decompose the 𝑣0-term in
(B.2.21) and consider
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𝐴[𝑣∞0 ] = 𝐴[𝑤∞0 ] × 𝐴[𝑤∞0 ], (B.2.22)

where, when p is locally nilpotent on S, the p-divisible group 𝐴[𝑤∞0 ] satisfies the Kottwitz condition of
type 𝑟 |𝑤0 for the action of O𝐹,𝑤0 on its Lie algebra, in the sense of [RZ17, §8]. Here, 𝑟 |𝑤0 denotes the
restriction of the function r on HomQ(𝐹,Q) to HomQ𝑝 (𝐹𝑤0 ,Q𝑝) under (B.2.19).

Likewise, we have the same decomposition as (B.2.22) for 𝐴0; that is, we have

𝐴0 [𝑣∞0 ] = 𝐴0 [𝑤∞0 ] × 𝐴0 [𝑤∞0 ] . (B.2.23)

Let 𝜋𝑤0 be a uniformizer of 𝐹0,𝑤0 . In addition to the moduli functor M𝐾𝐺
(𝐺) which classifies tuples

(𝐴0, 𝜄0, 𝜆0, 𝐴, 𝜄, 𝜆, 𝜂
𝑝), we impose the following additional Drinfeld level structure as in [HT01, § II.2];

that is,

◦ an O𝐹,𝑤0 -linear homomorphism of finite flat group schemes

𝜂 : 𝜋−𝑚𝑤0 Λ𝑤0/Λ𝑤0 → HomO𝐹,𝑤0
(𝐴0 [𝑤𝑚

0 ], 𝐴[𝑤
𝑚
0 ]). (B.2.24)

We denote the resulting moduli problem by M𝐾𝑚
𝐺
(𝐺), which is relatively representable by a finite

flat morphism to M𝐾𝐺
(𝐺). In fact, M𝐾𝑚

𝐺
(𝐺) is regular and flat over SpecO𝐸, (𝜈) by [HT01, Lemma

III.4.1].

B.2.25.
Recall the integral model 𝒮𝐾𝐺

(𝐺, {ℎ𝐺}) (resp. 𝒮𝐾𝐺 (𝐺, {ℎ𝐺})) defined in (B.2.4) (resp. (B.2.11)).
We define 𝒮𝐾𝑚

𝐺
(𝐺, {ℎ𝐺}) (resp. 𝒮𝐾𝑚

𝐺
(𝐺, {ℎ𝐺})O𝐿, (𝜈) ) as the normalization of 𝒮𝐾𝐺

(𝐺, {ℎ𝐺}) (resp.
𝒮𝐾𝐺 (𝐺, {ℎ𝐺})O𝐿, (𝜈) ) inside Sh𝐾𝑚

𝐺
(𝐺, {ℎ𝐺}) � 𝑀𝐾𝑚

𝐺
(𝐺) (resp. Sh𝐾𝑚

𝐺
(𝐺, {ℎ𝐺})𝐿 � 𝑀𝐾𝑚

𝐺
(𝐺)𝐿).

Corollary B.2.26. 𝒮𝐾𝑚
𝐺
(𝐺, {ℎ𝐺}) �M𝐾𝑚

𝐺
(𝐺) as SpecO𝐸, (𝜈) -schemes, and

M𝐾𝑚
𝐺
(𝐺, {ℎ𝐺}) � 𝒮𝐾𝑚

𝐺
(𝐺, {ℎ𝐺})O𝐿, (𝜈) (B.2.27)

as SpecO𝐿, (𝜈) -schemes.

Proof. By Lemma B.2.5 (resp. B.2.12), 𝒮𝐾𝑚
𝐺
(𝐺, {ℎ𝐺}) (resp. 𝒮𝐾𝑚

𝐺
(𝐺, {ℎ𝐺})O𝐿 ) is the nor-

malization of 𝒮𝐾𝐺
(𝐺, {ℎ𝐺}) �M𝐾𝐺

(𝐺, {ℎ𝐺}) (resp. 𝒮𝐾𝐺 (𝐺, {ℎ𝐺})O𝐿 �M𝐾𝐺 (𝐺, {ℎ𝐺})) inside
Sh𝐾𝑚

𝐺
(𝐺, {ℎ𝐺}) � 𝑀𝐾𝑚

𝐺
(𝐺) (resp. Sh𝐾𝑚

𝐺
(𝐺)𝐿 � 𝑀𝐾𝑚

𝐺
(𝐺)𝐿). Since M𝐾𝑚

𝐺
(𝐺) is regular and flat, in

particular it is normal. Thus, by [Gro67, IV-2, 6.14.1], M𝐾𝑚
𝐺
(𝐺) is normal (even though it may not

necessarily be regular). By [Sta18, 035I] applied to the scheme M𝐾𝑚
𝐺
(𝐺) (resp. M𝐾𝑚

