ERGODIC PROPERTIES OF LAMPERTI OPERATORS, II

CHARN-HUEN KAN

1. Introduction. For T in our main Theorem $5, T^{*}$ is called Lamperti in [11], whose terminology and notation we shall follow in the sequel. To avoid longish expressions, we shall also say that T^{*} here is disjunctive and, dually, $T=\left(T^{*}\right)^{*}$ is codisjunctive. The present work grows out of an attempt to establish a DEE for the general power bounded positive operator on L_{p}, in view of the success in the contraction case [$\left.\mathbf{1}, \mathbf{1 1}\right]$, and forms a continuation of [11]. (In passing, we note that Calderon's technique [2] mentioned in [11] was anticipated in 1938 by M. Fukamiya [7], though in a variant form and for a more classical case, namely that of a positive L_{p} isometry induced by an invertible, measure preserving transformation on a totally finite measure space. Calderon's case does not assume invertibility nor total finiteness.) In the course of proving our main result, we establish (in Theorem 2) a DEE for positive L_{1} contractions which are simultaneously L_{∞} power bounded. A vector-valued version of this will appear in a separate paper. We also note that if T is disjunctive, codisjunctive and L_{p} power bounded by K, then it has a DEE with constant $K p /(p-1)$, [11, Theorem 5.2]. Can this sharper constant be retained without disjunctiveness?

Lastly, a point on technicality. The measure space, if not σ-finite, can be replaced by a direct sum of σ-finite ones without altering $L_{p}, 1 \leqq p<\infty$. This direct sum is not hard to readjust so that the induced l_{p}-direct sum decomposition of L_{p} reduces the operator considered in each case hereinafter. This done, the extension of S in Section 2 to act on L_{∞}, or of \widetilde{T} in Section 3 to act on nonnegative measurable functions, can be achieved as in the σ-finite case.
2. L_{∞} power bounded L_{1} contractions. Let S be a positive L_{1} contraction which has bounded L_{∞} operator norm also (when restricted to $L_{1} \cap L_{\infty}$). Then it can be extended to a bounded operator on L_{p}, for any $1 \leqq p \leqq \infty$. Let

[^0]$$
S_{m}=m^{-1} \sum_{i=0}^{m-1} S^{i}, \quad(m \geqq 1)
$$

We define the truncated weighted maximal operators $\widetilde{M}_{n} \equiv \widetilde{M}_{n}(S)$ as follows: for $f \in L_{p}, 1 \leqq p<\infty$,

$$
\widetilde{M}_{n} f(x)=\sup _{1 \leqq m \leqq n}\left|S_{m} f\right|(x) / S_{m} 1(x), \quad(1 \leqq n<\infty) .
$$

The usual truncated maximal operators $M_{n} \equiv M_{n}(S)$ are defined as in [11], by replacing $S_{m} 1$ in the above expression by 1 . The weighted maximal operator $\widetilde{M} \equiv \widetilde{M}(S)$ and the maximal operator $M \equiv M(S)$ are the monotone limits of \widetilde{M}_{n} and M_{n} respectively i.e., $\tilde{M} f(x)=\lim \widetilde{M}_{n} f(x)$, etc.

We have the following inequality which is reminiscent of the Hopf Maximal Ergodic Inequality (MEI).

Theorem l. Let S be a positive L_{1} contraction which is also L_{∞} bounded. Then for any real $f \in L_{p}(1 \leqq p<\infty)$, and for any $\lambda>0$ and $1 \leqq n<\infty$, we have, writing E^{n} for

$$
E_{\lambda}^{n}(f) \equiv \bigcup_{m=1}^{n}\left\{S_{m} f>\lambda S_{m} 1\right\}
$$

(a) $\mu E^{n}<\infty$,
(b) $\int_{E^{n}}(f-\lambda) d \mu \geqq 0$.

Proof. By the Riesz convexity theorem, each S_{m} is a bounded operator on L_{p}. Moreover, $S_{m} 1 \geqq 1 / m$ a.e. Hence,

$$
\mu E^{n} \leqq \sum_{m=1}^{n} \mu\left\{\left|S_{m} f\right|>\lambda / m\right\} \leqq \lambda^{-p} \sum_{m=1}^{n} m^{p}\left\|S_{m} f\right\|_{p}^{p}<\infty
$$

by Chebyshev's inequality. This proves (a).
Let $R_{0}=0, R_{m}=I+\ldots+S^{m-1}=m S_{m},(m \geqq 1)$, and

