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ERGODIC PROPERTIES OF LAMPERTI 
OPERATORS, II 

CHARN-HUEN KAN 

1. Introduction. For Tin our main Theorem 5, T* is called Lamperti in 
[11], whose terminology and notation we shall follow in the sequel. To 
avoid longish expressions, we shall also say that T* here is disjunctive and, 
dually, T = (T*)* is codisjunctive. The present work grows out of an 
attempt to establish a DEE for the general power bounded positive 
operator on Lp, in view of the success in the contraction case [1, 11], and 
forms a continuation of [11]. (In passing, we note that Calderon's 
technique [2] mentioned in [11] was anticipated in 1938 by M. Fukamiya 
[7], though in a variant form and for a more classical case, namely that of a 
positive Lp isometry induced by an invertible, measure preserving 
transformation on a totally finite measure space. Calderon's case does not 
assume invertibility nor total finiteness.) In the course of proving our main 
result, we establish (in Theorem 2) a DEE for positive L\ contractions 
which are simultaneously L^ power bounded. A vector-valued version of 
this will appear in a separate paper. We also note that if T is disjunctive, 
codisjunctive and Lp power bounded by K, then it has a DEE with 
constant Kp/(p — 1), [11, Theorem 5.2]. Can this sharper constant be 
retained without disjunctiveness? 

Lastly, a point on technicality. The measure space, if not a-finite, can be 
replaced by a direct sum of a-finite ones without altering Lp, 1 = p < oo. 
This direct sum is not hard to readjust so that the induced /^-direct sum 
decomposition of Lp reduces the operator considered in each case 
hereinafter. This done, the extension of S in Section 2 to act on L^, or of 
T in Section 3 to act on nonnegative measurable functions, can be 
achieved as in the a-finite case. 

2. LQO power bounded L\ contractions. Let S be a positive L\ contraction 
which has bounded L ^ operator norm also (when restricted to L\ D L^). 
Then it can be extended to a bounded operator on Lp, for any 1 ^ p ^ oo. 
Let 
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m— l 

Sm = m'x 2 S*', (m ^ 1). 
/=o 

We define the truncated weighted maximal operators Mn = Mn(S) as 
follows: f o r / G L^, 1 = p < oo, 

M„/(x) = sup |Sm / | (x) /Sm l (x) , (1 ^ « < oo). 
1 ~m = n 

The usual truncated maximal operators Mn = Mn(S) are defined as in [11], 
by replacing 5W1 in the above expression by 1. The weighted maximal 
operator M = M (S) and the maximal operator M = M (S) are the 
monotone limits of Mn and Mn respectively i.e., Mf(x) = lim Mnf(x), 
etc. 

We have the following inequality which is reminiscent of the Hopf 
Maximal Ergodic Inequality (MEI). 

THEOREM 1. Let S be a positive L\ contraction which is also L ^ bounded. 
Then for any realf e Lp (1 ^ p < oo), and for any X > 0 and 1 = n < oo, 
we //Ave, writing En for 

E'{(f) s U {<>„,/> ASml}, 
m = 1 

(a) juE" < oo, 

(b) jE„ (f ~ \W ^ 0. 

Proof By the Riesz convexity theorem, each Sm is a bounded operator 
on Lp. Moreover, Sm\ = XIm a.e. Hence, 

n n 

l*E» g 2 M{ IS m / | > A/m} â X" ' 2 mP\\Smf\\/ < oo, 
m = 1 m = 1 

by Chebyshev's inequality. This proves (a). 
Let R0 - 0, Rm = / + . . . + S m _ 1 = wSw , (m ^ 1), and 

* „ ( / - A ) = max Rm(f-\)= max (Rj* - \Rml), 
0 = m~n 0 = m = « 

(« g i). 

Then 

£" = {*»(/ ~ *) > 0}. 
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Since / = Rm — SRm _ \, (m = 1 ), we have 

( / - X) = Rm(f - X) - S ^ w _ , ( / - X) 

g T U / - X) - SR„(f - X), (1 ^ m ^ n). 

