
Compositio Mathematica118: 217–233, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

217

Topological Representation of Sheaf
Cohomology of Sites

CARSTEN BUTZ1,2 and IEKE MOERDIJK1

1Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, NL-3508 TA Utrecht,
The Netherlands. e-mail: {butz, moerdijk}@math.ruu.nl
2BRICS, Basic Research in Computer Science, Centre of the Danish National Research Foundation,
Department of Computer Science, University of Aarhus, Denmark

(Received: 8 July 1997; accepted in final form: 6 April 1998)

Abstract. For a siteS (with enough points), we construct a topological spaceX(S) and a full
embeddingϕ∗ of the category of sheaves onS into those onX(S) (i.e., a morphism of toposes
ϕ: Sh(X(S))→ Sh(S)). The embedding will be shown to induce a full embedding of derived categor-
ies, hence isomorphisms H∗(S, A) = H∗(X(S), ϕ∗A) for any Abelian sheafA onS. As a particular
case, this will give for any schemeY a topological spaceX(Y) and a functorial isomorphism between
the étale cohomology H∗(Yét, A) and the ordinary sheaf cohomology H∗(X(Y ), ϕ∗A), for any sheaf
A for the étale topology onY .
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1. Introduction and Statement of the Theorem

Many cohomology groups arising in geometry and topology are (or can be) defined
as the cohomology groups of some topos; that is, as the sheaf cohomology groups
of some site. This applies directly to étale and other cohomologies of schemes [1,
10], but also to many others such as Galois cohomology [12] and cyclic cohomo-
logy [2].

The purpose of this paper is to give a general construction which shows that
all these cohomology groups are isomorphic to the ordinary sheaf cohomology
groups of a topological space associated to the site or the topos. When the site is a
groupG (with associated topos ofG-sets), our construction gives a model for the
classifying spaceBG. In general, our result can be interpreted as the construction
of a ‘classifying space’ for any site (satisfying the following technical condition).

Our construction applies to topoiwith enough points. We recall that a pointp of
a toposT is a topos morphismp: S → T , from the toposS of sets intoT . Such a
morphism can equivalently be described as a functorp∗: T → S which preserves
colimits and finite limits, or as a morphism of sitesF:C→ S, whereC is any site
of definition forT . The toposT is said to have enough points if for any sequence
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218 CARSTEN BUTZ AND IEKE MOERDIJK

A → B → C of Abelian groups inT (i.e., sheaves of Abelian groups onC),
the sequence is exact whenever for each pointp of T the associated sequence
p∗A→ p∗B → p∗C is an exact sequence of Abelian groups. We hasten to point
out that virtually all topoi arising in geometric practice have enough points. This
applies, for example, to the presheaf toposĈ on an arbitrary small categoryC, and
to the étale topos associated to a scheme. In fact, any ‘coherent’ topos has enough
points (Deligne, Appendix to Exposé VI in [1]).

For any topological spaceX, the category Sh(X) of sheaves onX is a topos
(with enough points), whose cohomology groups are the ordinary sheaf cohomo-
logy groups ofX [3, 6]. We will prove the following result

THEOREM. LetT be a topos with enough points. There exists a topological space
XT and a topos morphismϕ: Sh(XT )→ T , such that

(i) ϕ∗ is a full and faithful embedding ofT into Sh(XT );
(ii) for any Abelian groupA in T , the morphismϕ induces isomorphisms

Hn(T , A)
'→ Hn(XT , ϕ

∗(A)), n > 0.

Here H∗(XT , ϕ
∗(A)) denotes the sheaf cohomology of the spaceXT with the

sheafϕ∗(A) as coefficients. We will give an explicit construction of this spaceXT

from T , which depends not only onT , but also on the choice of a site forT . For
this reason, the constructionT 7→ XT is only functorial inT in a weak sense (see
Remark 2.4 below).

Note that, since the topos Sh(XT ) always has enough points, the (mild) as-
sumption thatT has enough points is a necessary one, being implied by part (i) of
the theorem. For part (ii) of the theorem, we will actually prove that the derived
functors Rqϕ∗ of the direct image functorϕ∗: Sh(XT )→ T have the property that

Rqϕ∗(ϕ∗A) =
{
A, q = 0,

0, q > 0,

for any Abelian groupA in T . This property states thatϕ: Sh(XT ) → T is an
acyclic morphism. It implies in particular thatϕ∗ induces a full and faithful em-
bedding of derived categoriesD+(T ) ↪→ D+(XT ). The same argument applies to
ringed topoi: if OT is any ring inT andD+(T ,OT ) is the associated derived
category of complexes ofOT -modules [1], thenϕ∗ induces a full and faithful
embeddingD+(T ,OT ) ↪→ D+(XT , ϕ

∗(OT )).

The theorem, as well as the construction of the spaceXT , have been inspired
by [8], where it is proved that any topos (not necessarily with enough points) is
cohomologically equivalent to the topos of sheaves on a ‘locale’. (A locale is an
abstract notion of ‘topological space without points’.) However, our theorem is
not a consequence of this result of [8]. Furthermore, our proof is different. The
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TOPOLOGICAL REPRESENTATION OF SHEAF COHOMOLOGY OF SITES 219

proof in [8] made essential use of the ‘internal logic’ of a topos and its behaviour
under change-of-base. These methods cannot be applied to the topological space
XT constructed here.

2. Construction of the SpaceXT and of the Map ϕ

In this section,T denotes a fixed topos with enough points. Recall [1, 9] that the
latter means that the functorsp∗: T → S, for all pointsp: S → T , are jointly
conservative. Although the collection of all such pointsp is in general a proper
class rather than a set, there will always be aset P of points p for which the
functorsp∗, for p ∈ P , are already jointly conservative. We will fix such a setP ,
and henceforth refer to points in this set assmallpoints ofT . For a pointp of T
and an object (sheaf)E in T , we will also use the common notationEp for the set
p∗(E), and refer toEp as ‘the stalk ofE atp’.

