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A topological semiring is a system (S, +, •) where (S, +) and (S, •) are
topological semigroups and the distributive laws

(x+y) -z = (x- z) + (yz)
hold for all x, y, z in S; -f- and • are called addition and multiplication
respectively.

In this paper we suppose that (S, •) is a compact 0-simple semigroup
and examine those additions + for which (S, + , •) is a topological semiring.
The special case where (S, •) is left 0-simple is dealt with in detail and we
are able to give a satisfactory characterization of all possible additions.
The results given when (S, •) is left 0-simple depend on [4] where the
author has identified all additions when (S, •) is a group with zero (an even
more special case).

Selden has found all commutative additions when (S, •) is left 0-simple
([6], Theorem 14 or [7], Theorem II). Although the proofs given here
do not depend at all on Selden's results (which are in fact a corollary of the
results in this paper), there are one or two places where the two discussions
are similar in outline.

We begin by recalling some terminology. If S is a semigroup with zero
0 in which {0} and S are the only two-sided [left, right] ideals and
S2 =£ {0}, then S is said to be 0-simple [left 0-simple, right 0-simple]. A special
case is a group with zero, which is a semigroup S in which 0 is a zero and
S\{0} is a group. The structure of compact 0-simple semigroups is given
in § 2.3 of [3], which is an extension to topological semigroups of the Rees
Theorem ([1], Theorem 3.5) for algebraic semigroups.

The following lemma is implicit in the discussion of Rees matrix semi-
groups over a group with zero in [1], § 3.1. We sketch a proof for the sake
of completeness.

1 This paper is based on part of the author's Ph.D. thesis, written under the supervision
of Dr. J. H. Michael.
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LEMMA 1. / / (S, •) is a finite semigroup which is isomorphic with a
regular Rees matrix semigroup JK6{G;I, A; P) over a group with zero {see
[1], § 3.1) and if e is any non-zero idempotent in S then

(i) \S\ = \G\ \I\ \A\ + 1;
(ii) \eS\ = \G\ \A\ + 1;

(iii) |Se| = |G||J| + l;
(iv) \eSe\ = \G\ + 1.

PROOF. It is easily seen that the only non-zero idempotents in
*Jf°(G; I, A; P) are of the form (p~j; i, fi) where i el, n e A and pH =£ 0.
Because the matrix P has a non-zero entry in each row and column ([1],
Lemma 3.1), it is clear that when p ̂  =£ 0,

(p-};i,ft) -J^{G;I,A;P) = {{a;i, l)\a eG, k e A} v {0}.

Further, the right-hand set has \G\ |/1| + 1 members. Hence (ii), and similarly
(iii). The fourth statement follows because

(p-};i, ft) • J(\G; I, A; P) • (pj; i, fx) = {(a; i, p)\a e G} u {0}.

LEMMA 2. Let (S, + , •) be a finite semiring in which (S, -\-) is a group
and (S, •) is a group with zero. Then (S, + , •) is a field.

PROOF. Because S2 = S it follows from [5], Theorem 7 that (S, + )
is abelian. Thus S is a finite division ring and therefore a field (Theorem 16,
Chapter II, [10]).

We will use 2s[+] to denote the set of additive idempotents in any
semiring (S, -f, •). If S is compact, £ [ + ] is non-empty ([3], Lemma 1.1.10)
and is a multiplicative ideal. For if x e £ [ + ] and y e S,

xy+xy = x(y+y) = xy

and so xy e £ [+] ; similarly yx e £ [+] .

THEOREM 1. Let (S, + , •) be a compact semiring in which

(i) (S, •) has a zero 0 and is 0-simple;

(ii) (S, + ) is a group.

Then (S, + , •) is a finite field {with discrete topology).

