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ABSTRACT

In this paper, we seek to find the optimal retentions for an insurance company
which intends to reinsure each of n risks belonging to its portfolio, by means of
a pure quota-share treaty, a pure excess of loss treaty or any combination of
the two. The criterion chosen to the selection of the optimal programme is the
maximization of the adjustment coefficient, attending to the relationship
existing between this coefficient and Lundberg's upper bound of the ruin
probability.

1. INTRODUCTION

Suppose that an insurance company seeks reinsurance for n independent risks
(by a risk we mean a single policy or a group of policies—so we could speak of
n independent lines of insurance), and has a choice between a pure quota-share
treaty, an excess of loss treaty or any combination of the two, for any of the
risks. The way this combination operates is as follows: first the quota share
contract will apply, so that the insurer shall remain responsible for no more
than its share—established by the contract—of any claim that may occur for
that risk; afterwards, the excess of loss contract applys, so that, by no means,
shall the insurer (of course considering only that part for which it remains
reponsible after the quota-share contract) pay more than a certain fixed
amount of any claim that takes place.

The problem consists of determining the optimal retention limits for each
risk, in each of the two forms of reinsurance. " Optimal" in the sense those
limits maximize the adjustment coefficient and, therefore, minimize the upper
bound to the ruin probability, supplied by Lundberg's inequality. This same
criterion was also adopted by WATERS (1979) and CENTENO (1986) and, in a
certain way, this work may be considered as a generalization of their results.
Although this criterion does not by any means have to minimize the (analyti-
cally uncalculable) ruin probability, it is a good criterion if one wishes to give
analytical results.

Surplus and stop loss treaties are not considered in this paper. WATERS
(1983), derives sufficient conditions for the adjustment coefficient to be
uni-model, for stop loss reinsurance.
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42 LOURDES CENTENO and ONOFRE SIM6ES

For each / = 1,2,...,«, let a,-, be the decision variable representing the
quota-share retention on risk i; M,-, the decision variable representing the

excess of loss retention limit on risk i; Yt• = 2_, Xy> w ' t n ^o = 0, the

insurer's aggregate gross (of reinsurance) claims on risk i, in some fixed time
interval, where Nt is the number of claims and {Xi,}j=iy...,Ni a r e t n e individual
claims; P, the insurer's gross (of expenses and reinsurance) premium income
with respect to risk / and e,.P, the amount used to cover the insurer's expenses
with respect to the same risk.

After a combination of a quota-share with an excess of loss treaty the insurer

will retain, from risk i, Yi(ah M,) = 7, m m {fli-̂ -> M,), (i = 1,..., n).
7=1

The choice of uniform a{ = ... = an and M{ = ... = MB, which is generally
made in practice, has been dealt with in CENTENO (1986). In this paper,
therefore, retention limits which can, for instance, be set differently for
portfolios of different classes of business are also dealt with.

Let P,,(a,, M,) be the total reinsurance premium paid by the insurer, in
respect to risk / (it is, naturally, the summation of the quota-share and excess
of loss reinsuance premiums).

The problem which is to be solved is, then,

Maximize ^(«., M_)
sub. to: 0 < a, < 1

M , > 0
(«= 1,2,...,«),

where R{a_, M_), is the adjustment coefficient, defined, as it is known, as the
unique positive root of

1(1) £ fexp | i? g Y^Md-ltf, [P,(l-<>,•)-/>„•(*„ M,)]

Note that R(a^, M_) is the adjustment coefficient (see BEARD, PENTIKAINEN
and PESONEN (1984), p. 363) after taking account of the reinsurance arrange-
ment.