Hence, noting that 

max {Rn(f - X):\ ^ m ^ n} = Rn(f - X) in E'\ 

we get, upon multiplying by the indicator function of En and taking this 
maximum, 

(1) \En • ( / - X) ^ Rn(f - X) - SR„(f - X). 

Now R„(f — X) G L i + since, is" being the support of Rn(f — X), we 
have 

n 

R„(f - X) ^ 2 (i£« • I/WÏ + XV • /*„,i) 
m = 1 

and each term on the right-hand side is integrable, by (a). Similarly 

1 £ * . ( / - X) e L,. 

Integrating (1), we immediately get (b). 

COROLLARY. Let S be a positive L\ contraction which is also L^ bounded. 
Then for any (real or complex)/ e L ,̂ (1 = p < oo), and for any X > 0 and 
1 ^ n < oo, we have, writing F" for F\(f) = [Mnf > X}, 

(a') \iFn < oo, 

(b') jF„ ( l/l - X)<//i â 0. 

Proof Since | 5 W / | = Sml/], (1 = w = AÏ), we have, with notation of 
Theorem 1, 

Eli l/l ) => F'l(f). 

(a') follows. Further, | / | - À g 0 outside of F£ ( / ) => F { ( / ) = { | / | 
> A}. Hence 

/ r , ( / ) ( l / | -A)^è4 ] / 1 ) ( | / | -A)^. 

Application of Theorem 1(b) to \f\ then gives (b'). 
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Remarks. (1). Theorem 1(b) will become the Hopf MEI, which is for S a 
positive L\ contraction a n d / a real-valued L\ function, if we change X to 0. 
The former can be construed as a particular case of the latter in the 
following way. Fix n ^ 1 and X > 0, and let h = j ' — À on E'{(f), 0 
elsewhere. So h e L\ by Theorem 1(a)./— À = h. Hence 

S M - A) ^ SmK {\^ m^nl 

and so £$[(/) c £Q(/Z). It follows that 

by the Hopf MEI. In fact, Garsia's proof of the Hopf MEI (see [8] or [9, 
Theorem 2.2.1] ) is similar to that of Theorem 1(b). (2). If S is an L œ 

contraction, the argument in the proof of the Corollary shows that Sm\ in 
Theorem 1 can be replaced by 1. This becomes Theorem 2.2.2 in [9].(3). 
Analogous to inequality (1), we can show that under conditions in the 
corollary, 

\F» - d / i - X) g RUU\X) - S / U / ; A ) , 

where 

R„(f\) = max { \Rmf\ - XRm\:0 ^ m ê n}. 

Integration of this gives a direct proof of (b'). (a'), like (a), follows from 
Chebyshev's inequality. 

THEOREM 2. Let S be a positive L\ contraction which is simultaneously L^ 
bounded. Then jor any j <E Lp, (1 < p < oo), 

(a) \\M{S)JX =§ -?— \\f\\p. 

If, further, sup HSjIoo = H, or more strongly / /sup HŜ Hoo = //, then 

(b) \\M(S)f\\ptk H-£—x\\f\\p. 

Proof, (b) follows from (a) by the fact that 

Mf^ (sup | |Sml | |oo)M/= (sup WSJUMf^ HMf 

To prove (a), we need only prove it first for Mnf instead of Mf for all 
n = 1. This can be achieved by invoking the corollary to Theorem 1 and 
applying the Strong Estimate Theorem 2.2.3 in [9] (or Theorem 3.4', 
Chapter VII, in [5]), which says that (a') and (b') imply (a) for Mnf 
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3. Operator-modulated backward shifts. Suppose that T is a bounded 
operator on Lp = Lp(X, J*", jit), 1 ^ p < oo. Let Lp be the /^-direct sum of 
countably many copies of Lp. That i s , / G L/; if and only if/ = ( / ) , / , 
/2, . . . ) such that each/ , G L^ and 

ll/ll" - ll/oll/ + ll/ill/ + ••• 

is finite. It is well known and easy to see that (L/?, || ||) is a Banach 
space isometrically isomorphic to Lp(X, fF, /T) where X is the union of 
disjoint copies X„, (n = 0, 1, . . .), of X, each # Pi Xn is a c o p y ^ of .̂ ~, 
and jl\^n == /A„ is a copy of ft, such tha t / , has support in (A",,, &n, (xn). 