Next, we fix a sheafG in T so that the collection of all subsheavesC ⊂ Gn,
n > 0, generatesT . For example,G can be the disjoint sum (coproduct) of all the
objects in some site of definition forT . But often, there is a smaller and much more
natural choice forG: the toposT will generally contain some ‘universal’ structure
U of a certain kind. For example, in the case of the étale topos,U is the universal
strictly local ring [5]. More generally, ifT is a classifying topos,U is the universal
model for the theory classified byT (see [9], Chapter VIII). This objectU will
have the property required forG, namely that the subsheaves of finite products
U × · · · × U generateT .

Finally, we fix an infinite setI , which is big enough so that it surjects onto all
the stalksGp, for all small pointsp of T ; in other words, card(Gp) 6 card(I ).

The construction of the spaceXT will depend on these choices, of the setP
of points, of the sheafG, and of the setI . (We come back to this dependence in
Remark 2.4 below.)

The points of the spaceX = XT are now defined to be equivalence classes of
pairs (p, α), wherep is a small point ofT andα is a function from a subset of
I to Gp, I ⊃ dom(α)

α→ Gp, with the property thatα−1(g) is infinite, for each
g ∈ Gp. Two such pairs(p, α) and (q, β) are equivalent(i.e., define the same
point x ∈ X), if there exists a natural isomorphism of functorsθ :p∗ → q∗ so
that β = θG ◦ α. We will often write x = (p, α) for a point x ∈ X, and not
distinguish explicitly between such pairs(p, α) and their equivalence classes.

The topology on this setX of points is defined as follows: For anyn > 0 and
any subsheafC ⊂ Gn, and anyi1, . . . , in ∈ I , the set

Ui1,...,in,C = {(p, α) | i1, . . . , in ∈ dom(α) and(α(i1), . . . , α(in)) ∈ Cp} (1)

is to be a basic open set. Note that this set is well-defined on equivalence classes,
i.e.,(p, α) ∈ Ui1,...,in,C iff (q, β) ∈ Ui1,...,in,C. In the sequel, we will usually writei
for i1, . . . , in andα(i) for (α(i1), . . . , α(in)), so that

Ui,C = {(p, α) | i ∈ dom(α) andα(i) ∈ Cp}. (2)
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We remark that, by changingC, we can always assume that the sequencei =
(i1, . . . , in) does not contain repetitions. For example,Ui,i,C for C ⊂ G2 is equal
toUi,C ′ for C ′ the pullback ofC along the diagonal1:G→ G2. In the sequel we
will often tacitly assume that a sequencei does not contain repetitions.

LEMMA 2.1. The setsUi,C form a basis for a topology onX.
Proof. This is clear from the formulaUi,C ∩Uj,D = Ui,j,C×D, for anyC ⊂ Gn,

D ⊂ Gm, i = (i1, . . . , in), j = (j1, . . . , jm), andi, j the concatenation of these
two sequences. 2
It can be shown that the spaceX thus defined is always a sober topological space
([1], IV.4.2.1), although it is not a Hausdorff space.

Next, we describe the morphismϕ: Sh(X) → T occurring in the statement of
the theorem. Recall that such a morphism of topoi is given by an inverse image
functorϕ∗: T → Sh(X) and a direct image functorϕ∗: Sh(X)→ T , right adjoint
to ϕ∗. The functorϕ∗ preserves colimits and finite limits, and these properties
imply that ϕ∗ has a right adjoint, unique up to isomorphism. So, to defineϕ, it
suffices to define such a functorϕ∗: T → Sh(X). For any sheafE in T , consider
the setϕ∗(E) = {(p, α, e) | (p, α) ∈ X, e ∈ Ep}, with obvious projection
π :ϕ∗(E) → X. (Again, being more precise we should speak about equivalence
classes of such triples, where(p, α, e) is equivalent to(q, β, g) if there exists a
natural isomorphism of functorsθ :p∗ → q∗ so thatβ = θG ◦ α andθE(e) = g.)
The setϕ∗(E) carries a natural topology, with basic open setsVi,C,f = {(p, α, e) |
(p, α) ∈ Ui,C and e = f (α(i))}, for any i = (i1, . . . , in) andC ⊂ Gn as above,
and any morphismf :C → E in T .

LEMMA 2.2. These setsVi,C,f form the basis for a topology onϕ∗(E), which
makes the projectionπ :ϕ∗(E)→ X into a local homeomorphism.

Proof. Consider two such basic open setsVi,C,f andVj,D,g. Leth:C×ED→ E

be the map from the pullback,h = f ◦ π1 = g ◦ π2. ThenVi,C,f ∩ Vj,D,g =
Vi,j,C×ED,h.