2. ASSUMPTIONS AND PREMIMINARIES

Ax: Yj(i = 1, 2, . . . ,«) are independent random variables;

For each i (i — 1, 2 , . . . , n):

A2: Nj{i= 1, 2 , . . . , n) is a Poisson random variable with parameter kt;

https://doi.org/10.2143/AST.21.1.2005400 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.1.2005400


REINSURANCE OF n INDEPENDENT RISKS 43

,: {XjJ}j=\,2,...,Nl
 a r e i-i-d- non-negative random variables, independent of

Nit and with common distribution function Ft such that

*i\x) ~ U> A S A,o

0 < F,-(x) < 1, x > xi0,

for some xi0 > 0;

^44: —Fj(x) exists and it is continuous everywhere;
dx

A5: The m.g.f. of the random variables Xtj, exists in the (—00, Qf] interval,
for 0 < Qt < +00 and

lim E[etlX"] = +00;

A6: The quota-share reinsurance premium is

(1 -adPi-Ci(l-a,)Pi = (1 -c,) (1 -fl/)P,-,

where c,(l — a,)/*,, 0 < c, < 1, is the habitual commission paid by the
quota-share reinsurer;

The excess of loss reinsurance premium, which we denote /",(«,, M,), is
calculated according to the expected value principle, i.e.,

Pi(ai,M,) =

with a, > 0.

e,- > 6-,-;

(1 -c , ) / 3 , - ! , •£• [Z,] > 0, where £[Z,] denotes the expected value of Xtj,
j= 1,2, ...,AT,;

Al0: ( l - e , ) P , <

Finally, we assume that

^ 1 1 :
1=1

From A2 and /43 it follows that Yt and ^(a,, M,) have compound Poisson
distributions. From A6 and ^7 we can say that

(2) Pti (a,, M,) = (1 - c,) (1 - ad ^ + (1 + a,) A.
J Afj/a,-
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44 LOURDES CENTENO and ONOFRE SIMOES

Assumption A& is somewhat restrictive, but without it the insurer could
reinsure the whole risk through a quota-share arrangement with a certain
profit. The same applies to Al0, but with respect to the excess of loss
reinsurance treaty. A9 implies that the loading on the quota-share reinsurance
premium is positive. At last, An assures the existence of a margin, necessary to
cover eventual deviations from the expected losses, and also to pay the
reinsurance costs.

Under assumptions A{, A2 and At, R(a_, MJ is the only positive root of

(3) G{R;q_,M_) = 0,

where

(4) G(R;a,M_) = £ \ f ' "\ f
L J o

(See BEARD, PENTIKAINEN and PESONEN (1984), p. 363, for the equivalence of
(4) and (1).) Let E[W{a^,MJ\ denote the insurer's expected net profit, after
reinsurance and expenses, i.e.,

(5) E[W(a,M) = > \{c-el)P, + al [(l-c)P-k,

J

and let us define

T= {(a,M_): 0 < a, < 1, M, > 0 and E[W(a,M_)]>0},

and

F = {a_: 0 < a, < 1, i = 1,2, ...,n and there exists at least one M_ such that
E[W(a_,MJ] > 0}.

Since

E[W(a,AQ] = XMl-FiWila,))
6M;

is non-negative, we can say that for fixed a_, the expected net profit will be
maximum when M, = + oo (i = 1, 2, . . . ,«) . Hence it is possible to specify F
as being

(6) r = \ a : \ {(c-edP, + at[{\ -c^P-^E [X,]]] > 0 .
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REINSURANCE OF n INDEPENDENT RISKS 45

8
Let us denote — G(R;a,M) by D(R;a,M) so that

dR ~ ~

(7)
" r- »Mi/ai -i

D(R; a, M) = £ A, aiXeRa'x dFt{x) +Mte
RM'{\ -F,-(M,-/a,)) -

with G(R;g_,NT) defined by (4).
The following lemma discusses the existence of the adjustment coefficient.

Lemma 1 :

(i) R (a, M) exists, if and only if (a , M_) e T;

(ii) For any (a, M ) e T , D(R;a_,M) is positive at £ = R(a,M).

