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ON THE AVERAGE DISTANCE PROPERTY IN FINITE
DIMENSIONAL REAL BANACH SPACES

REINHARD WOLF

The average distance Theorem of Gross implies that for each AT-dimensional real
Banach space E (N ^ 2) there is a unique positive real number r(E) with the
following property: for each positive integer n and for all (not necessarily distinct)
aei, sea, . . . , xn in E with ||ai|| = \\xi\\ = . . . — \\xn\\ = 1, there exists an x in £
with \\x\\ = 1 such that

In this paper we prove that if E has a 1-unconditional basis then r(E) ^ 2 — (l/N)
and equality holds if and only if E is isometrically isomorphic to Mn equipped with
the usual 1-norm.

1. INTRODUCTION

In 1964 Gross published the following surprising result:

THEOREM. Let (X, d) be a compact connected metric space. Then there is a
unique positive real number r(X, d) with the following property: for each positive
integer n and for all (not necessarily distinct) x\, X2, • • •, xn in X, there exists an x
in X such that

For a proof of this Theorem see [2]. A survey of contributions to this topic is given
in [1].

REMARK 1.

(a) In the situation of Gross's Theorem we say that (X, d) has the average
distance property with rendezvous number r(X, d).

(b) Graham Elton first generalised Gross's Theorem in the following sense
(for a proof see [1]):
Let {X, d) be a compact connected metric space and M1(X) be the set of
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88 R. Wolf [2]

all regular Borel probability measures on X, then r(X, d) is the unique
positive real number with the following property: for each /* €E M1(X)
there exists an x in X such that

d(x,y)dn(y)=r(X,d).

Moreover there are /*, v in M1(X) with

d(x, y)du(y) ^ r(X, d) ^ f d(x,
Jx

for all z in X.
(c) (D(X))/2 ^ r(X, d) < D{X), with D{X) the diameter of X. For a

proof see Theorem 2 in [2].

2. BASIC DEFINITIONS AND NOTATION

For a real Banach space E let S = {x £ E \ \\x\\ = 1} denote the unit sphere of
E. For n G N , l < p < o o l e t lp(n) denote Rn with the usual p-norm.

Recall that an n-dimensional real Banach space E has a 1-unconditional basis
oi, . . . , an in E if

, for all a i , . . . , a n in R.
t = i

This is equivalent to

for all a i , /3i, . . . , an, /?„ in R with |a{| ^ |^,| for all i = 1, 2, . . . , n.
It is easy to see ai, ..., an is a 1-unconditional basis of E if and only if

(ai)/(| |ai| |), . . . , (on)/(||an||) is a 1-unconditional basis of E.
Simple arguments show that if oi, . . . , on is a 1-unconditional basis of E, then

its dual basis / i , . . . , /„ G E' (/.(a,-) = />}) is a 1-unconditional basis of E', the dual
space of E and moreover both of them are Auerbach bases:

max E a«a*
for all ati, /9i, . . . , an, /?„ in R.

<EIAI.
t=l
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For x = ^2 o-i0* m -E Mid / = $^ &/» m -®' w e simply write z = ( a i , . . . , a n )

and /=[ / 8 1 , . . . ,y9 n ] .
In [4] it is said that a real Banach space E of arbitrary dimension has the average

distance property with rendezvous number r(E) if Gross's Theorem holds for the unit
sphere S of E equipped with the norm induced metric:
There is a unique positive real number (called r(E)) such that: for each n in N and
for all (not necessarily distinct) z i , z : , . . . , z n in 5 there exists an x in S such that

REMARK 2. Each n-dimensional real Banach space (n ^ 2) has the average distance
property, since in this case 5 is compact and connected. For example in [3] Morris and
Nickolas proved that

^ f f i , foraU » * 2.

In [4] it is shown that

r(^1(n)) = 2 > 7"(^C°(n)) = o» f°r all n ^ 2.
n 2

Looking at infinite dimensional real Banach spaces we have for example:
The Hilbert space I2 of absolutely square summable real sequences has the average
distance property with rendezvous number s/2[ = lim rU2(n)) ) , and tl the space of

\ n—>oo /

all absolutely summable real sequences fails to have the desired property. (For a more
detailed discussion see [4]).

3. THE RESULTS

In [4] it is proved that r(E) < 3/2 for all 2-dimensional real Banach spaces E,
and r{E) = 3/2 if and only if E is isometrically isomorphic to £1(2).

Further it is conjectured that r(E) < 2 — 1/n holds for all n-dimensional real
Banach spaces E with n > 2.