Definition. The unilateral backward T-shift is the operator T on Lp such 
that 7 ( / 0 , / , . . . ) = (Tfh 7 / 2 , . . . ) . 

There being no risk of confusion, we shall write || || for the norm in 
either Lp or Lp. It easy to see that ||r/?|| = ||f'?||, (n ^ 0). Moreover, we 
have \\M(T) \\ ^ \\M(T) ||, as strong (/?,/?) bounds of sublinear operators. 
This fact is expressed in the following theorem. 

THEOREM 3.I/T has a DEE with constant C, then Talso has a DEE with 
constant C. 

Proof. Consider a n y / e Lp. For any n ^ 1, l e t / , be the Lp function 
whose first n coordinates are equal t o / a n d whose remaining coordinates 
are 0. We observe that all but the first n — / coordinates of Tfu are 0. 
Hence we have 

M(T)fn = (Muf Mn^xf . . . , M,/ , 0, 0, . . . ), 

where Mt = Mj(T), i i^ 1. By the DEE for 7\ we have 

\\M(f)l\\ ^ CWlW. 

Raising both sides to the p-ih powers and then dividing by n, this yields 

- 2 \\Mmf\\p ^ o>\\f\\p. 
n m = \ 

Since \\Mmf\\ f \\M(T)f\\, the left-hand side coverges monotonely, as 
n -» oo, to \\M(f)f\\p. Hence T has a DEE with constant C. 

If 7 is a bounded positive operator on Lp, 1 < p < oo, then so is T on 
Lp. For any nonnegative function/on (X,^, /T), Tf can be defined as the 
monotone limit of Tfn for any sequence/, G Lp such that 0 ^ fn t / a . e . 
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This definition is independent of the choice of the sequence. The same 
extension can be made if T is replaced by 7*, and, furthermore, 

ff-T*gd]x= f g-TfdiL, 

for any pair of nonnegative functions/ g. (What is said of T is also true 
for T.) We have the following theorem. 

THEOREM 4. If T is a bounded positive operator on Lp, 1 < p < oo, and 
there exists a finite, positive a.e. function f on (X, 3F, jl) such that (i) T*f,}~ 
= Jp and (ii) Tnf = ///, (n = 0), for a positive constant H, then T has a 
DEE with constant Hp/(p — 1). 

Proof. Define the operator S on nonnegative measurable functions g on 
(A\ # , ft) by Sg = fx T(fg). It is easy to verify directly that S extends to 
a bounded positive operator on B = Lp(X, # \ fpdjl) such that for all 
non-zero g e B, 

l | S W I I g | | B = Hr"(/g) | | / | | /g | | , (n S 1), 

and that the same relation holds if we replace (S}\ Tu) by (Sw Tn) or by 
(M(S), M(T) ). The mapping that takes g to fg is an invertible isometry 
from B onto Lp. Consequently, S and T have DEEs with the same 
constant, if either has one. 

We shall show that relative to the measure space (X,S^,fpdfX), S extends 
to a positive L\ contraction which is L^ power bounded by H. Clearly S is 
positive, and the last assertion follows readily from condition (ii). That S 
is an L\ contraction follows from condition (i) by the following 
computation: with g ~ 0 a.e., 

/ (Sg) -/''dix = / t(fg) -f-^jx = j fg • T*fP-ldji 

g ffg-f-ldiï= j ' g-fdfi. 
Hence by Theorem 2, S (as an operator on B) has a DEE with constant 
Hp/(p — 1). From the previous paragraph, so does 7\ and by Theorem 3, 
so does T too. 