PROOF. Because £ [ + ] is a single point and also a multiplicative ideal,
it follows that 0 is the identity of (S, + ) . As {0} is a maximal proper ideal
of (S, •), we see from Theorem 1 of [2] that {0} is open. Hence each set
{x}{= x-\-{0}) is open and S is finite. It now follows from Corollary 2.56
and Theorem 3.5 of [1] that (S, •) is completely 0-simple and so is isomorphic
with a regular Rees matrix semigroup ^°(G; I, A; P) over a group with
zero.
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If e is any primitive multiplicative idempotent, then, since
eS-\-eS C eS and (S, + ) is a finite group, (eS, -(-) is a group; similarly
(Se, + ) and (eSe, + ) are groups. But eSe is multiplicatively a group with
zero ([1], Lemma 2.47), which means that (eSe, -\-, •) is a finite field
(Lemma 2). Thus there is a prime p ( ^ 2) and an integer v 2> 1 such that
\eSe\ = p" ([10], page 104), and the order of e in (S, + ) is equal to p.
Note that p and v are independent of the idempotent e (Lemma 1).

Let x be any non-zero member of S. Because S is the union of its
multiplicative 0-minimal left ideals (Corollary 2.49 of [1]) and each such
ideal is of the form Se for some primitive idempotent e (Lemmas 2.44 and
2.46 of [1]) it follows that there is a primitive idempotent e such that
x = se for some s in S. Thus

px = p(se) = se+ • • • -\-se = s(e-\- • • • -\-e) = s{pe) = sO = 0,

and we see that x has order p in (5, + ) . Consequently there are integers
x.p.p^l with \S\ = p*, \eS\ = p* and \Se\ = p* (Corollary to Theorem 1,
Chapter IV of [10]). Now from Lemma 1,

p« = \G\\I\\A\ + 1,

p* = \G\\A\ + 1,

p* = \G\\I\ + l,

P" =
Hence \G\ = pv—\ and so

p»-l = (p'-l) •-

If we multiply out and divide by p", we see that

(1) p*—p*-»—i

Now if v < fi and v < fi, it follows that a > v and so p divides the right
hand side of (1) but not the left hand side. Hence either v = /S or v = fi.

Suppose firstly that v = j3; then \A\ = 1. Let e be any primitive idem-
potent of (S, •); then \Se\ = \S\ (Lemma 1) and so Se = 5. Because A has
only one member, the regularity of ^f°(G; I, A; P) ensures that pKl =/= 0
for all i e / , X e A ([1], Lemma 3.1). Hence if x and y are non-zero members
of 5 it follows from (1') of page 88 of [1] that xy ^ 0. Let / be any other
non-zero idempotent of (S, •). Because Se = S it is clear that / = se for
some s in S and thus

fe = (se)e = s(ee) = se = j .
Hence

f[e+(p-l)f] = fe+(p-l)f* = f+(p-l)f = Pf = O,
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from which we see that e+(p—l)f — 0. Consequently,

e = e+0 = e+pf = e+[{p-l)f+f] = [«+(£-l)/]+/ = 0+/ = /.

Thus e is the only non-zero idempotent. But 5 is the union of its multi-
plicative 0-minimal right ideals ([1], Corollary 2.49) and each such ideal is
of the form fS for a non-zero idempotent / (Lemmas 2.44 and 2.46 of [1]).
Hence 5 = eS and so

eSe = (eS)e = Se = 5

from which it follows that (5, + , •) is a field. The result follows similarly
if v = [i.

THEOREM 2. Let (S, + , •) be a compact semiring in which (5, •) is
0-simple. Then 5\{0} is compact and one of the following holds:

(i) x-\-y = 0 for all x, y in S;
(ii) (5, + , •) is a finite field;

(iii) addition is left trivial;
(iv) addition is right trivial;
(v) (S\{0}7 + ) is an idempotent subsemigroup and x-\-0 = 0-\-x = x

for all x in S;
(vi) (S, + ) is idempotent and x-f-0 = 0+# = 0 for all x in S.

PROOF. Because {0} is a maximal proper multiplicative ideal it follows
from Theorem 1 of [2] that {0} is open; hence S\{0} is closed and compact.
As S-\-S, £ [ + ] , S + 0 and O-f-S are all multiplicative ideals, each is either
{0} or S.