In this paper we give a proof of r(E) < 2 — 1/n in the case when E has a 1-
unconditional basis. The proof is based on the following

THEOREM 1. Let E be a real n-dimensional Banach space (n ^ 2) with a 1-
unconditionai basis ai, . . . , an (||ai|| = . . . = ||an|| = 1). Then we have

J_ V ||*-a*|| + ||x + ai||<l + — | | * | | ,
t=i
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for all x in E with \\x\\ < 1.

From this we obtain

THEOREM 2. Let E be a real n-dimensional Banach space (n ^ 2) with a 1-
unconditional basis oi, . . . , on (||oi || = ... = ||on|| = 1). Tien we iave

;

moreover r(2?) = 2 — 1/n if and oniy if E is isometrically isomorphic to P(n).

REMARK 3. (a) The inequality established in Theorem 1 is sharp in the following sense:
For each E there is at least one x (for example x = 0), such that equality holds. It is
easy to check that for E — £x(n) equality holds for all x with ||z|| ^ 1.

Furthermore in general the assumption oi, . . . , an is a l-unconditional basis of E
cannot be replaced by a weaker condition, for example oi, . . . , on being an Auerbach
basis of E:
Let E = £°°(3), Ol = ( - 1 , 1, 1), oa = (1, - 1 , 1), a3 = (1, 1, - 1 ) .

It is easy to see that oi, o2, 03 forms an Auerbach basis of £°°(3) and

I 3 2
g £ II* - <H\\ + II* + a«|| = 2 > 1 + 3.I for x = (1, 1, 1).

(b) Since the proof of Theorem 2 is based on the proof of Theorem 1, the condition
that E has a l-unconditional basis is rather more technical than essential for obtaining
the upper bound r(E) ^ 2 — 1/n. So the question remains:
Is it true that

for all n-dimensional real Banach spaces E (n ^ 2)?

4. THE PROOFS

The following Lemma collects some simple consequences of E having a l-unconditional
basis:

LEMMA 1. Let E be an n-dimensional real Banach space with a l-unconditional
basis ai, . . . , an (||oi|| = . . . = ||an|| = 1). Tien we iave

(1) If there is an x = (Ai, . . . , An) in E such that Xt ^ 0 for all i =
1, 2, ..., n and \\x\\ = |Ai| + . . . + |An|, tien we iave
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for all Qi, . . . , a n in R .

(2) if | | (1 ,1 , . . . , 1 ) | | = 1 , we iave

. . , an)\\ = m a x | a i | ,

for all a i , . . . , a n in R .
(3) Let n = 3 and | |(1, 1, 0)|| = ||(0, 1, 1)|| = 1 and | |(1, 1, 1)|| = 2 . Tien

we iave

a2 , a3) | | = max( | a i | + | a 3 | , |o2 | ) ,

for all a i , a 2 , a 3 in R .
(4) Let x = ( a i , . . . , a n ) in E such that 0 ^ a,- ^ 1/2 for some 1 ^ i ^ n .

Then we iave

| | * - O j | | < 1 + | |* | | - 2a*.

PROOF: (1) By assumption and the Hahn-Banach Theorem we get ||[1, 1, . . . , 1]|| =
1 ([1, 1, . . . , 1] <E E'). Therefore we have | a i | + . . . + |o=n| ^ | | (oi, . . . , an)\\ ^
|« i | + . . . + | a n | , for all a1} . . . , a n in R.

(2) max |a i | ^ | | (a i , . . . , a n ) | | < max|a<|| | | (1, 1, . . . , 1)|| = max |a , | , for all

a i , . . . , a n in R.

(3) From | |(1, 1, 0)|| = ||(0, 1, 1)|| = 1 it follows that ft +/32 ^ 1 and ^2 +/33 ^ 1
for all [ft, yS2, /3s] G E' with ||[/3i, /32, /?3]|| = 1. By the Hahn-Banach Theorem there
is a / G E', Il/H = 1 such that / ( ( I , 1, 1)) = 2. Therefore we have / = [1, 0, 1]. So
||(cxi, 0, a3)\\ — \ati\ + \as\ for all a%, as in R. From this and part (2) it remains to
show that

= max(ai + a3, a 2 ) for all « i , a2 , a 3 > 0.

If ai + a 3 ^ a2 we get ||(oi, a2, a3)|| < ||(ai, a i , 0)|| + ||(0, a3, a3)|| = ax + a3

by part (2).