Proof:

(i) By y45, it is clear that for fixed ( a ,M) , G is defined for all
Re(-ao,Q),

where

and
e =

r +00,

"• <*i

min

if

if

{Q

Mi/ai <

M,/a, = +

00

00

( i = 1 , 2 , . . . , « ) .

The first aspect to be considered, is that R = 0 is a trivial solution of
equation (3);

Secondly, we have that

G(R;a,M_)=^ A,
L Jo

I 1 Ds. v *) DILI s s i -• \

(ciiX)2 eRa'x dFi(x) + Ml eRM'(l-Fi(Milaijl)\,
Jo J

it is non-negative, V (a_, MJ, which means that G(R;a_,M_) is a convex
function of /?;
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46 LOURDES CENTENO and ONOFRE SIMOES

Third,

lim G(R; a_, M) = ^ lim | ^ [eRa'x-R{\ + a,)a,x] dl
"*" 1=1 ~*u [ Jo

= + OD ,

by assumptions As and Ag.
Hence, as G(R; a_, M) equals zero when R is null, G(R; a_, M) is a convex

function of R, and G{R;a_, M_) tends to infinity when R tends to Q, then, it
will only exist such an/? = i?(^ ,M) > 0 which turns G{R;a_,M_) to be null
again, if and only if,

8

dR
G{R;a,M_) < 0.

To finish the prof, we only have to notice that

8

dR
G(R;a,Al) 0oE[W(g_,MJ\ > 0.

(ii) Immediate, given the proof of (i). O

The following lemma will be useful to the solution to our problem.

Lemma 2: For any a_e F there exists a unique (a_,M_)eT, let it be {a, M ),
such that

R(a,M) = .)
- , i=\,2,..,n.

Proof: Let us consider the set of points M_ such that

ln(l + a2) ln(l+an)

Mx

and let us define

Mn M

H{a_,M) = MG — ; a , M l n ( H - a , ) , . . . , M In (l + aB) I,
M ~
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REINSURANCE OF n INDEPENDENT RISKS 47

which is to say

H(a,M) = '•f
Jo

,-X'i^ j

. ln(l+a,)\ .
M —: - ML -

f+c0 ~ )
+ a,)A, in(i+aj) (aiX-M In (1 + a,)) dF,(x)\

Then
n

10 .lim H{a,M)=Y* - [0-^/ ' /-(l-c,) (1-a,)P,.
M-O+ e

using A% and Ai0;

2) Jim H(a,M) = -
M - . + co / = j

: 0:

3) Differentiating H(a_,M) twice with respect to M we obtain (see, for
example, COURANT and JOHN (1974), p. 77)

M 3

Hence, for each £ e .T there exists a unique positive M = M (a) such that
(a_, M) = 0 and it. is clear from the definition of H(a_, M) that

= 0,

where

yW_ = ( M 1 , M 2 , . . . , M n ) = ( M l n ( l + a1), M In (1+ a 2 ) , . . . , M In (1+ a«)) O

This lemma implies that if we define

(8) G (R ; a) = G(R ; a , ̂  " ' In (1 + a i ) , ^ " ' In (1 + a 2 ) , . . . , R " ' In (1 + an)),
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48 LOURDES CENTENO and ONOFRE SIMOES

then G (R ; a ) has a unique positive root for each ae F. Let us denote it R (a).
It can be proved, using the Implicit Function Theorem (see for example
COURANT and JOHN (1974), pp. 221-223), Part (2) of Lemma 1 and A4, that

(a^, M), for {a_, M) eT , and R (a), for a_e F, are twice differentiable.

3. THE SOLUTION TO THE PROBLEM

The following result provides the solution to our problem.

Result 1:

(i) For a fixed value a_e F, with a, =/= 0, Vi = 1, 2 , . . . , n, R(a_, M_) is a
unimodal function of M, and for any a_e F its maximum value is
A (a).