$$
\bar{R}_{n}(f-\lambda)=\max _{0 \leqq m \leqq n} R_{m}(f-\lambda)=\max _{0 \leqq m \leqq n}\left(R_{m} f-\lambda R_{m} 1\right),
$$

$$
(n \geqq 1)
$$

Then

$$
E^{n}=\left\{\bar{R}_{n}(f-\lambda)>0\right\} .
$$

Since $I=R_{m}-S R_{m-1},(m \geqq 1)$, we have

$$
\begin{aligned}
(f-\lambda) & =R_{m}(f-\lambda)-S R_{m-1}(f-\lambda) \\
& \geqq R_{m}(f-\lambda)-S \bar{R}_{n}(f-\lambda),(1 \leqq m \leqq n)
\end{aligned}
$$

Hence, noting that

$$
\max \left\{R_{n}(f-\lambda): 1 \leqq m \leqq n\right\}=\bar{R}_{n}(f-\lambda) \quad \text { in } E^{n}
$$

we get, upon multiplying by the indicator function of E^{n} and taking this maximum,

$$
\begin{equation*}
1_{E^{n}} \cdot(f-\lambda) \geqq \bar{R}_{n}(f-\lambda)-S \bar{R}_{n}(f-\lambda) \tag{1}
\end{equation*}
$$

Now $\bar{R}_{n}(f-\lambda) \in L_{1}{ }^{+}$since, E^{n} being the support of $\bar{R}_{n}(f-\lambda)$, we have

$$
\bar{R}_{n}(f-\lambda) \leqq \sum_{m=1}^{n}\left(1_{E^{n}} \cdot\left|R_{m} f\right|+\lambda 1_{E^{n}} \cdot R_{m} 1\right)
$$

and each term on the right-hand side is integrable, by (a). Similarly

$$
1_{E^{n}} \cdot(f-\lambda) \in L_{1}
$$

Integrating (1), we immediately get (b).
Corollary. Let S be a positive L_{1} contraction which is also L_{∞} bounded. Then for any (real or complex) $f \in L_{p},(1 \leqq p<\infty)$, and for any $\lambda>0$ and $1 \leqq n<\infty$, we have, writing F^{n} for $F_{\lambda}^{n}(f) \equiv\left\{\widetilde{M}_{n} f>\lambda\right\}$,
(a') $\mu F^{n}<\infty$,
(b') $\quad \int_{F^{n}}(|f|-\lambda) d \mu \geqq 0$.
Proof. Since $\left|S_{m} f\right| \leqq S_{m}|f|$, $(1 \leqq m \leqq n)$, we have, with notation of Theorem 1,

$$
E_{\lambda}^{n}(|f|) \supset F_{\lambda}^{n}(f)
$$

(a') follows. Further, $|f|-\lambda \leqq 0$ outside of $F_{\lambda}^{n}(f) \supset F_{\lambda}^{1}(f)=\{|f|$
$>\lambda\}$. Hence

$$
\int_{F_{\lambda}^{n}(f)}(|f|-\lambda) d \mu \geqq \int_{E_{\lambda}^{n}(|f|)}(|f|-\lambda) d \mu
$$

Application of Theorem $1(\mathrm{~b})$ to $|f|$ then gives $\left(\mathrm{b}^{\prime}\right)$.

Remarks. (1). Theorem 1(b) will become the Hopf MEI, which is for S a positive L_{1} contraction and f a real-valued L_{1} function, if we change λ to 0 . The former can be construed as a particular case of the latter in the following way. Fix $n \geqq 1$ and $\lambda>0$, and let $h=f-\lambda$ on $E_{\lambda}^{\prime \prime}(f), 0$ elsewhere. So $h \in L_{1}$ by Theorem l(a). $f-\lambda \leqq h$. Hence

$$
S_{m}(f-\lambda) \leqq S_{m} h, \quad(1 \leqq m \leqq n),
$$

and so $E_{\lambda}^{\prime \prime}(f) \subset E_{0}^{\prime \prime}(h)$. It follows that

$$
\int_{E_{\lambda(\prime)}(f)}(f-\lambda)=\int_{E_{\lambda}^{\prime \prime}(f)} h=\int_{E_{: / \prime \prime}^{\prime \prime}(h)} h \geqq 0
$$

by the Hopf MEI. In fact, Garsia's proof of the Hopf MEI (see [8] or [$\mathbf{9}$, Theorem 2.2.1]) is similar to that of Theorem 1(b). (2). If S is an L_{∞} contraction, the argument in the proof of the Corollary shows that $S_{m} 1$ in Theorem 1 can be replaced by 1 . This becomes Theorem 2.2.2 in [9].(3). Analogous to inequality (1), we can show that under conditions in the corollary,

$$
1_{F^{n}} \cdot(|f|-\lambda) \geqq \bar{R}_{n}(f ; \lambda)-S \bar{R}_{n}(f ; \lambda),
$$

where

$$
\bar{R}_{n}(f ; \lambda)=\max \left\{\left|R_{m} f\right|-\lambda R_{m} 1: 0 \leqq m \leqq n\right\} .
$$