Thus the setsVi,C,f form a basis for a well-defined topology onϕ∗(E). Fur-
thermore, the sectionsσ :Ui,C → Vi,C,f , andσ (p, α) = fp(α(i)) are well-defined
on equivalence classes and show that the projectionπ :ϕ∗(E) → X restricts to a
homeomorphismVi,C,f → Ui,C . 2
Thusπ :ϕ∗(E)→ X is a sheaf onX. Note that for the stalk of this sheaf at a point
(p, α) of X we have

ϕ∗(E)(p,α) = Ep. (3)

PROPOSITION 2.3. The constructionE 7→ ϕ∗(E) defines the inverse image
functor of a topos morphismϕ: Sh(X)→ T .
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Proof. We observe first that the construction is functorial inE. If h:E → F is
a morphism inT , the induced map

ϕ∗(h):ϕ∗(E)→ ϕ∗(F ), (p, α, e) 7→ (p, α, hp(e))

is continuous for the topologies just defined. To see this, take any point(p, α, e)

of ϕ∗(E), and letVi,C,f be a basic open neighbourhood of(p, α, hp(e)) in ϕ∗(F ),
wheref :C → F . Since the subsheaves ofGn generateT , it follows that there
is aB ⊂ Gm and a mapu:B → C ×F E so that, forc = α(i), there exists a
point b ∈ Bp with up(b) = (c, e) ∈ (C ×F E)p. Choosej = (j1, . . . , jm) with
jk ∈ I , so thatb = α(j) = (α(j1), . . . , α(jm)). Let v = π1 ◦ u:B → C, and let
D = graph(v) ⊂ B × C ⊂ Gm ×Gn. ThenW = Vj,i,D,π2◦u is a basic open set in
ϕ∗(E), such that(p, α, e) ∈ W andϕ∗(h)mapsW into Vi,C,f .

This shows thatϕ∗ is a functor. It remains to verify thatϕ∗ preserves colimits
and finite limits. But it suffices to show that this holds at the level of the stalks,
where it is obvious from the identity (3). 2

Remark2.4. The construction ofX = XT depends onP , G and I , in a
functorial way. Clearly, for a larger setP ′ ⊃ P of small points, there is a map
X(P )→ X(P ′) overT . Similarly, it will be clear from Section 3 that a surjection
s: J � I induces a maps∗:X(I)→ X(J ), while if G′ ⊃ G is a larger choice of
an object so that the subsheaves of its finite powers generate, there is a restriction
mapX(G′)→ X(G). It is a consequence of our theorem that all these comparison
maps induce isomorphisms in cohomology for Abelian coefficients which come
from T , so that the dependence ofX onP ,G andI is inessential in this sense.

If f : T1→ T2 is a topos morphism, we can fix first the parametersP1 andI1 for
T1 andG2 for T2, and then chooseP2 large enough to include all compositesf ◦p
for p ∈ P1, andG1 ⊃ f ∗(G2), and finallyI2 so large that there exists a surjection
I2→ I1. Then the constructed spacesX1 andX2 fit into a commutative diagram

Sh(X1)
f̃- Sh(X2)

T1

ϕ1
?

f
- T2.

?
ϕ2

3. Enumeration Spaces

The fibres of the morphismϕ: Sh(XT )→ T will turn out to be (approximated by)
certain acyclic topological spaces, which we will discuss separately in this section.

Let I be a fixed infinite index set. For any setS, with cardinality card(S) 6
card(I ), the enumeration space En(S) (or EnI (S)) has as points all functions
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α:D → S defined on some subsetD = dom(α) ⊂ I , and with the property that
α−1(s) ⊂ D is infinite for eachs ∈ S. The basic open sets of En(S) are the sets of
the formVi1,...,in,s1,...,sn = {α | α(ik) = sk , for k = 1, . . . , n}, for anyi1, . . . , in ∈ I
ands1, . . . , sn ∈ S. It will be convenient to use a shorter notation, and writeu for
the finite partial function fromI to S defined byu(ik) = sk (k = 1, . . . , n), and
write Vu = {α ∈ En(S) | u ⊂ α} for the same basic open set. Note that forn = 0
(i.e.,u = ∅) the entire space En(S) occurs among these basic open sets.

NOTATION 3.1. These finite partial functionsu induce various continuous opera-
tions on En(S), which will be used in the sequel. Forα ∈ En(S), denote byα − u
the restriction ofα to dom(α)−dom(u). Furthermore, denote byα∪u the union of
these partial functions, defined only in case dom(α)∩dom(u) = ∅. Finally, we will
use the notation(u/α) for (α − u) ∪ u, which is the function obtained by ‘writing
u overα’.

Remark3.2. In relation to Remark 2.4, we note that ifS ′ ⊂ S is a sub-
set, the restriction ofα:D → S to {i ∈ D | α(i) ∈ S ′} defines a continuous
map res: En(S) → En(S ′). Furthermore, any surjectiont : J → I defines by
composition an obvious continuous mapt∗: EnI (S)→ EnJ (S).

LEMMA 3.3. Each enumeration spaceEn(S) is connected and locally connected;
in fact, each basic open setVu is connected.

Proof. Fix an open setVu, and letVu = O1 ∪O2 be a cover by two nonempty
open sets. Choose pointsα1 ∈ O1 and α2 ∈ O2, and basic open setsVu1 and
Vu2 with α1 ∈ Vu1 ⊂ O1 andα2 ∈ Vu2 ⊂ O2. These are given by finite partial
functionsu1, u2 with u ⊂ u1 ⊂ α1 andu ⊂ u2 ⊂ α2. Let β = u2/α1 ∈ O2 and
γ = (α1− u2)∪ u. Thus,γ ⊂ β andγ ⊂ α1, henceβ andα1 belong to every open
neighbourhood ofγ in En(S). Now γ ∈ Vu, soγ ∈ O1 or γ ∈ O2. But if γ ∈ O1,
thenβ ∈ O1∩O2, and ifγ ∈ O2 thenα1 ∈ O1∩O2. ThusO1∩O2 6= ∅, showing
thatVu is connected. 2
Next we consideřCech homology of En(S). The following proposition forms the
crucial part of the proof of our theorem.

PROPOSITION 3.4. For any coverU of En(S) by basic open sets, we have
Hn(U,Z) = 0 (n > 0).