Remarks (4). Theorem 4 remains valid if (X, Ĵ ~, jl; T) is replaced by 
(X, Ĵ ", ju;T). This is obvious from the proof. 

4. Power bounded codisjunctive operators. We now proceed to prove our 
main result. Let T be a codisjunctive operator on Lp (1 < p < oo) power 
bounded by K. Let q = p/(p — 1). From [11], there exists a 
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a-endomorphism $ of (X, &, /A) and a function h with support = $X such 
that T*g = h • ®g for all g Œ Lq. Further, 

supp T*g = $ (supp g). 

From Theorem 4.3 in [11], T*" is induced by O" and some function //„, 
(« = 0). It is also clear from that theorem that Thas a linear modulus |T| 
such that |T|* is induced by 0 and \h\, and that \T\ is power bounded by K. 
From this, and the fact M(T) is majorized by M{ \T\ ), we can assume, 
without loss of generality, that T is positive in addition. Hence hn i^ 0 a.e. 
(n ^ 0). Now \\Tn\\ g ^implies ||r*'7|| ^ # , (« - 0), in the dual operator 
norm. By Theorem 4.2 in [11], for each n ^ 0, there exists a bounded 
nonnegative function, here denoted by D(T*"), such that 

(2) i i r -T = ll£(7^)lloo, 

and that for any nonnegative function g, 

(3) / / ! „ * . $ V M = j g- D{T*«)dlx. 

LEMMA 1. For a«y nonnegative function g on X, and any n = 0, 

(4) T"(T*"g)i~] = D(T*")^~{ ë A V - 1 . 

Proof. For any nonnegative function/, 

J / • Tn(T*ngf-xdii = / 7*'y- (T*"g)«~ld[i 

= f h„Wf- {hnV'gf-]Aix = j ' h„Wf- h,r]Wg?-ldii 

= jhJ-V'ifg^W = j fg«~]D(T*")d^ 

by (3). From this, the equality part of (4) follows. The inequality part 
follows from (2). 

We shall now establish (i) and (ii) in Theorem 4. Take any strictly 
positive function g0 on X, and any sequence of nonnegative, finite a.e. 
functions g,7, (n ^ 1), each with support = X\$X. For each n ^ 0, let 

gnj = r*W~'g/, (/ = 0 , . . . , r t ) . 

Each gw / is finite a.e., since T* is disjunctive. Let 

g = (g«,o + • • • + gn,n)n^o and f = g^~]. 

Now 
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supp gw,0 = $ ' % and 

supp gnJ = <S>"-'(X\<!>X) = $ n - / A r \ 0 ' , " / + 1 ^ , (/ = 1, . . . , n). 

Hence the supports of g,u, (/ = 0, . . . , «), are mutually disjoint, and the 
support of the n-ih coordinate of g is 

($>»X \J(Qn-xX\$nX) U . . . U(X\QX) = X 

Hence g > 0 and so f > 0 a.e. From the definition of f, we easily get 

T*(kn)ni>o = {T*kn-X)n^ 

taking &_! to be 0. Now/ 7 7" 1 = g, since (/? — 1)(# — 1) = 1. Hence 

(i) f r - = (r* "2 g„-u)„È0 = ("2 g„,,)„ê0 ^ _ 1 -
x / = 0 v z = 0 7 

Here the void sum (which occurs when n = 0) is interpreted as 0. 
To get (ii), first we observe that for every m = 0, 

TmUn)n^Q = (Tmfm + n ) n ^ . 