Integration of this gives a direct proof of (b^{\prime}). (a^{\prime}), like (a), follows from Chebyshev's inequality.
Theorem 2. Let S be a positive L_{1} contraction which is simultaneously L_{∞} bounded. Then for any $f \in L_{p},(1<p<\infty)$,
(a) $\|\widetilde{M}(S) f\|_{p} \leqq \frac{p}{p-1}\|f\|_{p}$.

If, further, sup $\left\|S_{m}\right\|_{\infty}=H$, or more strongly if sup $\left\|S^{m}\right\|_{\infty}=H$, then
(b) $\|M(S) f\|_{p} \leqq H \frac{p}{p-1}\|f\|_{p}$.

Proof. (b) follows from (a) by the fact that

$$
M f \leqq\left(\sup \left\|S_{m} 1\right\|_{\infty}\right) \widetilde{M} f=\left(\sup \left\|S_{m}\right\|_{\infty}\right) \widetilde{M} f \leqq H \widetilde{M} f .
$$

To prove (a), we need only prove it first for $\widetilde{M}_{n} f$ instead of $\widetilde{M} f$, for all $n \geqq 1$. This can be achieved by invoking the corollary to Theorem 1 and applying the Strong Estimate Theorem 2.2.3 in [9] (or Theorem 3.4', Chapter VII, in [5]), which says that (a^{\prime}) and (b^{\prime}) imply (a) for $\bar{M}_{n} f$.
3. Operator-modulated backward shifts. Suppose that T is a bounded operator on $L_{p} \equiv L_{p}(X, \mathscr{F}, \mu), 1 \leqq p<\infty$. Let \widetilde{L}_{p} be the l_{p}-direct sum of countably many copies of L_{p}. That is, $f \in \widetilde{L}_{p}$ if and only if $f=\left(f_{0}, f_{1}\right.$, f_{2}, \ldots) such that each $f_{n} \in L_{p}$ and

$$
\|f\|^{p} \equiv\left\|f_{0}\right\|_{p}^{p}+\left\|f_{1}\right\|_{p}^{p}+\ldots
$$

is finite. It is well known and easy to see that ($\widetilde{L}_{p},\| \|$) is a Banach space isometrically isomorphic to $L_{p}(\widetilde{X}, \widetilde{\mathscr{F}}, \widetilde{\mu})$ where \bar{X} is the union of disjoint copies $X_{n},(n=0,1, \ldots)$, of X, each $\overline{\mathscr{F}} \cap X_{n}$ is a copy \mathscr{F}_{n} of \mathscr{F}, and $\widetilde{\mu} \mid \mathscr{F}_{n} \equiv \mu_{n}$ is a copy of μ, such that f_{n} has support in $\left(X_{n}, \mathscr{F}_{n}, \mu_{n}\right)$.

Definition. The unilateral backward T-shift is the operator \widetilde{T} on \widetilde{L}_{p} such that $\widetilde{T}\left(f_{0}, f_{1}, \ldots\right)=\left(T f_{1}, T f_{2}, \ldots\right)$.

There being no risk of confusion, we shall write $|||\mid$ for the norm in either L_{p} or \widetilde{L}_{p}. It easy to see that $\left\|T^{n}\right\|=\left\|\widetilde{T}^{n}\right\|$, $(n \geqq 0)$. Moreover, we have $\|M(T)\| \leqq\|M(\widetilde{T})\|$, as strong (p, p) bounds of sublinear operators. This fact is expressed in the following theorem.

Theorem 3. If \widetilde{T} has a DEE with constant C, then T also has a DEE with constant C.