(ii) R (a) is a unimodal function of a_, for a_e F and, at the point where it
attains its maximum:

a) at = 1 if and only if — R (a) (a, = 1) > 0,
6a,.

or

8 .
b) a, is such that — R (a) = 0, if and only if

Qa,

A(a)(a,= l ) < 0 , / = 1 , 2 . . . . , n .
8a,

Proof:

(i) The equation defining R{a_, M_) for all (a , M)e F is

(9) £

with G(i?; a_, M_) given by (4). Differentiating (9) with respect to M, it can be
8

seen that R{a_,M_) = Q if and only if (using the Implicit Function
dMj

Theorem)
ReRM>• (1 - F, (M, /a,)) = R (1 + a,) (1 - F, (M, /a,)).

So, using Lemma 2 we can say that for a fixed value of a_ e F, with a, =/= 0,
V7 = 1,2,...,«, the only turning point of R(a_, M_) is such that

(10) M;: = « " ' l n ( l + 4 i = l , 2 , . . . , « .
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REINSURANCE OF n INDEPENDENT RISKS 49

Differentiating (9) twice with respect to Mt (using again the Implicit Function
Theorem and (10)) we get

(11) .R(a,M)
9Af

with D(R; a_, M_) given by (7). We can see that each side of equation (11) is
negative since D{R;a_,M_) is positive by Lemma 1 (ii).

On the other hand,

R(a,M_) = 0,

Hence we can conclude that for a fixed value a_e F with a, ^ 0,
Vf = 1,2, . . . , n , R(a_,M_) is a unimodal function of M.

If a_e F and afc = 0 for some k = 1,2, ... ,n, then of course any value for
the excess of loss retention limit of risk k, including Mk = R ' In (1 + txk), will
provide the same value for the adjustment coefficient.

Then the maximum of R(a^,M_) is attained at the point {q_,M_) which is
the unique point satisfying G ( i ? ; a , M ) = 0 and M,, = R~X In (1 + a,),
i = 1, 2 , . . . , « , i.e., for a fixed a e f , the maximum of R (a_, M_) is R where
^ = R (a_) is the only positive root of G (R ; a) = 0, with G (R ; q_) given by (8).

(11) Differentiating

(12) G ( ^ ; a_) = 0

with respect to a, we obtain

— A(a) =
8a, ~ D(R;q_)

Jo
xe

Aa<x

where

D(R;g_) = Z)(.R ; a , .R " ' In (1

So,

"' In (1 + a 2 ) , . . . , R ~l In (1 + a j ) .

(13)

if and only if

(14)

9a,-
= o

In (! + «,)
(* B

- c , ) P , = A, '
Jo

+OO

xdF,(x).
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50 LOURDES CENTENO and ONOFRE SIMOES

Differentiating (13) with respect to a,-, and using (14), we obtain

Xi

8a/
R(a)

R2 x2 eRa<x dF,(x)

and

8a,

R(g_)

D(R;a) —— R (a) = 0
8a,-

R (a) = 0, — i? (a) = 0 = 0, if i+ j .
3a, 8a

This implies that there exists at most a point a_e F such that (14) holds for
i = 1,2,...,«.

Noticing that

lim R (g_) = [(1 -c,)P,-X,E[Xt]] lim
o+ D (R ; a)

with a_eF, is positive by ^9 and Lemma 1 (ii), the proof is finished. O

To summarize, we can now conclude that the optimum programme of
reinsurance, when a company is to reinsure n independent risks by a combina-
tion of the quota share an excess of loss forms of reinsurance, is the point
(a_, M_) which fulfils the following set of conditions:

M,=

a,:

R
( i = 1 ,2 , . . . , i!)

oe,)

I,- f R"' xeRa»
Jo

dFt(x) + \ xdFj(x),

Ra,

if

or a, = 1, if
fdR

L8a,-J
= l , 2 , . . . , / i )