Since g /u, (/ = 0, . . . , «), have disjoint supports, 

/ = ( . 2
n

g » - 7 ' ) » È 0 -

So 

( n + m \ 

/=() x 

Now if m + n = i > n, then for any nonnegative function k, we have 

/ kTm
gr+luldix = / ( T ^ X g ^ , , ) ^ = 0, 

since supp T*mk c $"'X while 

suppg„ + m,, c X\V»-«-n-»X c X\<D"'X 

(Note that 0>JX decreases with increase of j.) Hence 

(5) T"<gU)n., = 0, (n < / ë m + n). 

On the other hand, we have 
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(6) T">gî +
 ]

mj = Tm(T*mg„Jy-1 ë K"g1j\ (0 ^ / ^ «). 

by Lemma 1. From (5) and (6), we conclude that 

oi) p"/£ (& i giji) = icf. 
\ / = 0 / » = U 

Applying Theorem 4, we arrive at our main result: 

THEOREM 5. Let T be a codisjunctive operator on Lpy 1 < p < oo, swc/z 
//?#/ sup ||r'7|| = K < oo, r/z<?tf r/z<zs <? DEE with constant Kqq, where q = 
p/(p — 1), and the pointwise ergodic property, i.e. TJ converges a.e. if <E 
Lp). 

Proof. It remains only to prove the convergence part. This follows from 
the DEE and the mean ergodic theorem, as shown in [10], on observing 
that Tuf/n —> 0 a.e. for a l l / e Lp. The latter fact follows from 

/ I |-ry|'*= 2 H-r/IN^i,,-/) 
as observed by M. A. Akcoglu (in the case K = 1, see [10]). 

11/112 < °°. 

5. Dualization and variation of the method. The method that we have 
used actually shows that if the constant in Theorem 2(b) is cp(H), then the 
constant in Theorem 5 can be taken as cp(K

q), where q = p/(p — 1). This 
result can be dualized, along with the method that leads to it. Consider the 
(unilateral) forward T-shift on Lp derived from an operator T on Lp, 1 ^ p 
< oo, denoted again by 7, which is defined by 

f ( / o , / , , . . . ) = (0, Tf0, T / , , . . . ) . 

Since the first / coordinates of Tfu are 0, we have 

M{T)fn â (M,f...,Mnf 0, 0 , . . . ) , 

with the first n pairs of corresponding coordinates equal. From this, 
Theorem 3 (see its proof) is true for our new T. By a similar method as 
before, we have the following theorem. 

THEOREM 6. Fix 1 < p < oo. 

(a) If all positive L ^ contractions that are simultaneously L\ power 
bounded by H have a DEE on Lp with constant cp(H), then all disjunctive 
operators that are Lp power bounded by K have a DEE with constant cp(K

p) 
and the pointwise ergodic property. 
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(b) In particular, all disjunctive Lp contractions have a DEE with constant 
p/(p ~ 1) and the pointwise ergodic property. 

ProoJ. Part (a). Let T be a disjunctive operator on Lp that is power 
bounded by K. As before, we can assume T to be positive, without loss of 
generality. According to the dualized method to that embodied in the 
proof of Theorem 5, to prove part (a), we need only establish (i') Tf ^ / 
and (ii') f*nfP~x â H -fp~\(n ^ (Th for H = K>\ for a strictly positive, 
finite a.e. measurable function f on (X, J*\ [i). We can take 

f=(T% + . . . + r/;,-, + /„)„*<>, 

for any sequence of nonnegative, finite a.e. functions/,,, (n = 0), with supp 
/o = X and supp / , = X\$X, (n ^ 1), where $ is the associated 
a-endomorphism of T. We omit the details. 

Part (b) follows from part (a) and the DEE for L\ simultaneously L^ 
contractions (i.e., case H = 1 of Theorem 2(b) ). 