If a i+a 3 < a2 we get ||(ai, a2, a3)|| ^ a2 ||((ai)/(ai + a3), (ai)/(ai + a3), 0)||+

"2 ||(0, (aS)/(ai + a3), (as) /(a! + a,))\\ = a2 by part (2).

On the other hand ||(ai, a2, as)| | ^ ||(«i> 0, as)| | — ai + a3 and of course

||(ai, a2, a3)\\ ^a2.

(4) ||x - aj|| = \\{alt . . . , 1 - a,-, . . . , an)\\ < (1 - 2a<) ||a,-|| + | |z | | = 1 + \\x\\ -
2ai. 0

PROOF OF THEOREM 1: Let f(x) = (l/(2n)) f) II* - «i|| + II* + «.|| for all x in

E. It is easy to see that /((<*!, . . . . a n ) ) = / ( ( | a i | , . . . , | a n | ) ) for all a i , . . . , an i n R .
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Since \\x — ajj|, ||a; + aj|( ^ 1 + ||a;|| for all x in E and all i — 1, 2, . . . , n, it remains

to show that 5((ai , . . . , a n ) ) ^ n + (n —2)||z|| for i = ( a i , . . . , a n ) in E with

||a;|| < 1 and a j , . . . , a n > 0, where S((ai, . . . , an)) is defined as 5((ai, . . . , an)) =

||(1 - o i , a2) . . . , a»)|| + . . . + | | ( a i , a 2 ) . . . , 1 - on)|).

Now let x = (a i , . . . , a n ) in iJ, ||x|| ^ 1 and a i , . . . , a n > 0. Note that \\x\\ ̂  1

implies a i , . . . , o n ^ 1.

Let T = ai + ... + an and s = 5((ai, . . . , an)) . We consider five cases:

( l ) r = W

By the triangle inequality we get a ̂  n(l + T) — 2r = n + (n — 2) [|a;|[.

(2) r > 11*11
(a) There are at least three coordinates of x greater or equal to 1/2. Without loss

of generality let ati, a2, a3 ^ 1/2.

Then we have \\x — a,i\\ ^ jja;|| since 1 — a< ^ aj for i — 1, 2, 3. So we get

s < 3 \\x\\ + (n - 3)(1 + ||*||) ^ n - 1 + (n - 2) | |* | ] , since ||z|| ^ 1. Therefore s <

n + (n-2)\\x\\.

(b) Without loss of generality let ai, a2 > 1/2 and a3, . . . , an < 1/2.
n

Since (1 - ax, a2, . . . , an) - X) (2«» ~ («i)/(«i))°» + (l/(«i) ~ ty* we get

| | (1 -a ! , a 2 , . . . , a n ) | |< £ a i(2 - l/(a,)) + (1/K) - 1) ||x|| and therefore
i=2

The same argument leads to

Hence we get

s 4 4r -2(«! + a 8 ) - ̂ ^ - - I ^ !» + (-L + — -2^ W + V l + ||»|| -2a,
ai a2 \ai a2 / rr

by Lemma 1 part (4). Therefore

< 2r + (n - 4) ||a>|| + n - (r - ||z||)2 = n + (n - 2) ||x|j.

(c) Without loss of generality let ai ^ 1/2 and a2, . . . , an < 1/2.
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The proof of case (2)(b) shows that

||(1 - au a2, ..., an)\\ ^ 2(r - ttl) - T—^ +

So by Lemma 1 part (4) we get

( )s < 2(T - ox) - ^ i + ( ̂  - 1 ) 11*11 + 2J * + Hxll - 2ai

= n + (n - 2) ||x|| - (T - ||*||)-?- < n + (n - 2) \\x\\.

(d) au . . . , o B

By Lemma 1 part (4) we get

s£(l + \\x\\)n - 2T < n + (n - 2) ||x||.

D
Now let x = {a.\, . . . , an) in 5 . We say that x is of Type I if \a\ \ +... + \an\ — 1.

If there are t i , i2 in {1, 2, . . . , n}, such that ti ^ i2, [a^ \ = |aj, | = 1 and a,- = 0 for

all i in {1, 2, . . . , n} \ {ii, i2}, we say that a; is of Type II.

Furthermore x = (<*i, . . . , an) is a typical element of Type I if eti, . . . , aj. > 0,

ajfe+i = . . . = an = 0 for some 1 ^ k ^ n and ai + . . . + an = 1.