Proof. Consider any $f \in L_{p}$. For any $n \geqq 1$, let \widetilde{f}_{n} be the \widetilde{L}_{p} function whose first n coordinates are equal to f and whose remaining coordinates are 0 . We observe that all but the first $n-i$ coordinates of $\widetilde{T}^{i} \widetilde{f}_{n}$ are 0 . Hence we have

$$
M(\widetilde{T}) \widetilde{f}_{n}=\left(M_{n} f, M_{n-1} f, \ldots, M_{1} f, 0,0, \ldots\right)
$$

where $M_{i} \equiv M_{i}(T), i \geqq 1$. By the DEE for \widetilde{T}, we have

$$
\left\|M(\widetilde{T}) \widetilde{f}_{n}\right\| \leqq C\left\|\widetilde{f}_{n}\right\|
$$

Raising both sides to the p-th powers and then dividing by n, this yields

$$
\frac{1}{n} \sum_{m=1}^{n}\left\|M_{m} f\right\|^{p} \leqq C^{p}\|f\|^{p}
$$

Since $\left\|M_{m} f\right\| \uparrow\|M(T) f\|$, the left-hand side coverges monotonely, as $n \rightarrow \infty$, to $\|M(\dot{T}) f\|^{p}$. Hence T has a DEE with constant C.

If T is a bounded positive operator on $L_{p}, 1<p<\infty$, then so is \widetilde{T} on \widetilde{L}_{p}. For any nonnegative function f on $(\widetilde{X}, \widetilde{\mathscr{F}}, \widetilde{\mu}), \widetilde{T} f$ can be defined as the monotone limit of $\widetilde{T} f_{n}$ for any sequence $f_{n} \in \widetilde{L}_{p}$ such that $0 \leqq f_{n} \uparrow f$ a.e.

This definition is independent of the choice of the sequence. The same extension can be made if \widetilde{T} is replaced by \widetilde{T}^{*}, and, furthermore,

$$
\int f \cdot \widetilde{T}^{*} g d \bar{\mu}=\int g \cdot \widetilde{T} f d \bar{\mu}
$$

for any pair of nonnegative functions f, g. (What is said of \widetilde{T} is also true for T.) We have the following theorem.
Theorem 4. If T is a bounded positive operator on $L_{p}, 1<p<\infty$, and there exists a finite, positive a.e. function f on ($\widetilde{X}, \widetilde{\mathscr{F}}, \widetilde{\mu}$) such that (i) $\widetilde{T}^{*} f^{p-1}$ $\leqq f^{p-1}$ and (ii) $\widetilde{T}^{n} f \leqq H f,(n \geqq 0)$, for a positive constant H, then T has a DEE with constant $H p /(p-1)$.
Proof. Define the operator S on nonnegative measurable functions g on ($\bar{X}, \widetilde{\mathscr{F}}, \widetilde{\mu})$ by $S g=f^{-1} \widetilde{T}(f g)$. It is easy to verify directly that S extends to a bounded positive operator on $B \equiv L_{p}\left(\widetilde{X}, \widetilde{\mathscr{F}}, f^{p} d \widetilde{\mu}\right)$ such that for all non-zero $g \in B$,

$$
\left\|S^{\prime \prime} g\right\|_{B} /\|g\|_{B}=\left\|\widetilde{T}^{n}(f g)\right\| /\|f g\|, \quad(n \geqq 1)
$$

and that the same relation holds if we replace (S^{n}, \widetilde{T}^{n}) by (S_{n}, \widetilde{T}_{n}) or by $(M(S), M(\widetilde{T}))$. The mapping that takes g to $f g$ is an invertible isometry from B onto \widetilde{L}_{p}. Consequently, S and \widetilde{T} have DEEs with the same constant, if either has one.

We shall show that relative to the measure space ($\left.\widetilde{X}, \widetilde{\mathscr{F}}, f^{p} d \widetilde{\mu}\right), S$ extends to a positive L_{1} contraction which is L_{∞} power bounded by H. Clearly S is positive, and the last assertion follows readily from condition (ii). That S is an L_{1} contraction follows from condition (i) by the following computation: with $g \geqq 0$ a.e.,

$$
\begin{aligned}
\int(S g) \cdot f^{p} d \widetilde{\mu} & =\int \widetilde{T}(f g) \cdot f^{p-1} d \widetilde{\mu}=\int f g \cdot \widetilde{T}^{*} f^{p-1} d \widetilde{\mu} \\
& \leqq \int f g \cdot f^{p-1} d \widetilde{\mu}=\int g \cdot f^{p} d \widehat{\mu} .
\end{aligned}
$$

Hence by Theorem 2, S (as an operator on B) has a DEE with constant $H p /(p-1)$. From the previous paragraph, so does \widetilde{T}, and by Theorem 3, so does T too.