Proof. Let U = {Vuσ | σ ∈ 6} be such an open cover, indexed by a set6. To
avoid too many indices, we will in this proof writeσ for uσ , andVσ for Vuσ . Let
C•(U) be the usuaľCech complex, i.e.,Cn(U) is the free Abelian group on the set
Nn(U) = {(σ0, . . . , σn) | Vσ0∩ · · ·∩Vσn 6= ∅}. Note that(σ0, . . . , σn) ∈ Nn(U) iff
the finite partial functionsσ0, . . . , σn are compatible, in the sense that their union
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σ0 ∪ · · · ∪ σn (short foruσ0 ∪ · · · ∪ uσn) is well-defined. We will show that this
complex is chain contractible, by exhibiting an explicit chain homotopyh:

0← Z
∂

�
h−1

C0(U)
∂

�
h0

C1(U)
∂

�
h1

C2(U)
∂

�
h2

· · ·

∂ ◦ h−1 = id, ∂hn + hn−1∂ = id. (4)

To defineh, we fix a pointα ∈ En(S) and an indexτ ∈ 6 with α ∈ Vuτ . Further-
more, for each sequenceσ = (σ0, . . . , σn) ∈ Nn(U), we choose an indexf (σ ) so
that

α − (σ0 ∪ · · · ∪ σn ∪ τ) ∈ Vf(σ ). (5)

Thehn are now defined by induction, by

h−1(1) = τ,
hn(σ ) = (−1)n+1[σf (σ )− hn−1(∂σ )f (σ )].

(6)

Hereσ is the tuple(σ0, . . . , σn), σf (σ ) = (σ0, . . . , σn, f (σ )), andhn−1(∂σ )f (σ )

is the sum
∑
(−1)ihn−1(σ0 . . . σ̂i . . . σn)f (σ ) obtained by addingf (σ ) to the end

of every term inhn−1(∂σ ). For example,

h0(σ0) = −(σ0f (σ0)− τf (σ0)),

h1(σ0σ1) = σ0σ1f (σ0σ1)+ σ1f (σ1)f (σ0σ1)− τf (σ1)f (σ0σ1)−
− σ0f (σ0)f (σ0σ1)+ τf (σ0)f (σ0σ1),

etc. Let us observe first thathn(σ ) is a well-defined element ofCn+1(U); i.e., that
for any sequenceµ = (µ0, . . . , µn+1) occurring inhn(σ ), the corresponding basic
openVµ = Vµ0 ∩ · · · ∩ Vµn+1 is nonempty. We will show by induction onn that
for any generatorµ occurring inhn(σ ), there exists a pointβ = βσ (µ) in En(S)
such that

β ⊃ α − (σ0 ∪ · · · ∪ σn ∪ τ) and β ∈ Vµ = Vµ0 ∩ · · · ∩ Vµn+1. (7)

For n = 0, the two generators occurring inh0(σ0) areσ0f (σ0) andτf (σ0) and,
by (5), we can choose

β(σ0f (σ0)) = α − (σ0 ∪ τ) ∪ σ0 ∈ Vσ0f (σ0),

β(τf (σ0)) = α − (σ0 ∪ τ) ∪ τ ∈ Vτf (σ0).

Suppose, then, that we have found a pointβ as in (7) for each(σ0, . . . , σn) and each
generatorµ in hn(σ ). Now consider a sequenceσ = (σ0, . . . , σn+1) ∈ Nn+1(U),
with

hn(σ ) = (−1)n+1[σf (σ )− hn−1(∂σ )f (σ )] (8)
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as in (6). For the generatorσf (σ ), we can takeβ = (α− (σ0∪ · · · ∪ σn+1 ∪ τ))∪
(σ0 ∪ · · · ∪ σn+1) = (σ0 ∪ · · · ∪ σn+1)/(α − τ), since by (5), thisβ will satisfy
β ∈ Vσ f (σ ). Next considerhn−1(∂σ )f (σ ). For a generatorµ = (µ0, . . . , µn+1)

in h(σ0 . . . σ̂i . . . σn),we have by induction found aβ0 so that

β0 ⊃ α − (σ0 ∪ . . . σ̂i . . . ∪ σn ∪ τ) and β0 ∈ Vµ.
Also, f (σ ) ⊂ α − (σ0 ∪ · · · ∪ σn ∪ τ) ⊂ α − (σ0 ∪ · · · σ̂i · · · ∪ σn ∪ τ), so
β0 ∈ Vµf (σ ). Thusβ0 is also a witness for the fact that the partµf (σ ) occurring
in hn−1(∂σ )f (σ ) corresponds to a nonempty intersection of basic open sets.

It remains to prove the identities (4) for a chain homotopy. Clearly,∂h−1 = id,
while for σ0 ∈ C0(U),

∂h0(σ0)+ h−1(∂σ0) = −∂(σ0f (σ0))+ ∂(τf (σ0))+ τ
= −(f (σ0)+ σ0)+ (f (σ0)− τ)+ τ
= σ0.

We proceed by induction, and suppose the identity∂hn + hn−1∂ = id has been
proved. Consider, then, any generatorσ0 . . . σn+1 ∈ Cn+1(U). The induction hypo-
thesis implies that∂hn(∂σ ) = ∂σ − hn−1(∂

2σ ) = ∂σ , whence

∂hn(∂σ )f (σ ) = (∂σ )f (σ ). (9)

Thus, using the general identity

∂(µ0 . . . µnρ) = ∂(µ0 . . . µn)ρ + (−1)n+1µ0 . . . µn (10)

we find

∂hn+1(σ ) = ∂(−1)n[σf (σ )− hn(∂σ )f (σ )] (by definition)

= (−1)n[(∂σ )f (σ )+ (−1)nσ − ∂(hn(∂σ )f (σ ))] (by (10))

= σ + (−1)n[(∂σ )f (σ )− (∂hn(∂σ ))f (σ )−
−(−1)n+2hn(∂σ )] (by (10))

= σ − hn(∂σ )+ (−1)n[(∂σ )f (σ )− ∂hn(∂σ )f (σ )]
= σ − hn(∂σ ).