= 0

< 0 when a, = 1

0 when a, = 1

Corollary 1: If (1 - c,) P,- > A,-(l + a,) £[Z,] for some / (/ = 1, 2, . . . , n), then the
optimal arrangement is such that a,•= 1.
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Proof: We only have to notice that in this case

xdF,(x)2.
J R' ln(l+ct,)

itR~' In (1 +<x,)

»« ' in (!+«,) fn

-c,)/>,-/l, xei?J£^,(x)-(l + a,)/l;
Jo J R~' ln(l+ct,)

Jo
O

Note that we can regard the quota-share reinsurance premium for risk i
(see A6) as being calculated using the expected value principle with loading
factor a,, where

Then, Corollary 1 implies that if a, > a,, i.e. if quota-share is, in the obvious
sence more expensive than excess of loss reinsurance, then excess of loss
reinsurance is optimal. Excess of loss reinsurance was already proved to be the
optimal form of reinsurance (see GERBER 1979), p. 129), in the sence that it
maximizes the adjustment coefficient, under the assumption that the loading
coefficient is the same for the insurer and the reinsurer (which is not the case in
our paper).

When the number of risks, n, is greater than one, the solution found for the
problem, may not be the solution that we would obtain if the risks were
considered separately. In other words, if we regard as optimal a set of retention
limits that maximizes the adjustment coefficient, then what is optimal when
each risk is considered individually may not be optimal when the risks are
considered together, as we will see next.

In the result that follows, R{at, Af,-) (i = 1, 2 , . . . ,« ) is, for fixed (a,-, M,), the
adjustment coefficient associated to risk /, when this is considered on its own,
defined as the unique positive root of

(15) G,(R,;al,Md = 0,

where

f ' "' e«""x dF((x) + eR<M>[l-Fi(M,/ad]- 1 j -(16) Gi(Ri;a,,Md= A,

if such a root exists, or zero otherwise.'

Result 2: For fixed ( a , M ) e T we have

min {Ri(aj,M,)} < R(a_,M_) < max {i?,(a,-, Af,-)}.
i= 1, . . . , n i = 1, . . . , n

1 The need to redefine R,(at, M,) comes from the fact that E\W(a_, M)] > 0 does not imply that
E[W,(a,, M,)] > 0, for all i = 1, 2 , . . . , » .
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52 LOURDES CENTENO and ONOFRE SIMOES

Proof:

Let

(17) min {Ri{ai,M$ = Rk{ak,Mk)
1 = 1 , . . . , «

and

(18) max {Rl(a,,Md} = R,(a,,Md.
i=l, ...,n

Then, considering the definition of Rj(ah M,), Vz = 1, 2 , . . . , « , we have that

and, on the other hand, having in mind the proof of Lemma 1, we know that

( G,(R,; a,, M,) < 0 if 0 < R, < *,(«,, M,)

1 G,(R,; a,, M,) > 0 if R, > Rt(a,, M,)

for i — 1, 2 , . . . , n.
From (19) and attending to (17) and (18) we have that

(20)

being zero if and only if Rk{ak, Mk) — Ri(ah M;). Similiary

(21)

being zero if and only if Rk(ak, Mk) = Ri(ah M,)-.
Then the result follows immediately, since R{a_, M_) for ( a , M ) e T is the

unique positive root of

(22) £ G,(JR;a,,M,.) = 0 O
1=1

Corollary 2: If Ri{at, M,) achieves its maximum value at (a,, M,) = (a,, M,),
/ = 1,2, ...,n, A and if R{a_, M_) achieves its maximum value at
( a , M ) = (S,A/.), then

min {Ri(di,M,)} < R{q_, M_) < max {i?,(a,, M,)}
/ = 1, . . . , n i=\, ..., n
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Proof: Attending to Result 2, to the definition of (a , M) and to the definition
of (dj, Ml), i = 1, 2 , . . . ,« , then