Remarks (4). Theorem 4 remains valid if ($\widetilde{X}, \widetilde{\mathscr{F}}, \widetilde{\mu} ; \widetilde{T})$ is replaced by $(X, \mathscr{F}, \mu ; T)$. This is obvious from the proof.
4. Power bounded codisjunctive operators. We now proceed to prove our main result. Let T be a codisjunctive operator on $L_{p}(1<p<\infty)$ power bounded by K. Let $q=p /(p-1)$. From [11], there exists a
σ-endomorphism Φ of (X, \mathscr{F}, μ) and a function h with support $=\Phi X$ such that $T^{*} g=h \cdot \Phi g$ for all $g \in L_{q}$. Further,

$$
\operatorname{supp} T^{*} g=\Phi(\operatorname{supp} g)
$$

From Theorem 4.3 in [11], $T^{* n}$ is induced by Φ^{n} and some function h_{n}, ($n \geqq 0$). It is also clear from that theorem that T has a linear modulus $|T|$ such that $|T|^{*}$ is induced by Φ and $|h|$, and that $|T|$ is power bounded by K. From this, and the fact $M(T)$ is majorized by $M(|T|)$, we can assume, without loss of generality, that T is positive in addition. Hence $h_{n} \geqq 0$ a.e. $(n \geqq 0)$. Now $\left\|T^{n}\right\| \leqq K$ implies $\left\|T^{* n}\right\| \leqq K,(n \geqq 0)$, in the dual operator norm. By Theorem 4.2 in [11], for each $n \geqq 0$, there exists a bounded nonnegative function, here denoted by $D\left(T^{* n}\right)$, such that

$$
\begin{equation*}
\left\|T^{* n}\right\|^{q}=\left\|D\left(T^{* n}\right)\right\|_{\infty} \tag{2}
\end{equation*}
$$

and that for any nonnegative function g,

$$
\begin{equation*}
\int h_{n}^{q} \cdot \Phi^{n} g d \mu=\int g \cdot D\left(T^{* n}\right) d \mu \tag{3}
\end{equation*}
$$

Lemma 1. For any nonnegative function g on X, and any $n \geqq 0$,

$$
\begin{equation*}
T^{n}\left(T^{* n} g\right)^{q-1}=D\left(T^{* n}\right) g^{q-1} \leqq K^{q} g^{q-1} \tag{4}
\end{equation*}
$$

Proof. For any nonnegative function f,

$$
\begin{aligned}
& \int f \cdot T^{n}\left(T^{* n} g\right)^{q-1} d \mu=\int T^{* n} f \cdot\left(T^{* n} g\right)^{q-1} d \mu \\
&=\int h_{n} \Phi^{n} f \cdot\left(h_{n} \Phi^{n} g\right)^{q-1} \mathrm{~d} \mu=\int h_{n} \Phi^{n} f \cdot h_{n}^{q-1} \Phi^{n} g^{q-1} d \mu \\
&=\int h_{n}^{q} \cdot \Phi^{n}\left(f g^{q-1}\right) d \mu=\int f g^{q-1} D\left(T^{* n}\right) d \mu
\end{aligned}
$$

by (3). From this, the equality part of (4) follows. The inequality part follows from (2).

We shall now establish (i) and (ii) in Theorem 4. Take any strictly positive function g_{0} on X, and any sequence of nonnegative, finite a.e. functions $g_{n},(n \geqq 1)$, each with support $=X \backslash \Phi X$. For each $n \geqq 0$, let

$$
g_{n, i}=T^{* n-i} g_{i}, \quad(i=0, \ldots, n)
$$

Each $g_{n, i}$ is finite a.e., since T^{*} is disjunctive. Let

$$
g=\left(g_{n, 0}+\ldots+g_{n, n}\right)_{n \geqq 0} \quad \text { and } \quad f=g^{q-1}
$$

Now

$$
\begin{aligned}
& \text { supp } g_{n, 0}=\Phi^{n} X, \quad \text { and } \\
& \operatorname{supp} g_{n, i}=\Phi^{n-i}(X \backslash \Phi X)=\Phi^{n-i} X \backslash \Phi^{n-i+1} X, \quad(i=1, \ldots, n)
\end{aligned}
$$

Hence the supports of $g_{n, i},(i=0, \ldots, n)$, are mutually disjoint, and the support of the n-th coordinate of g is

$$
\Phi^{n} X \cup\left(\Phi^{n-1} X \backslash \Phi^{n} X\right) \cup \ldots \cup(X \backslash \Phi X)=X
$$