If S+S = {0}, we have (i). Accordingly we assume that S+S = S.
If £"[+] = {0}, it follows from Corollary 2 of [2] that (S, + ) is a group.

Hence S is a finite field by Theorem 1. Assume now that £ [ + ] = S.
If 5 + 0 = 5 and 0+S = {0} then, for each x in S, there is a y with

2/+0 = x; hence

= (2/+0) + 0 = 2/+(0+0) = y+0 = x.

Thus, for all x, y in S,

x+y = (x+0)+y = x+(0+y) = x+0 = x,

and we have (iii). Similarly we have (iv) if 5 + 0 = {0} and 0 + 5 = 5.
If 5 + 0 = 0 + 5 = 5, then, as above, x+0 = 0+x = x for all x. If

x, y e 5\{0}, then x-\-y ̂  0, for otherwise

0 = x+y = (x+x)+y = x+(x+y) = x+0 = x.

Finally, if 5 + 0 = 0 + 5 = {0}, we have (vi).
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We now turn our attention to compact semigroups which are left
O-simple. If (S, •) is any such semigroup we are looking for a characterization
of all additions + for which (5, + , •) is a topological semiring (Problem A).
We give what seems to be a satisfactory solution by showing how this
problem can be reduced to the following more restricted problem.

Problem B. If (T, <g>) is any compact left simple semigroup, give a
characterization of all additions © for which (T, ©, (g>) is a topological
semiring.

That Problem B is more restricted than Problem A may be seen by
considering a third problem, Problem C.

Problem C. If (S, •) is any compact left O-simple semigroup, give a
characterization of all additions + for which (S, +, •) is a topological
semiring in which (S\{0}, + , •) is a subsemiring and x+0 = 0+x = x
for all x in S.

Clearly the class of semirings in Problem C is at least as restricted as
that in Problem A. (In fact we shall see below that it is more restricted in
the strict sense.) On the other hand, there is a 1 — 1 correspondence between
the semirings (S, + , •) in C and those (T, ©, ®) in B. For given (5, + , •)
in C, (S\{0}, + , *) is one of the semirings in B (we show below that 5\{0}
is a compact left simple semigroup) and conversely, given (T, ©, ®) in B,
if we adjoin an element 0 as an isolated point to T and extend ©, (g) to
S = T u {0} by

x@0 = 0@x = x a l l z e S ,

z(g)0 = 0<g>a: = 0 ail xeS,

then (S, ©, (g>) is one of the semirings considered in C. Thus B and C are
essentially equivalent and each deals with a more restricted class of semi-
rings than does A.

Unfortunately the only known results about Problem B appear to be
in [5], Theorem 2, which gives but part of the information required.

Let (S, •) be a compact left O-simple semigroup and let T = S\{0}.
Then {0} is topologically closed and open ([2], Theorem 1) and (T, •) is a
compact left simple semigroup ([1], Theorem 2.27). We will denote the
idempotents of (S, •) and (T, •) by £[•] and F[-] respectively. If G is one of
the maximal subgroups of T (say G = f'T where /' e F[-]), then T = F[-]G
and, in fact, T is topologically isomorphic with F[-]xG ([8], Theorem 1).
Also, for all x in T and / e F[-], Tx = T and xf = x ([8]).

EXAMPLE 1. Suppose (S, •) is as above. Let H be any normal subgroup
of G which is topologically closed and open with respect to G and let +
be any addition of a semiring on (the compact left simple semigroup)
F[-]H for which the normal subgroups f'+H and H+f of H are also normal
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in G. (If + is an addition of a semiring on F[-]H then is H a subsemiring
([5], Theorem 2) and it follows from [4], Theorem 1 that f'+H and H+f
are normal in H.) Then we can extend + to the whole of S by putting

if ^,-HH,
= O+ea = 0+0 = 0,

for all e, f e F[-] and a, p e G.

LEMMA 3. / / + is defined as in Example 12 then (S, + , •) is a semiring.