This completes the proof of the proposition. 2
PROPOSITION 3.5.LetV be a basic open set inEn(S), and letU be a cover of
V by basic open sets. ThenHn(U,Z) = 0 (n > 0).

Proof. This is proved in exactly the same way as the previous proposition.
If V = Vu, then one modifies the proof by restricting all constructions to finite
sequencesv or pointsα with u ⊂ v, α. 2
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4. Construction of ϕ! and a Projection Formula

The enumeration spaces En(S) are related to the spaceX = XT , constructed for a
topos above, in the following way. For each small pointp: S → T , with stalkGp

of the special sheafG, there is a continuous mapip: En(Gp)→ X, ip(α) = (p, α).
Denote byπ : En(Gp) → pt the unique map into the one-point space. These

two maps induce topos morphismsS
π← Sh(En(Gp))

ip→ Sh(X), which relate to
the mapϕ: Sh(X)→ T in the following way.

LEMMA 4.1. The square

Sh(En(Gp))
ip- Sh(X)

S

π
? p - T

?
ϕ (11)

commutes up to natural isomorphism.
Proof. Let E be an object inT , with sheafϕ∗(E) on X as constructed in

Section 2. Using the notation of the proof of Lemma 2.2, consider a canonical
sectionσ :Ui,C → Vi,C,f ⊂ ϕ∗(E), σ (p, α) = fp(α(i)), of the sheafϕ∗(E). The
connected components ofi−1

p (Ui,C) are the basic open setsVg = {α | α(i1) =
g1, . . . , α(in) = gn}, for all g = (g1, . . . , gn) ∈ Cp ⊂ Gn

p. The sectionσ is
constant onVg, with valuefp(g1, . . . , gn). This shows thati∗pϕ∗(E) is a constant
sheaf, with stalkEp sincei∗pϕ∗(E)(p,α) = ϕ∗(E)(p,α) = Ep. 2
We note that the square (11) need not be a pullback of topoi, although it is very
close to being one: En(Gp) is the space of points of the topos theoretic pullback.

COROLLARY 4.2. Let σ :Ui,C → ϕ∗(E) be any section of the sheafϕ∗(E),
defined on the basic open setUi,C . Then for any two points(p, α) and (p, β) in
Ui,C,

α(i) = β(i)⇒ σ (p, α) = σ (p, β). (12)

Proof. The sectionσ restricts alongip: En(Gp)→ X to a section oni−1
p (Ui,C)

of the constant sheaf with stalkEp. This section is constant on the connected
componentsVg = {α | α(i) = g} of i−1

p (Ui,C) already occurring in the proof
of Lemma 4.1. Formula (12) follows. 2
Recall that a topos morphismϕ: T ′ → T consists of two particular functorsϕ∗ and
ϕ∗, with ϕ∗ left exact and left adjoint toϕ∗. The particular morphismϕ: Sh(X)→
T constructed above, has the following additional property.

180029.tex; 23/08/1999; 9:12; p.9

https://doi.org/10.1023/A:1001169215774 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001169215774


226 CARSTEN BUTZ AND IEKE MOERDIJK

PROPOSITION 4.3.There exists a functorϕ!: Sh(X) → T which is left adjoint
to ϕ∗: T → Sh(X), i.e.,

HomT (ϕ!(F ),E) ∼= HomSh(X)(F, ϕ
∗(E)) (13)

for any sheafF onX and any objectE of the toposT .
Proof. For the proof of this proposition, we will construct for each sheafF on

X an objectϕ!(F ) of the toposT . Note that each basic open setUi,C ⊂ X can be
viewed as a sheaf onX (where the sheaf projection is the inclusionUi,C ↪→ X).
Furthermore, an arbitrary sheafF is the colimit of such sheavesUi,C (the colimit
being taken over the poset of sections ofF defined on basic open sets). Thus, since
the desired left adjoinedϕ! must necessarily commute with colimits, it suffices
to constructϕ!(Ui,C) for each basic open setUi,C and prove the natural bijective
correspondence of (13) in this special case

Hom(ϕ!(Ui,C), E) ∼= 0(Ui,C, ϕ∗(E)). (14)

We define

ϕ!(Ui,C) =def C. (15)

To prove (14) for this definition, we shall use the following two lemmas.

LEMMA 4.4. Let Ui,C andUj,B be two basic open sets inX, and suppose that
Uj,B 6= ∅. ThenUj,B ⊂ Ui,C iff the sequencei = (i1, . . . , in) is a subsequence of
j = (j1, . . . , jm), and the corresponding projectionGm→ Gn mapsB intoC.

Proof. The implication (⇐) is clear. For (⇒), choose a point(p, α) ∈ Uj,B . If ik
is any index ini which does not occur among(j1, . . . , jm), let α′ be the restriction
of α to dom(α) − {ik}. Then(p, α′) ∈ Uj,B but (p, α′) /∈ Ui,C . This shows that
if Uj,B ⊂ Ui,C then i must be a subsequence ofj . Now consider the projection
π :Gm → Gn coming from the fact thati is a subsequence ofj . (Here we use
that we can assume that bothi andj do not contain repetitions, as explained just
below (2).) To proveπ(B) ⊂ C, it suffices to prove that, for each small pointp,
πp(Bp) ⊂ Cp, (because the stalks at the small points are jointly conservative, by
assumption).