A typical element of Type II is the vector (1, 1, 0, . . . , 0). We formulate the second

part of the following Lemma for typical elements of Type I and Type II. By renumbering

the indices and changing the signs of the coordinates you get the analogous results for

arbitrary elements of Type I and Type II.
LEMMA 2 . Let / be defined as in tie proof of Theorem 1 and let A = {x G S \

f(x) = 2 - 1/n}. Then we have

(1) x in A implies x is of Type I or Type II.
(2) x in A is of Type I implies

and

k

. , . . . , 0 4 , 0 , . . . , 0 , 0 ^ 0 , . . . , 0 ) | | = "
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for all ft ft,j9j in R and all ifc + 1 ^ j < n, for
x = («!, . . . , Ofc, 0, . . . , 0) a typical element of Type I.

(3) x in A and x is of Type II implies

||(ft,ft,0, ...,0)||=max(|ft|,|ft|)
for all ft , ft in R and

||(1, 1, 1, 0, . . . , 0)|| = . . . = ||(1, 1,0 0, 1)|| = 2,

for x = (1, 1, 0, . . . , 0) a typical element of Type II.

PROOF: Let x = (ai,...,an) in A. Since /((<*!,... ,an)) = / ( ( | a i | , . . . , |on|))
for all cci, ..., an in R we can assume without loss of generality that a i , . . . , a n ^ 0.

(1) Note that Theorem 1 implies /(y) ^ 2 - 1/n for all y in 5 . A detailed look at
the proof shows that equality on S is attained only in case (1) and case (2)(b). Case (1)
leads to the fact that x is of Type I. The estimates in case (2)(b) lead to «i = «2 = 1 •
It remains to show that as = ... — an = 0.

n

The proof of Theorem 1 and x in A imply Yl \\x ~ °»ll = 2n —2. Since \\x — oj| | ,
t=i

||x — «211^1 w e get II* — ai | | = |jsc — a2|| = 1 and ||z — a{\\ = 2 for all i = 3, . . . , n.

Lemma 1 part (4) implies ||x — aj| | ^ 2 — 2aj for all i — 3, . . . , n . Therefore «s =
. . . = a« = 0.

n

(2) The proof of Theorem 1 and x in A again imply £ ||as — Oj|| = 2n — 2 and

||x + a>i\\ — 2 for all i = 1, 2, . . . , n. The assumptions on x and Lemma 1 part (1)
verify the assertions.

(3) Since x = (1, 1, 0, . . . , 0) in 5 and \\x + a.i\\ = 2 for i = 1, 2, . . . , 3 (x in A

and the proof of Theorem 1 once again) we are done by Lemma 1 part (2). D

PROOF OF THEOREM 2: Let / be defined as in the proof of Theorem 1. By
Gross's Theorem there is an x in S such that f(x) — r(E). By Theorem 1 we have
/(a;) < 2 - 1/n and therefore r(E) < 2 - 1/n. It is easy to check that for E = lx(n)
we have f(x) — 1 + ((n — l)/n) ||z|| for all x in ^(n) with ||x|| ^ 1. Hence we get
f(x) = 2 - 1/n for all x in 5 and by Gross's Theorem r^1^)) = 2 - 1/n.

Now let E be an arbitrary n-dimensional real Banach space with a 1-unconditional

basis oi, . . . , an in 5 and r(E) — 2 — 1/n. It remains to show that E is isometrically

isomorphic to ll{n). In [4] it is shown that r(E) — 3/2 implies that E is isometrically

isomorphic to tl{2) for all 2-dimensional real Banach spaces E. So we can assume that

n^3.

By Remark 1 part (b) there is a regular Borel probability measure fi on S such

that

/ ||x — y\\ dp(y) ^ 2 for all x in 5.
Js n
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By definition of / we get

1
n

As in Lemma 2 let A = {y E S | f(y) = 2 - 1 /n}. By Theorem 1 we have
f(y) ^ 2 — 1/n for all y in 5 , and therefore we get fi{A) — 1. Lemma 2 part (1)
quaranteed that A — BUC where B consists of Type I elements of A and C consists
of Type II elements oi A. Of course we have B D C — 0.

C A S E 1. n(C) = 0.