PROOF. Because H and G\H are closed and open in G and the function
<p : TxT -> G, given by <p(e<x, //?) = §urx, is continuous ([9]), we see that
the sets ^(H) and q>~1(G\H) are both closed and open. It is clear that +
is continuous on each of the sets (S x S)\(Tx T), (p~^(H), (p~1(G\H) and so,
since each is closed and open and their union is S x S, + is continuous.

It follows from the lemma of [4] that G u {0} is a semiring. For any
e, f e F[-] and a, /? e G we can see that there exists heF[-] with

= &(<x+/?). This is trivial if ^a"1 £ H for then

and any & will do. If (ice1 e H then e and //Sa^1 are members of F[-]H which
is a semiring. Thus there is h e F[-] with e+ffior1 = h{f'+/Soc-1) ([5],
Theorem 2) and, since G u {0} is a semiring,

i)a] = A(oc+/9).

The first distributive law,

is obviously satisfied if any of x, y, z is 0. Hence we can let x = en., y = f[S,
z = gy where e, f, g e F[-] and a, /J, y 6 G. Then if A e F[-] is such that
fP+gy = A(/3+y), we see that

x(y+z) = ea • h(p+y) =
xy-\-xz = ea.fp-\-eagy = ea.p~\-exy.

If yP~x $ H then, since # is normal in G, n-yP^ur1 $ H also and so
a;(y+2) = xy-\-xz = 0. If yP~x e H then, because e, /', ay/3"1 a"1 are all in

«-1)(«^)] = e(n.p+n.y) = e[x(p+y)]= x(y+z).

The other distributive law can be checked similarly.
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The associative law
{x+y)+z = x+(y-\-z)

is clearly satisfied if any of x, y, z is 0. Thus we can let x = ecu, y = //3,
z = gy where e, f, g e F[-] and a, /?, y e G. It is a consequence of the distribu-
tive laws that the associativity condition is equivalent to

Thus it is sufficient to show that

for all e, f, g e F[-] and p, y e G. Now there exist hlt h2, h3, A4 e F[-] such
that

= h2[f'+(P+y)],

Hence the result if f'+fi+y = 0. If / '+/S+y ^ 0, then /S, y^-1 e / / since
0 and /3+y 7̂  0, and thus

But ep~\ f, gyp-1 e F[-]H and so

e+W+gy) = [(ep-i+fi+gyP^lP = (*+fP)+gy-
THEOREM 3. Let (S, •) be a compact left 0-simple semigroup and let -f-

be a binary operation on S. Then (S, -\-, •) is a topological semiring if and
only if one of the following holds:

(i) x-\-y = 0 for all x, y in S;
(ii) (S, + , •) is a finite field;

(iii) addition is left trivial;
(iv) addition is right trivial;

(v) T(= S\{0}) is a (compact) semiring (which is multiplicatively left
simple) and x-\-0 = 0-\-x = 0 for all x in S;

(vi) + is as in Example 1.

PROOF. When one of (i) — (vi) holds it is clear that (S, + , •) is a semi-
ring.

Now suppose that (S, + , •) is a topological semiring. It follows from
Theorem 2 that either one of (i) — (v) holds or else (S, + ) is idempotent
and x-f-0 = 0-\-x = 0 for all x. In this latter case, if /' is any member of
F[-], it is clear that f'S is a compact semiring (which is multiplicatively a
group with zero) of the type (vi) of [4], Theorem 2. Thus if

H = {oc|a eG = f'T and f'+x ^ 0},
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it follows from [4], Theorem 2 that H is a subsemiring which is multiplica-
tively a normal subgroup of G, that H is topologically both open and closed
with respect to G and that the normal subgroups f'-\-H and H-\-f of H
are also normal in G. If e, f e F[-] and y eG then

f'(e+fy) = f'e+f'fy = / '+/> = f'+y

and so £+/y = 0 if and only if y £ H. Thus if a, /? e G and /3a"1 ^ # ,

(e+Z/Sa-1)* = Oa = 0,
while if ,9a-1 e H,

1)* ^ 0.