Take(g1, . . . , gm) ∈ Bp, and letα ∈ En(Gp) be any enumeration withα(jk) =
gk (k = 1, . . . , m). Then(p, α) ∈ Uj,B ⊂ Ui,C , soπp(g1, . . . , gm) = (α(i1), . . . ,
α(in)) = α(i) ∈ Cp. 2
LEMMA 4.5. LetUi,C be a basic open set. Let{Ujξ ,Bξ } be a family of nonempty ba-
sic open subsets ofUi,C, with associated projectionsπξ :Bξ → C as in Lemma 4.4.
ThenUi,C is covered by{Ujξ ,Bξ } in the spaceX iff {πξ :Bξ → C} is an epimorphic
family inT .
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Proof. To simplify notation, we just treat the case wherei = i1 andC ⊂ G,
while j = (i1, jξ ) is a sequence of length 2 andBξ ⊂ G2. By Lemma 4.3, the
projectionπ2:G2→ G maps eachBξ intoC, giving a mapπξ :Bξ → C.

Suppose now thatUi,C = ⋃
Ujξ ,Bξ . To show that{πξ :Bξ → C} is an epi-

morphic family, it suffices to prove, for each small pointp, Cp = ⋃ξ πξ (Bξ)p.

Take anyc ∈ Cp, and choose an enumerationα ∈ En(Gp) with α(i) = c. Then
(p, α) ∈ Ui,C , hence for someξ also (p, α) ∈ Ujξ ,Bξ . Thus,jξ ∈ dom(α) and
b = (α(i), α(jξ )) ∈ (Bξ )p, whencec = πξ(b) ∈ πξ(Bξ )p, as desired.

The converse is similar. 2
We now continue the proof of Proposition 4.3, and show the isomorphism (13)
for ϕ!(Ui,C) = C. In one direction, any mapf :C → E in T defines a canonical
section

σf :Ui,C → ϕ∗(E), σf (p, α) = fp(α(i)), (16)

(as in the proof of Lemma 2.2).
In the other direction, supposeσ :Ui,C → ϕ∗(E) is an arbitrary section of

ϕ∗(E). Locally, σ must be a canonical section as described in Section 2. Thus,
there is a cover

Ui,C =
⋃
ξ

Ujξ ,Bξ (17)

and for eachξ a mapfξ :Bξ → E so that

σ (p, α) = (fξ )p(α(jξ )), for (p, α) ∈ Ujξ ,Bξ . (18)

By Lemma 4.5, the identity (17) implies that theBξ form a cover ofC in the
toposT . Let us simplify the notation as in the proof of Lemma 4.5, and write
i = i1, j = (i1, jξ ), C ⊂ G, Bξ ⊂ G2, andπξ :Bξ → C for the restriction of the
first projectionG2 → G. We claim that the mapsfξ :Bξ → E form a compatible
family for this cover{Bξ → C}, hence define a unique mapf :C → E with
f ◦ πξ = fξ . For this, it needs to be shown, for any two indicesξ andζ , that the
square

Bξ ×C Bζ π2 - Bζ

Bξ

π1
?

fξ
- E
?
fζ (19)

commutes inT . It suffices to check that the corresponding diagram of stalks com-
mutes for every small pointp. Choose such a pointp, and consider an element
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b ∈ (Bξ ×C Bζ )p. Write π1(b) = (c, bξ ) ∈ (Bξ)p andπ2(b) = (c, bζ ) ∈ (Bζ )p.
Choose now two enumerationsα, β ∈ En(Gp), such that

α(i) = c, α(jξ ) = bξ ,
β(i) = c, β(jζ ) = bζ .

Then(p, α) ∈ Ujξ ,Bξ and(p, β) ∈ Ujζ ,Bζ , so

(fξ ◦ π1)p(b) = (fξ )p(c, bξ )

= (fξ )p(α(i), α(jξ ))

= σ (p, α) (by (18)),

and similarly(fζ ◦ π2)p(b) = σ (p, β). But (p, α), (p, β) ∈ Ui,C , while α(i) =
β(i), soσ (p, α) = σ (p, β) by Corollary 4.2. This proves that(fξ ◦ π1)p(b) =
(fζ ◦ π2)p(b) for anyb ∈ (Bξ ×C Bζ )p, and hence that (19) commutes. Thus, the
fξ together uniquely determine a mapf = fσ :C → E.

It is now straightforward to check that these constructions, ofσf from f and of
fσ from σ , are mutually inverse, and prove the required bijection (14).

This completes the proof of Proposition 4.3. 2
Let us reconsider the square (11) at the beginning of this section. Since En(Gp)

is a locally connected space (Lemma 3.3) the inverse image functorπ∗: S →
Sh(En(Gp)), which sends a set to the constant sheaf, has a left adjoint
π!: Sh(En(Gp)) → S. For a sheafF on En(Gp), π!(F ) is simply the set of
connected components ofF , whereF is viewed as an étale space over En(Gp).

COROLLARY 4.6. For the square (11), the projection formulaπ!(ip)∗ = p∗ϕ!
holds.

Proof. First, a more precise formulation of this corollary should state that the
canonical natural transformation

π!(ip)∗(F )→ p∗ϕ!(F ), (20)

obtained from the isomorphismi∗pϕ∗ ∼= π∗p∗ and the adjunctions, is an iso-
morphism. Since the functors in (20) all preserve colimits, it suffices to check
that (20) is an isomorphism in caseF is (the sheaf corresponding to) a basic
open setUi,C . Butπ!i∗p(Ui,C) is the set of connected components ofi−1

p (Ui,C), and
these are exactly the basic open setsVg = {α | α(i1) = g1, . . . , α(in) = gn}, for
g = (g1, . . . , gn) ∈ Cp ⊂ Gn

p, hence are in bijective correspondence with elements
of Cp = p∗(C) = p∗ϕ!(Ui,C) by (15). 2
5. Proof of the Theorem

We will now prove the theorem, stated in the introduction and repeated here
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THEOREM 5.1. For any sheaf of Abelian groupsA in T , the morphismϕ:
Sh(XT ) → T induces an isomorphismϕ∗: Hn(T , A) → Hn(XT , ϕ

∗A), for any
n > 0.