Hence $g>0$ and so $f>0$ a.e. From the definition of \widetilde{T}, we easily get

$$
\widetilde{T}^{*}\left(k_{n}\right)_{n \geqq 0}=\left(T^{*} k_{n-1}\right)_{n \geqq 0}
$$

taking k_{-1} to be 0 . Now $f^{p-1}=g$, since $(p-1)(q-1)=1$. Hence

$$
\text { (i) } \widetilde{T}^{*} f^{p-1}=\left(T^{*} \sum_{i=0}^{n-1} g_{n-1, i}\right)_{n \geqq 0}=\left(\sum_{i=0}^{n-1} g_{n, i}\right)_{n \geqq 0} \leqq f^{p-1} \text {. }
$$

Here the void sum (which occurs when $n=0$) is interpreted as 0 .
To get (ii), first we observe that for every $m \geqq 0$,

$$
\widetilde{T}^{m}\left(f_{n}\right)_{n \geqq 0}=\left(T^{m} f_{m+n}\right)_{n \geqq 0} .
$$

Since $g_{n, i},(i=0, \ldots, n)$, have disjoint supports,

$$
f=\left(\sum_{i=0}^{n} g_{n, i}^{q-1}\right)_{n \geqq 0}
$$

So

$$
\widetilde{T}^{m} f=\left(\sum_{i=0}^{n+m} T^{m} g_{n+m, i}^{q-1}\right)_{n \geqq 0} .
$$

Now if $m+n \geqq i>n$, then for any nonnegative function k, we have

$$
\int k T^{m} g_{n+m, i}^{q-1} d \mu=\int\left(T^{* m} k\right)\left(g_{n+m, i}^{q-1}\right) d \mu=0
$$

since supp $T^{* m} k \subset \Phi^{m} X$ while

$$
\text { supp } g_{n+m, i} \subset X \backslash \Phi^{m-(i-n-1)} X \subset X \backslash \Phi^{m} X
$$

(Note that $\Phi^{j} X$ decreases with increase of j.) Hence
(5) $\quad T^{m} g_{n+m, i}^{q-1}=0, \quad(n<i \leqq m+n)$.

On the other hand, we have

$$
\begin{equation*}
T^{m} g_{n+m, i}^{q-1}=T^{m}\left(T^{* m} g_{n, i}\right)^{q-1} \leqq K^{q} g_{n, i}^{q-1}, \quad(0 \leqq i \leqq n) \tag{6}
\end{equation*}
$$

by Lemma 1. From (5) and (6), we conclude that

$$
\text { (ii) } \widetilde{T}^{m} f \leqq\left(K^{q} \sum_{i=0}^{n} g_{n, i}^{q-1}\right)_{n \geqq 0}=K^{q} f \text {. }
$$

Applying Theorem 4, we arrive at our main result:
ThEOREM 5. Let T be a codisjunctive operator on $L_{p}, 1<p<\infty$, such that $\sup \left\|T^{n}\right\| \equiv K<\infty$, then T has a DEE with constant $K^{q} q$, where $q=$ $p /(p-1)$, and the pointwise ergodic property, i.e. $T_{n} f$ converges a.e. $(f \in$ $\left.L_{p}\right)$.

Proof. It remains only to prove the convergence part. This follows from the DEE and the mean ergodic theorem, as shown in [10], on observing that $T^{n} f / n \rightarrow 0$ a.e. for all $f \in L_{p}$. The latter fact follows from

$$
\int \sum_{n=1}^{\infty}\left|\frac{1}{n} T^{n} f\right|^{p} d \mu=\left.\sum_{n=1}^{\infty}| | \frac{1}{n} T^{n} f\right|_{p} ^{p} \leqq K^{p}\left(\sum_{n=1}^{\infty} n^{-p}\right)\|f\|_{p}^{p}<\infty
$$

as observed by M. A. Akcoglu (in the case $K=1$, see [10]).
5. Dualization and variation of the method. The method that we have used actually shows that if the constant in Theorem 2(b) is $c_{p}(H)$, then the constant in Theorem 5 can be taken as $c_{p}\left(K^{q}\right)$, where $q=p /(p-1)$. This result can be dualized, along with the method that leads to it. Consider the (unilateral) forward T-shift on \widetilde{L}_{p} derived from an operator T on $L_{p}, 1 \leqq p$ $<\infty$, denoted again by \widetilde{T}, which is defined by

$$
\widetilde{T}\left(f_{0}, f_{1}, \ldots\right)=\left(0, T f_{0}, T f_{1}, \ldots\right)
$$

Since the first i coordinates of $\widetilde{T}^{i} f_{n}$ are 0 , we have

$$
M(\widetilde{T}) \widetilde{f}_{n} \geqq\left(M_{1} f, \ldots, M_{n} f, 0,0, \ldots\right)
$$

with the first n pairs of corresponding coordinates equal. From this, Theorem 3 (see its proof) is true for our new \widetilde{T}. By a similar method as before, we have the following theorem.