Take some e > 0 such that ||(e, . . . , e)|| = 1 and let z = (e, ..., e). Furthermore

let

If e ^ 1/2 it follows that \\z - a<|| < ||z|| = 1 for all i - 1, 2, . . . , n. So we have
5(ai)> s(~°») ^ 3/2 for all i = 1, 2, . . . , n. Since g is a convex function and Type I
elements are included in the convex hull of oi, — oi, . . . , an, —an we have g(b) ^ 3/2
for all 6 in B. Since

1

IB n

we get a contradiction to n ^ 3 . So it follows that

L

By Lemma 1 part (4) we have \\z — aj| | ^ 2—2e for all i — 1, 2, . . . , n and therefore
g(b) ^ 2 - e f o r a l l 6 i n j B . Hence e s% 1/n. Since 1 = ]|z|| ^ ne , we get e = 1/n. Now
Lemma 1 part (1) quarantees that E is isometrically isomorphic to il(n).

C A S E 2. n(C) > 0 .

Assume that there are two elements Ci = ( a i , . . . , a n ) and C2 = (/3i, . . . , /3n) in
C, such that there are i i , i2 , i3 in { 1 , 2 , . . . , n} with la.j | = |/?»x | = 1, |aj31 = |/3i31 =
1, \ai31 = |/3i21 = 0 and |a; | = |/3f| = 0 for all i in {1, 2, . . . , n} \ {n , i2, i3}- Without
loss of generality let Ci = (1, 1, 0, . . . , 0) and c2 = (0, 1, 1, 0, . . . , 0). Lemma 2 part
(3) and Lemma 1 part (3) imply that

| | («i , «2, «3, 0, . . . , 0)|| = m a x ( | a i | + | a s | , |a2 | )

for all a i , «2, a3 in K.

Now define di = (1/2, 0, 1/2, 0, . . . , 0), d2 = a2 , d3 = ( - 1 / 2 , 0, 1/2, 0, . . . , 0)

and d{ — a^ for all i — 4, . . . , n .
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Furthermore let

h S for aU 1/ in 5.

Note that h((cti, ...,an)) = A(( |a1 | , . . . , |aB|)) for all a i , . . . , a n in R.

Easy calculations show that h(a,i), ft(a2), fe(as) ^ 2 — 2/n and h(a{) < 2 — 1/n
for all i = 4, 5, . . . , n . Therefore we get /i(6) ^ 2 — 1/n for all 6 in B. Moreover
it follows immediately that h(ci), h(c2) < 2 — 3/2n. It is easy to check that h(c) ^
2 — 1/n for all c in C . (Note that C is finite and (1, 0, 1, 0, . . . , 0) is not in C since
11(1,0,1,0, . . . , 0 ) | | = 2 . )

For example let

I k - J i l l =

by Lemma 2 part (3).

An analogous estimation leads to | |c+ <£s || ^ 3/2, so we have

ft(c)< 1.(1 + 2 + 2 + 2 + 2+ | + 1 +2 + A(n-4)) =2--.v ' 2n \2 2 ) n

Summing up we have

h(a) ^ 2 for all a in A
n

and

i, 0-2, 0, . . . , 0)), h((0, <ri, <r2,0, ..., 0)) ^ 2 - —

for all | o"a | = | <T21 = 1.

Since di, ..., dn in S we get

1
n '

and therefore /i({(o"i, 0"2, 0, . . . , 0), (0, <T\, <T2) 0, . . . , 0), |ffi| = |<r2| = 1}) = 0.

Therefore, and since Lemma 2 part (2), (3) quarantees that each b in B and c

in C have no coordinate unequal to zero in common, we can assume without loss of

generality that

C = \ffiOi + c 2 a 2 , <Titt3 + <r2a4, . . . , O"io2jfe—i + 0"2fl2fc, \&i \ = \<^21 == 1 }
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for some 1 ^ k ^ n /2 and that B is included in the subspace generated by

a 2 f c + i ) ••-, a n .

For convenience let Xi — ax, r/j = a2,...,Xk — a2fc-i, Vk = O2fc, «i =
a2*+i) • • • > z* = a n ! s = n — 2k. Furthermore let E\ be the subspace generated
by x\, j / i , . . . , Xk, yk and E2 be the subspace generated by zj, . . . , z, and

Sr = {x € E1 | ||x|| = 1}, 52 = {x G ^ 2 | ||x|| = 1}.

Since C = A n Si and J5 = >1 H 52 we have /x(C) = ^(Si) and fi(B) = fj,(S2) •

Our next aim is to show that fi{C) = (2k)/n. We consider two cases:

Since 1 = p(A) = M ( C ) = l*{Si) w e get

/ \\x — y\\ d/j,(y) ^ 2 for all x in S.
Js1 n

By Remark 1 part (b) there is some x in Si such that

\\x-y\\dfi{y)=r(Ei).
Si

Now Theorem 1 implies r(Ei) < 2 — l/(2fc), and therefore we get n = 2k. Hence

) = (i(A) = 1 =

(ii) n(B) > 0.