Forn = 0, this follows from

LEMMA 5.2. The inverse image functorϕ∗: T → Sh(XT ) is full and faithful.
Proof. The statement of the lemma is equivalent to the assertion that the counit

of the adjunctionϕ!ϕ∗(E) → E is an isomorphism, for every sheafE on T . It
suffices to check this for the stalks at each small pointp. But there we have

ϕ!ϕ∗(E)p = p∗ϕ!ϕ∗(E)

= π!(ip)∗ϕ∗(E) (by Corollary 4.6)

= π!π∗(Ep) (by Lemma 4.1)

= Ep,

the latter since En(Gp) is connected (Lemma 3.3). 2
Later, we will have to compare thěCech complex of an open cover inX to its
inverse image along the mapip: En(Gp) → X, wherep is any small point of the
toposT . We will use the following simple observation

LEMMA 5.3. LetU1, . . . , Un ⊂ U ⊂ X be basic open sets, and letV ⊂ i−1
p (U)

be a connected component. Then the connected components ofi−1
p (U1 ∩ · · · ∩Un)

contained inV are the nonempty intersectionsV1 ∩ · · · ∩ Vn, whereVi ⊂ V is a
component ofi−1

p (Ui).
Proof. We already observed (e.g. in the proofs of 4.1 and 4.5) that for any

basic open setU ⊂ X, the connected components ofi−1
p (U) are basic open setsV

in En(Gp). These basic open sets in En(Gp) are all connected (Lemma 3.3) and
closed under intersection. The lemma follows immediately from this. 2
LEMMA 5.4. Let I be any injective Abelian sheaf inT . LetU ⊂ X be a basic
open set, and letU be a cover ofU by basic open sets. ThenHn(U, ϕ∗(I ) � U) = 0
for n > 0.

Proof. Write U = {Uσ | σ ∈ 6}, andNn(U) =∑σ0...σn
Uσ0...σn where the sum

is over all(n + 1)-tuples of indices, andUσ0...σn = Uσ0 ∩ · · · ∩ Uσn. Viewing each
Uσ0...σn as an object of Sh(X), we see thatN•(U) is a simplicial object in Sh(X).
TheČech complexCn(U, ϕ∗(I ) � U) computing H∗(U, ϕ∗(I ) � U) can now be
described as

Cn(U, ϕ∗(I ) � U) = HomSh(X)(Nn(U), ϕ
∗(I ))

= HomT (ϕ!Nn(U), I ),
the latter by the adjunction of 4.3. To prove the lemma, it thus suffices to show
that the associated chain complexZ[ϕ!N•(U)] of Abelian groups inT is exact
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atn > 0. It is enough to check this for the stalk at each small pointp. But

Z[ϕ!Nn(U)]p = Z[ϕ!(Nn(U))p]
= Z[π!(ip)∗Nn(U)], (by Corollary 4),

which is the chain complex of the simplicial setπ!i∗p(N•(U)). Now

π!i∗p(Nn(U))
= {(σ0 . . . σn,W) | W a connected component ofi−1

p (Uσ0...σn)}.
For each connected componentV ⊂ i−1

p (U), let UV be the cover ofV by connec-
ted componentsW ⊂ i∗p(Uσ ), for all σ ∈ 6. By Lemma 5.3,π!i∗p(N•(U)) is the

disjoint sum of theČech nerves of these coversUV , and these nerves are acyclic
by Proposition 3.5. Thusπ!i∗p(N•(U)) is acyclic also, and the lemma is proved.2

Proof of Theorem5.1. By general homological algebra, it suffices to show that
for any injective Abelian groupI in T the sheaf cohomology groups Hn(X, ϕ∗(I ))
vanish forn > 0. By Lemma 5.4, the sheafϕ∗(I ) � U is ‘Čech-acyclic’ for
each basic open setU ⊂ X. The result follows by applying Cartan’s criterion
[1], Proposition V.4.3, [3], Théorème 5.9.2. 2
As stated in Section 1, the argument actually proves the somewhat stronger asser-
tion that the higher right derived functors ofϕ∗: Sh(X)→ T vanish. Before stating
this as Corollary 5.6 below, we observe the following corollary.

COROLLARY 5.5. LetE be any sheaf (of sets) inT . Then in the pullback of topoi

Sh(ϕ∗E) π- Sh(X)

T /E

ϕE
?

- T
?
ϕ

the mapϕE induces isomorphismsHn(T /E,A)
∼=→ Hn(ϕ∗(E), ϕ∗E(A)), for any

Abelian sheafA in T /E.
HereT /E denotes the ‘induced topos’ ([1], Exposé IV.5) ofT -objects overE,

andT /E→ T is the canonical morphism (loc. cit. (5.2.1)).
Proof. We claim that the mapϕE is again of the formϕ: Sh(XT ) → T

so that Corollary 5.5 is actually a special case of Theorem 5.1. More precisely,
ϕE: Sh(ϕ∗E) → T /E is precisely the map Sh(X(T /E)) → T /E, for a suitable
choice of the various parameters. Indeed, supposeXT is defined using the set of
small pointsP , the objectG so that subsheaves ofGn generateT , and the index
setI . ThenH = (G × E → E) is an object ofT /E so that subsheaves ofHn

generateT /E. Moreover, the points ofT /E are in bijective correspondence with
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pairs(p, e), wherep is a point ofT ande ∈ Ep. For such a pair(p, e), the stalk
of an object(f :F → E) at (p, e) is given by(f :F → E)(p,e) = f −1

p (e) ⊂ Ep.
In particular,H(p,e) = Gp for eache. Now for the set of small points ofT /E we
can take all these pairs(p, e) wherep ∈ P , and we can then take the same index
setI .