𝐺
(𝐺)), there ex-

ists a unique morphism 𝒮𝐾𝑚
𝐺
(𝐺, {ℎ𝐺}) → M𝐾𝑚

𝐺
(𝐺) (resp. 𝒮𝐾𝑚

𝐺
(𝐺, {ℎ𝐺}) → M𝐾𝑚

𝐺
(𝐺)), which is

the normalization of M𝐾𝑚
𝐺
(𝐺) (resp. M𝐾𝑚

𝐺
(𝐺)) in Sh𝐾𝑚

𝐺
(𝐺, {ℎ𝐺}) (resp. Sh𝐾𝑚

𝐺
(𝐺, {ℎ𝐺})). Since

M𝐾𝑚
𝐺
(𝐺) (resp. M𝐾𝑚

𝐺
(𝐺)) is already normal, we have an isomorphism 𝒮𝐾𝑚

𝐺
(𝐺, {ℎ𝐺}) �M𝐾𝑚

𝐺
(𝐺)

(resp. M𝐾𝑚
𝐺
(𝐺, {ℎ𝐺}) � 𝒮𝐾𝑚

𝐺
(𝐺, {ℎ𝐺})O𝐿, (𝜈) ). �

B.2.28.
In this last section, we recall the construction of semi-global integral models with AT parahoric level
as in [RSZ20, § 4.4]. Recall the notion of vertex lattice from §B.1.26. We say that a vertex lattice Λ is
almost self-dual if it is a vertex lattice of type 1. We say that a vertex lattice Λ is 𝜋𝑣 -modular (resp.
almost 𝜋𝑣 -modular) if Λ∗ = 𝜋−1

𝑣 Λ (resp. Λ ⊂ Λ∗ ⊂1 𝜋−1
𝑣 Λ).

Suppose 𝑝 ≠ 2 and 𝑣0 is unramified over p. As in §B.1.26, we take a vertex lattice Λ𝑣 ⊂ 𝑊𝑣 for each
prime v of 𝐹0 above p. Unlike in §B.1.26, let (𝑣0,Λ𝑣0) be of one of the following types:
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1. 𝑣0 is inert in F and Λ𝑣0 is almost self-dual as an O𝐹,𝑣0 -lattice;
2. n is even, 𝑣0 ramifies in F and Λ𝑣0 is 𝜋𝑣0 -modular;
3. n is odd, 𝑣0 ramifies in F and Λ𝑣0 is almost 𝜋𝑣0 -modular;
4. 𝑛 = 2, 𝑣0 ramifies in F and Λ𝑣0 is self-dual.

To the moduli functor M𝐾𝐺
(𝐺) which classifies tuples (𝐴0, 𝜄0, 𝜆0, 𝐴, 𝜄, 𝜆, 𝜂

𝑝) as in §B.1.26 (except
that the condition on (𝑣0,Λ𝑣0) is different), we impose the following additional condition:

◦ When the pair (𝑣0,Λ𝑣0) is of AT type (2), (3) or (4), we impose the Eisenstein condition on the
summand Lie𝜓𝐴[𝑣∞0 ] [RSZ20, 4.10];

◦ When the pair (𝑣0,Λ𝑣0) is of AT type (2), we impose additionally the wedge condition [RSZ20, 4.27]
and the spin condition [RSZ20, 4.28]

◦ When the pair (𝑣0,Λ𝑣0) is of AT type (3), we impose additionally the refined spin condition [RSZ18,
(7.9)] on Lie𝜓0 𝐴[𝑣∞0 ].

By [RSZ20, Theorem 4.7], the moduli functor above is representable by a Deligne-Mumford stack flat
over SpecO𝐸, (𝜈) and relatively representable overMO𝐹 , 𝜉

0 , i.e. (B.1.30) still holds in this case. To see that
M𝐾𝐺

(𝐺, {ℎ𝐺}) � 𝒮𝐾𝐺
(𝐺, {ℎ𝐺}) as SpecO𝐸, (𝜈) -schemes, one simply proceeds as in Lemma B.2.5.
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