/ \\x - y\\ dfi(y) ^ 2 for all x in 5
JA

 n

implies

/

for all a; in S.

By Remark 1 part (b) and Theorem 1 we get some X\ in S\ such that

The same argument leads to some x2 in 5 2 such that

1 1 * 2 - y | | d £ ( ) (£fc) £2
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If s = 1 we have

min(7 \\Zl-y\\d~f-(y), [ \\Zl + y\\ d-f-(y)) < I = 2 - K
\Jst PKB) Js2 KB) ) s

since 52 = {21, — zi} implies [i/(fj,(B)) = XSH + (1 - \)6-Zl for some 0 < A ^ 1,

where 6X denotes the measure concentrated on x.

Now for x = Xi and x = X2^z\, —zi) in

[ x-y\\dp(v)
A

we obtain (2 - l/(2k))fi(C) + 2fj.(B) and 2fi(C) + (2 - l/s)fj,(B) are greater or equal
to 2 — 1/n. Since 1 = fi(A) = fi(B) + fi(C) it follows immediately that

Now assume that there is some a: in 5 such that

Then we get

which is a contradiction to

n

Hence

for all x in S.
Since C is finite, there are some Ac ^ 0, ^2 Xc = 1 such that

Ac ||* - c|| = Jc ||* - 2/|| < ^ ( » ) ^ 2 - ^ for all x in 5.

Note that ||c - c'|| = 2 for all c ^ c', c and c' in C by Lemma 2 part (3). So by
Y, *c \W - c\\ > 2 - l/(2fc) for all c' in C and |C| = 4k, we obtain Ac = l/(4ib) for

all c in C
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Summing up we get

i - V \\x - c\\ + - [ \\x - 2/|| dp(y) > 2 - - for aU x in 5.
2n t£ "JB n

Let C = {xi + t / i , asi — t/i, ..., Xk + yt, xjb — 2/*} then we obtain formula (*):

for all a; in £".

Now let V — {cr — (ffj, . . . , crj.), l^il = . . . = \ak\ = 1} and identify V with the
set of all vertices of the fc-dimensional cubic graph Qk • Remember that two vertices of
Qk are neighbours in Qk if and only if their coordinates differ in exactly one position.
For each a in V find some za > 0, such that

is in S. In the case a = 0 leave the second sum. Since ||a!cr|| = 1 we get 2e<T ^ 1

(2fc + s)Eo and therefore 1/n ^ ta ^ 1/2.

Find <TQ in V such that min ea — eao. Without loss of generaligy (transpose :

and T/j) we can assume that <TQ = (1, 1, . . . , 1).

Let ai, ..., ak be the neighbours of cr0 . Since

( l - 2 e a o , 1, 2eao, 0, . . . , 2e<T0, 0, eao, ..., eao)

we get

+ 3/I — xao || ^ 1 — 2eao H .

A similar argument leads to

\\Xi + yi - Scroll ^ 1 - 2£a0 + ~
and e"

| | l l < l 2 + ^

for all » = 1, 2, . . . , fc.
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Since ea ^ 1/2 for all <r in V we get by Lemma 1 part (4)

for all i = 1, 2, . . . , s.

Now for x = x7 0 in formula (*) we obtain

Since eai ^ eao for all i = 1, 2, . . . , k, we get

2 - - ^ 2 - e ™ < 2 - -
n n

- for all or in
n

Therefore we get

- = £aQ - Eai for all t = 1, 2, . . . , As.

Now repeat this calculation for x — xai in formula (*). This leads to 1/n = eai

ea for all neighbours <r of c j . Then for x = xT for some r ^ <r0 a neighbour of <
and so on we obtain ea = 1/n for all a- in V.

By Lemma 1 part (1) we get

„

t = i

1 = 1

for all o i , /3i, . . . , a*, fik, 7i> • • • i 7« i n R a n d all c in V.

Now let x — (a i , /9 i , . . . , ajb, j9fc,7i, . . . , 7«) be an arbitrary element of

Choose a in V such that

max(|aj|, |ft|) - i( |«i | ki

for all i — 1, 2, . . . , fc.
It follows that
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By Lemma 1 part (2) and the triangle inequality we have

and therefore we get

t=l t = l

Finally define T: E-* i1 (n),

j 9
t=2t+l

where e\, . . . , en denote the canonical basis of ^1(n).

Now it follows that T is an isometry from E to I1 (n) and so we are done. U
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