The spaceX(T /E) defined from these choices then is the space of triples(p, e, α),
wherep is a small point ofT , e ∈ Ep, andα ∈ En(H(p,e)) = En(Gp). But this is
exactly the spaceϕ∗(E) defined in Section 2. Further details are straightforward.2
COROLLARY 5.6. For any Abelian sheafA in T , and anyn > 0, (Rnϕ∗)×
(ϕ∗A) = 0.

Proof. As before, it suffices to prove this forA injective. For an arbitrary sheaf
B onX, Rnϕ∗(B) is the associated sheaf of the presheafE 7→ Hn(ϕ∗(E), π∗(B))
(whereπ :ϕ∗(E)→ X is the sheaf projection); see [1], Proposition V.5.1 and [7],
Lemma 8.18. ForB = ϕ∗(I ) whereI is injective, the result thus follows from
Corollary 5.5. 2

6. Étale Cohomology

By way of example, we will give an explicit description of the spaceXT in the case
whereT is the étale topos over a scheme. The main reference for this section is
Grothendieck’s Exposé VIII in [1]. For basic properties of strictly Henselian local
rings and strict Henselization, see [11].

Fix a ground fieldk, and a schemeY (overk). Let Yét be the étale site overY ,
and let Ỹét be the associated étale topos. For a pointy ∈ Y , k(y) denotes the
residue field of the local ringOY,y, andk(y) its separable closure. The Galois group
Gal(k(y)/k(y)) is denoted byπy.

The functorA on Yét which associates to each objectf :Z → Y of the étale
site the ring0(Z, f ∗(OY )) is a sheaf, and defines a local ringA in the topos̃Yét.
The functorAhs on Yét which associates tof :Z → Y the ring0(Z,OZ) is again
a sheaf, and a strictly Henselian local ring iñYét [5]. The extensionA → Ahs is
a universal strict Henselization ofOY in the topos̃Yét. The sheafAhs will play the
role of the objectG.

The étale topos has enough points. We recall from [1], Exposé VIII, that each
point y ∈ Y defines first a geometric pointy: Spec(k(y)) → Y of the schemeY ,
and then a point of the topos̃Yét, whose inverse image functor is the composition

0 ◦ y∗: Ỹét → ˜Spec(k(y))ét → S, and denotedF 7→ Fy . By loc. cit., Corol-
laire VIII.3.6, the set of all these points is jointly conservative. So we can take this
set of pointsy ∈ Y for the setP .

Consider again the extensionA → Ahs in the topos̃Yét. As explained in [1],
Exposé VIII.4, for anyy ∈ Y the stalk mapAy → Ahs

y is a (the) strict Henselization
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of OY,y = Ay , relative to the separable closurek(y) ↪→ k(y). Thus we will write
Ohs
Y,y for Ahs

y , and we will identifyOY,y with a subset ofOhs
Y,y.

By the universal property of the strict Henselization [4], Section 18, [11], Sec-
tion VIII.2, the groupπy acts onOhs

Y,y, say from the left. The local ringOY,y ⊂ Ohs
Y,y

is fixed under this action.
Let I be a set whose cardinality is at least as big as that of all these strict

HenselizationsOhs
Y,y.

We can now describe the spaceX = XT of Theorem 5.1 in this special case
whereT = Ỹét. Lety ∈ Y , and consider all functions (‘enumerations’)α: dom(α)→
Ohs
Y,y defined on a subset dom(α) ⊂ I ; and with the property thatα−1(b) is infinite

for eachb ∈ Ohs
Y,y. Call two such enumerationsα andβ equivalent,α ∼ β, if

dom(α) = dom(β), and if there is ag ∈ πy so thatg · α(i) = β(i) for each
i ∈ dom(α). The points of the spaceX are defined to be equivalence classes of
pairs(y, α), with (y, α) equivalent to(z, β) iff y = z andα ∼ β.

In this particular case, the topology of the spaceX, defined in general in Sec-
tion 2, can be described more explicitly by using standard étale extensions. Fix for
this an affine openU = Spec(R) of Y and (for somen) polynomialsp1, . . . , pn in
R[T1, . . . , Tn] such that the determinant det(J ) of the JacobianJ = (∂pj/∂Tk)j,k
is invertible inR[T1, . . . , Tn]/(p1, . . . , pn). Moreover, we fix a finite sequence of
indicesi = (i1, . . . , in). Together these data define the open set

V = {(y, α) | y ∈ U, i1, . . . , in ∈ dom(α),

andpk(α(i1), . . . , α(in)) = 0 for k = 1, . . . , n }.

Note that this makes sense, since eachpk has coefficients inR, andR maps to the
localizationRy = OY,y and then toOhs

Y,y. Thuspk can be evaluated at the tuple
(α(i1), . . . , α(in)). These open sets of the formV generate the topology onX.

The construction of Section 2 gives for each étale sheafE ∈ Ỹét a sheafϕ∗(E)
on this topological spaceX, with stalksϕ∗(E)(y,α) = Ey. Our theorem asserts that
there is a natural isomorphism Hn(Yét, A) ∼= Hn(X, ϕ∗A), for any Abelian sheafA
onYét and anyn > 0.
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