Theorem 6. Fix $1<p<\infty$.
(a) If all positive L_{∞} contractions that are simultaneously L_{1} power bounded by H have a DEE on L_{p} with constant $c_{p}(H)$, then all disjunctive operators that are L_{p} power bounded by K have a DEE with constant $c_{p}\left(K^{p}\right)$ and the pointwise ergodic property.
(b) In particular, all disjunctive L_{p} contractions have a DEE with constant $p /(p-1)$ and the pointwise ergodic property.

Proof. Part (a). Let T be a disjunctive operator on L_{p} that is power bounded by K. As before, we can assume T to be positive, without loss of generality. According to the dualized method to that embodied in the proof of Theorem 5, to prove part (a), we need only establish (i') $\widetilde{T} f \leqq f$, and (ii') $\widetilde{T}^{* n} f^{p-1} \leqq H \cdot f^{p-1},(n \geqq 0)$, for $H=K^{p}$, for a strictly positive, finité a.e. measurable function f on $(\widetilde{X}, \widetilde{\mathscr{F}}, \widetilde{\mu})$. We can take

$$
f=\left(T^{n} f_{0}+\ldots+T f_{n-1}+f_{n}\right)_{n \geqq 0}
$$

for any sequence of nonnegative, finite a.e. functions f_{n}, $(n \geqq 0)$, with supp $f_{0}=X$ and supp $f_{n}=X \backslash \Phi X,(n \geqq 1)$, where Φ is the associated σ-endomorphism of T. We omit the details.

Part (b) follows from part (a) and the DEE for L_{1} simultaneously L_{∞} contractions (i.e., case $H=1$ of Theorem 2(b)).

Remarks (5). Concerning part (b), case $H=1$ of Theorem 2(b) was proved originally by N. Dunford and J. T. Schwartz [6, Section 4.7], but with a constant that is not sharp. The sharp constant, $p /(p-1)$, was later observed by A. M. Garsia and B. Jamison (see [4] or [9, Corollary 2.2.1]). A different proof of part (b), by geometric dilation to isometries, is given in [11, Theorem 5.1]. Using truncated analogues of the forward T-shift, Chacon and McGrath [3] proved the DEE for a positive L_{p} contraction T, $(1<p<\infty)$, with the property that $\left\|T^{n} f_{n}\right\|=\left\|f_{n}\right\|,(n \geqq 1)$, for a sequence of positive a.e. L_{p} functions f_{n}. This includes the isometry case, but not part (b) above. We note in this connection that the technique used in this paper stems partly from a study of the method used in $[3,4]$.

The construction involved in the proofs of Theorems 5 and 6, being general, is somewhat complicated. There is a variation of the method that need only deal with two special cases with simpler constructions and that may put it in a better perspective. First, we have the following lemma.

Lemma 2. For each σ-endomorphism Φ on (X, \mathscr{F}, μ), there exists a decomposition of X into disjoint subsets Y and Z, such that $\Phi Y=Y$, $\Phi Z \subset Z$, and Z is a disjoint union of $Z_{i}, i \geqq 0$, with $\Phi Z_{i}=Z_{i+1}, i \geqq 0$. (Y and $Z_{i}, i \geqq$ some i_{0}, may be null.)

Proof. Let $Z_{0}=X \backslash \Phi X, Z_{i}=\Phi^{i} Z_{0},(i \geqq 1), Z=\bigcup_{i=0}^{\infty} Z_{i}$ and $Y=$ $X \backslash Z$. The assertions follow readily.

From this lemma, if either T or T^{*} is disjunctive, with associated σ-endomorphism Φ, then l_{p}^{2}-direct sum decomposition

$$
L_{p}(X)=L_{p}(Y) \oplus L_{p}(Z)
$$

reduces T, and the DEE for T need only be proved separately on $L_{p}(Y)$ and on $L_{p}(Z)$. It also follows easily from Lemma 2 that, in either case, $T^{n} f \rightarrow 0$ a.e. for all $f \in L_{p}(Z)$, if T is power bounded.

For the T in Theorem 5 and case $X=Y$, i.e., $\Phi X=X, f=g^{q-1}$, where $g=\left(g_{0}, T^{*} g_{0}, T^{* 2} g_{0}, \ldots\right)$ and g_{0} is a positive a.e. function on X, will satisfy the conditions in Theorem 4 with $H=K^{q}$.