Remarks (5). Concerning part (b), case / / = 1 of Theorem 2(b) was 
proved originally by N. Dunford and J. T. Schwartz [6, Section 4.7], but 
with a constant that is not sharp. The sharp constant, p/(p — 1), was later 
observed by A. M. Garsia and B. Jamison (see [4] or [9, Corollary 2.2.1]). 
A different proof of part (b), by geometric dilation to isometries, is given 
in [11, Theorem 5.1]. Using truncated analogues of the forward T-shift, 
Chacon and McGrath [3] proved the DEE for a positive Lp contraction 7, 
(1 < p < oo), with the property that \\T"fn\\ = ||/„||, (n â 1), for a 
sequence of positive a.e. Lp functions/,,. This includes the isometry case, 
but not part (b) above. We note in this connection that the technique used 
in this paper stems partly from a study of the method used in [3, 4]. 

The construction involved in the proofs of Theorems 5 and 6, being 
general, is somewhat complicated. There is a variation of the method that 
need only deal with two special cases with simpler constructions and that 
may put it in a better perspective. First, we have the following lemma. 

LEMMA 2. For each o-endomorphism O on (X, 3F, /x), there exists a 
decomposition of X into disjoint subsets Y and Z, such that $Y = Y, 
<&Z c Z, and Z is a disjoint union ofZh i = 0, with OZ, = Z , + t, / = 0. ( Y 
and Z„ / = some i$, may be null.) 

CO 

Proof. Let Z0 = X\$X, Z, = &Z0y (i ^ 1), Z = U Z, and Y = 

X\Z. The assertions follow readily. 
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From this lemma, if either T or T* is disjunctive, with associated 
a-endomorphism O, then /^-direct sum decomposition 

Lp(X) = Lp(Y)®Lp(Z) 

reduces T, and the DEE for T need only be proved separately on Lp(Y) 
and on Lp{Z). It also follows easily from Lemma 2 that, in either case, 
T"f—> 0 a.e. for a l l / e Lp(Z), if T is power bounded. 

For the T in Theorem 5 and case X = y, i.e., <$>X = XJ = gcr\ where 
g = (go, r*g0, r*2g0, . . .) and g0 is a positive a.e. function on X, will 
satisfy the conditions in Theorem 4 with H = Kq. 

For the case X = Z, we modify the construction as follows. Take a 
finite, nonnegative a.e. function g' with support = Z0. Then 

supp T*ng' = Zn, (n i^ 0), and 

g EE g' + r*g' + r* V + • • • 

is positive, finite a.e. on X, and so is / = gq~]. We can then show that 
conditions (i) (ii) in Theorem 4 are true for Tin lieu of T with H = Kq and 
hence T has a DEE with constant Kqq. (See Remarks (4).) 

The T in Theorem 6 can be treated similarly. 
Finally, these modified constructions can be adapted to reduce the DEE 

problem for power bounded positive Lp operators. For 1 S /? â oo and 
K ^ 1, denote by 0>{p\K) the class of positive Lp operators power 
bounded by K. 

THEOREM 7. Let 1 < p < oo. 77z<? c/<xw @(p\K) will admit of a DEE on 
Lp with a constant cp(K) if so does either 

(I) &>(p\K) n ^(1;1) or 

(II) 0>(p;K) O ^(oo;l) . 

Proof Let T G &(p\K). Without loss of generality, we assume that T 
operates on Lp of a a-finite measure space. 

Case (I). Take 0 < 6 < 1 and 0 < g' e L^, where q = p/(p - 1). 
Define 

oo 

g = 2 (0?y Y. 

o 

Then 0 < g e L^, a n d / = gq~{ e Lp satisfies 
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i.e., condition (i) in Theorem 4 for 6T in place of T. S constructed in the 
proof thereof is then in the subclass (I). The first part of the same proof 
gives the DEE for dT on Lp with constant cp{K). The same DEE holds for 
T since M(0T) f M(T) as 0 f 1. 

Case (II). Similarly, take 0 < ff e Lp and define 

oo 

/ = 2 («W\ 
0 

which belongs to L^ and satisfies (0T)f ^ / . The corresponding S is in the 
subclass (II) and by the same token as in case (I), T has a DEE with 
constant cp(K). 
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