min {R,(dt, M,)} < R(a, M_) < R(h, M ) ,

and

R(a_,M_)< max {R,{at,, M,)} < max {i?,(a,, M,)}
/ = 1, . . . , n i = 1, . . . , n

which finishes the proof. O

4. EXAMPLE

Let n = 2 and

'0, if x < 0

1 - - e~ix(x + 4), if x > 0,
4

which corresponds to a y 2, - I , and
4

0 , if x < 1

which is an exponencial.
Let Xi = 2, X2 = 10, /»! = 27, />2 = 23.5, ev = e2 = .35, £/, = 30 and

t/2 = 15. The expected profit, before any reinsurance arrangement takes place,
is 3.491(6) (1.55 from risk 1 and 1.941(6) from risk 2), R is .02849 and,
therefore, the upper bound given by Lundberg's inequality for the ruin
probability, is 0.2774. Considering the two risks separately the adjustment
coefficients are Rl = 0.01487 and R2 = 0.1864, giving then upper bounds for
the ruin probabilities of 0.6401 and 0.0610, for risks 1 and 2 respectively.

The optimal reinsurance programme was calculated assuming different
values for at and setting <x2 = .3, cx = c2 = .25. The results can be seen on
Table 1. Analysing Table 1, the main aspect that seems evident is that, as long
as a, increases, a similar evolution is presented by ratio Mljal, that is to say,
the excess of loss form of reinsurance becomes less and less attractive.

Table 2 gives the same kind of information as Table 1, when treating the two
risks separately. Note that Rx < R < R2. One way of explaining this occur-
rence may be the following: when the reinsurance problem is solved taking the
risks together, there is a sort of a transfer of part of the income produced for
the " less dangerous" (and, therefore " less needed" of reinsurance) risks, to
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TABLE 1

a.

0.3

0.4

0.5

0.6

a.

0.3

0.4

0.5

0.6

Optimal
Retentions

a, =
a2 —

Mi =
M2 =

a i =

"2 =

Mi =
M2 —

°i =
a2 =

Mi =
M2 =

a, =
a2 =

Mi =
M2 =

Optimal
Retentions

a, = 01.00
a2 = 01.00

Mi = 16.90
M2 = 01.34

a, = 01.00
a2 = 01.00

M, = 22.31
M2 = 01.34

«! = 01.00
a2 = 01.00

Mi = 27..12
M2 = 01.34

a, = 01.00
a2 = 01.00

Af, = 31.54
M2 = 01.34

00.77
01.00

06.10
06.10

00.57
01.00

08.59
06.69

00.53
01.00

10.59
06.86

00.52
01.00

12.39
06.92

Expected
Net Profit

1.4986

1.4177

1.3946

1.3846

TABLE 2

Expected
Net

E[W,]
E[W2]
E[W\

E[W{\
E[W2]
E\W\

E[Wt]
E[W2]
E[W]

E[Wi]
E[W2]
E[W]

Profit

= 1.3317
= 1.5803
= 2.9120

= 1.4583
= 1.5803
= 3.0387

= 1.5101
= 1.5803
= 3.0904

= 1.5322
= 1.5803
= 3.1125

Adjustment
Coefficient

0.04300

0.03919

0.03827

0.03794

Adjustment
Coefficient

Ri = .01552

R2 = .1959

Rx = .01508

R2 = .1959

« , = .01495

R2 = .1959

R, = .01490

R2 = .1959 .

Upper Bound
by Lundberg's

Inequality

0.1444

0.1714

0.1787

0.1814

Lundberg's
Inequality

V,(30) < .6278

(Ml5) < .0529

M30) < .6361

V2d5) < -0529

V,(30) < .6386

y>2(15) < .0529

y,(30) < .6395

V2(15) < .0529
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subsidize the payment of the reinsurance of those potentially more risky. In this
example such interaction implied a decrease in the joint expected net profit, but
there are substantial benefits in the company's security, as a whole. Nothing of
this can be achieved, if one insists on treating each risk separately.
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