For the case $X=Z$, we modify the construction as follows. Take a finite, nonnegative a.e. function g^{\prime} with support $=Z_{0}$. Then

$$
\begin{aligned}
& \operatorname{supp} T^{* n} g^{\prime}=Z_{n}, \quad(n \geqq 0), \quad \text { and } \\
& g \equiv g^{\prime}+T^{*} g^{\prime}+T^{* 2} g^{\prime}+\ldots
\end{aligned}
$$

is positive, finite a.e. on X, and so is $f \equiv g^{q-1}$. We can then show that conditions (i) (ii) in Theorem 4 are true for T in lieu of \widetilde{T} with $H=K^{q}$ and hence T has a DEE with constant $K^{q} q$. (See Remarks (4).)

The T in Theorem 6 can be treated similarly.
Finally, these modified constructions can be adapted to reduce the DEE problem for power bounded positive L_{p} operators. For $1 \leqq p \leqq \infty$ and $K \geqq 1$, denote by $\mathscr{P}(p ; K)$ the class of positive L_{p} operators power bounded by K.

Theorem 7. Let $1<p<\infty$. The class $\mathscr{P}(p ; K)$ will admit of $a \operatorname{DEE}$ on L_{p} with a constant $c_{p}(K)$ if so does either
(I) $\mathscr{P}(p ; K) \cap \mathscr{P}(1 ; 1) \quad$ or
(II) $\mathscr{P}(p ; K) \cap \mathscr{P}(\infty ; 1)$.

Proof. Let $T \in \mathscr{P}(p ; K)$. Without loss of generality, we assume that T operates on L_{p} of a σ-finite measure space.

Case (I). Take $0<\theta<1$ and $0<g^{\prime} \in L_{q}$, where $q=p /(p-1)$. Define

$$
g=\sum_{0}^{\infty}(\theta T)^{* n} g^{\prime}
$$

Then $0<g \in L_{q}$, and $f \equiv g^{q-1} \in L_{p}$ satisfies

$$
(\theta T)^{*} f^{p-1} \leqq f^{p-1} \equiv g
$$

i.e., condition (i) in Theorem 4 for θT in place of $\widetilde{T} . S$ constructed in the proof thereof is then in the subclass (I). The first part of the same proof gives the DEE for θT on L_{p} with constant $c_{p}(K)$. The same DEE holds for T since $M(\theta T) \uparrow M(T)$ as $\theta \uparrow 1$.

Case (II). Similarly, take $0<f^{\prime} \in L_{p}$ and define

$$
f=\sum_{0}^{\infty}(\theta T)^{n} f^{\prime}
$$

which belongs to L_{p} and satisfies $(\theta T) f \leqq f$. The corresponding S is in the subclass (II) and by the same token as in case (I), T has a DEE with constant $c_{p}(K)$.

References

1. M. A. Akcoglu, A pointwise ergodic theorem in L_{p}-spaces, Can. J. Math. 27 (1975), 1075-1082.
2. A. P. Calderon, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353.
3. R. V. Chacon and S. A. McGrath, Estimates of positive contractions, Pacific J. Math. 30 (1969), 609-620.
4. R. V. Chacon and J. Olsen, Dominated estimates of positive contractions, Proc. Amer. Math. Soc. 20 (1969), 266-271.
5. J. L. Doob, Stochastic processes (Wiley, New York, 1952).
6. N. Dunford and J. T. Schwartz, Convergence almost everywhere of operator averages, J. Math. Mech. 5 (1966), 399-401.
7. M. Fukamiya, On dominated ergodic theorems in $L_{p}(p \geqq 1)$, Tôhoku Math. J. 46 (1939), 150-153.
8. A. M. Garsia, A simple proof of E. Hopf's maximal ergodic theorem, J. Math. Mech. 14 (1965), 381-382.
9. -Topics in almost everywhre convergence, Lectures in advanced mathematics, vol. 4 (Markham, Chicago, 1970).
10. A. Ionescu Tulcea, Ergodic properties of isometries in L_{p}-spaces, $1<p<\infty$, Bull. Amer. Math. Soc. 70 (1964), 366-371.
11. C. H. Kan, Ergodic properties of Lamperti operators, Can. J. Math. 30 (1978), 1206-1214.

National University of Singapore,

Kent Ridge, Singapore

[^0]: Received June 30, 1980 and in revised form March 4, 1983. This research was partially supported by NSERC grant no. A3974.