If fiar1 e H, suppose that e+f^x"1 = gd for g e F[-] and d eG; then

» = f'6 = f'gb = /'(e+ZiSa-1) =

In particular, if a, p e H then

+ / 3 i ) a = £<5a e

and we see that F[-]H is a subsemiring. Thus + is as in Example 1.
Recall that a semigroup (S, + ) is said to be normal if x-\-S = S-\-x

for all x in S. The following lemma (which is almost certainly not original)
is a consequence of this definition.

LEMMA 4. If (S, + ) is a normal idempotent semigroup then it is com-
mutative.

PROOF. Let x, y e S. Because x-{-y e x-\-S — S+z , there exists z in S
with x-\-y — z-\-x so that

x+y+x == (x+y)+x = (z+x)+x = z+{x+x) = z+x = x+y.

Similarly, because y-\-x e S-\-x = x-\-S, there exists w in S with
y-\-x = x-\-w so that

x+y+x = x+(y+x) = x+(x+w) = (x+x)+w = y+x.

We can now identify all normal additions of compact semirings which
are multiplicatively left 0-simple. We need two further examples.

EXAMPLE 2. Let (S, +) be any compact commutative idempotent
semigroup with an isolated unit 0. If we define multiplication on S by
putting x • 0 = 0 • x = 0 foi all a; in 5 and x • y = x for all x, y in S\{0}
then it is clear that (5, + , •) is an additively commutative semiring in
which (S, •) is left 0-simple.

EXAMPLE 3. Let (F[-], +) be a compact commutative idempotent
semigroup and let (G, •) be any finite group. Then put T = F[-]xG and
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adjoin 0 as an isolated point to T so that S = T u {0}. If we extend +
and • to the whole of 5 by putting

(e «)+(/ B) = ( ( e + / ' a ) i f a = /9>

I 0 if a ^ p,
{e, a) + 0 = 0+(e, a) = 0 + 0 = 0,

(e, a) • (/, B) = (e, « • /3),
(e, a) • 0 = 0 • (e, a) = 0 • 0 = 0,

tor all e, f e F[-] and <x, ft e G, then (S, + , •) can be seen to be an additively
commutative semiring in which (5, •) is left 0-simple.

THEOREM 4. Let (S, •) be a compact semigroup which is left 0-simple and
let + be a binary operation on S. Then (S, + , •) is an additively normal
topological semiring if and only if one of the following holds:

(i) x-\-y = 0 for all x, y in S;
(ii) (5, + , •) is a finite field;

(iii) (S, + , •) is as in Example 2;
(iv) (5, + , •) is as in Example 3.

PROOF. When one of (i) —(iv) holds it is clear that (S, + , •) is an
additively normal (in fact, additively commutative) semiring.

Now suppose that (S, + , •) is an additively normal semiring; then
one of (i) —(vi) of Theorem 3 holds. Cases (i) and (ii) of Theorem 3 give
(i) and (ii) of this theorem while cases (iii) and (iv) of Theorem 3 are not
additively normal. In cases (v) and (vi) of Theorem 3, £ [ + ] = S and so
it follows from Lemma 4 that + is commutative.

In case (v) of Theorem 3, 5\{0} is a compact semiring which is multi-
plicatively left simple. Thus if G is any maximal multiplicative subgroup
of S\{0}, then G, being an additively commutative semiring ([5], Theorem
2), is a single point (Corollary 1 to [4], Theorem 1) and so (S, + , •) is as
in Example 2.

In case (vi) of Theorem 3, (S, + , •) is given by Example 1. The set H
in Example 1 is a semiring which is multiplicatively a group. But because
addition is commutative here, H must be a single point (Corollary 1 to [4],
Theorem 1). Now H is an open subset of G so that each set {a} in G is open
and G must be finite. This gives us Example 3.

The above theorem is a slight generalization of Selden's identification
of all commutative additions of a compact semiring which is multiplica-
tively left 0-simple (see [6], Theorem 14 or [7], Theorem II). As we have
seen, all normal additions of such a semiring are commutative, which is not
surprising in view of Lemma 4, so that the additions in Theorem 4 are the
same as those Selden found.
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