ON ADDITIVE PROPERTIES OF GENERAL SEQUENCES

Min Tang and Yong-Gao Chen

Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\cdots\right)$ be an infinite sequence of positive integers. Let $A(n)$ be the number of elements of A not exceeding n, and denote by $R_{2}(n)$ the number of solutions of $a_{i}+a_{j}=n, i \leqslant j$. In 1986, Erdös, Sárközy and Sós proved that if $(n-A(n)) / \log n \rightarrow \infty(n \rightarrow \infty)$, then

$$
\limsup \sum_{k=1}^{N}\left(R_{2}(2 k)-R_{2}(2 k+1)\right)=+\infty
$$

In this paper, we generalise this theorem and give its quantitative form. For example, one of our conclusions implies that if $\lim \sup (n-A(n)) / \log n=\infty$, then

$$
\max _{n \leqslant N^{2}} \sum_{k=1}^{n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) \geqslant 0.004 \min \{A(N),(N-A(N)) / \log N\}
$$

for infinitely many positive integers N.

1. Introduction

Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\cdots\right)$ be an infinite sequence of positive integers. Put $A(n)=\sum_{a \leqslant n, a \in A} 1$. For each positive integer n, let $R(n), R_{1}(n), R_{2}(n)$ denote the number of solutions of

$$
\begin{array}{ll}
x+y=n, & x, y \in A \\
x+y=n, & x<y, x, y \in A \\
x+y=n, & x \leqslant y, x, y \in A
\end{array}
$$

respectively. In $[\mathbf{3}, \mathbf{4}]$, Erdős, Sárközy examined the possible order of growth of the function $R(n)$ in comparison with that of functions such as $\log n$ or $\log n \log \log n$. In [7], Erdös, Sárközy and Sós showed that under certain assumptions on $A, \mid R(n+1)-$ $R(n) \mid$ cannot be bounded. In [5, 6], Erdős et al studied the monotonicity properties of the functions $R(n), R_{1}(n), R_{2}(n)$. Continuing the work of Erdös, Sárközy and

The authors were supported by NNSF of China, Grant No 10471064.

Sós; Balasubramanian [1] concluded: If $R_{2}(n+1) \geqslant R_{2}(n)$ for large n, then $A(N)$ $=N+O(\log N)$, and if $R_{1}(n+1) \geqslant R_{1}(n)$ for large n, then $\sum_{a \in A} e^{-a / N} \gg N / \log N$. For the other related problems, see $[2,8,9]$.

Erdős, Sárközy and Sós [6] proved that if $(n-A(n)) / \log n \rightarrow \infty(n \rightarrow \infty)$, then $\lim \sup \sum_{k=1}^{N}\left(R_{2}(2 k)-R_{2}(2 k+1)\right)=+\infty$. Balasubramanian [1] remarked that his method can be employed to prove the same theorem. In this paper, we generalise this theorem and give its quantitative form.

ThEOREM. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\cdots\right)$ be an infinite sequence of positive integers, $N_{0}>e$ be a positive integer such that

$$
\begin{equation*}
\max _{n \leqslant m(N)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right)<\frac{1}{36} A(N) \tag{1}
\end{equation*}
$$

for all $N \geqslant N_{0}$, where $m(N)=N(\log N+\log \log N)$. Then there exists an N_{1} such that

$$
\max _{n \leqslant m(N)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) \geqslant \frac{1}{80 e} \frac{N-A(N)}{\log N}-\frac{11}{4}-\frac{1}{8} N_{1}
$$

for all $N \geqslant N_{1}$.
From the theorem, we may easily derive the following corollaries:
Corollary 1. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\cdots\right)$ be an infinite sequence of positive integers such that

$$
\lim _{N \rightarrow+\infty} \frac{N-A(N)}{\log N}=+\infty
$$

Then at least one of the following statements is true:
(i) for infinitely many positive integers N, we have

$$
\max _{n \leqslant m(N)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) \geqslant \frac{1}{36} A(N)
$$

(ii) for all sufficiently large positive integers N, we have

$$
\max _{n \leqslant m(N)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) \geqslant \frac{1}{240} \frac{N-A(N)}{\log N}
$$

Corollary 2. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\cdots\right)$ be an infinite sequence of positive integers such that

$$
\limsup _{N \rightarrow+\infty} \frac{N-A(N)}{\log N}=+\infty
$$

Then

$$
\limsup _{N \rightarrow+\infty} \sum_{k=1}^{N}\left(R_{2}(2 k)-R_{2}(2 k+1)\right)=+\infty
$$

Corollary 3. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\cdots\right)$ be an infinite sequence of positive integers such that

$$
\limsup _{N \rightarrow+\infty} \frac{N-A(N)}{\log N}=+\infty
$$

Then

$$
\max _{n \leqslant m(N)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) \geqslant \min \left\{\frac{1}{36} A(N), \frac{1}{240} \frac{N-A(N)}{\log N}\right\}
$$

for infinitely many positive integers N.

2. Proofs

Lemma 1. ([1, Lemma 5.11].) We have

$$
\left(1-d_{1}\right)^{d_{2}} \geqslant 1-2 d_{1} d_{2}, \quad \text { if } 0<d_{1}<1 / 2, d_{2}>0
$$

Lemma 2. Define $f(\alpha)=\sum_{a \in A} \alpha^{a}, 0<|\alpha|<1$. Then

$$
f\left(\alpha^{2}\right)=\frac{1-\alpha}{2 \alpha}(f(\alpha))^{2}-\frac{1+\alpha}{2 \alpha}(f(-\alpha))^{2}+2 \sum_{k=1}^{\infty}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) \alpha^{2 k}
$$

Proof: Let $\delta(n)$ be an arithmetic function such that $\delta(n)=1$ if $n=2 a$ for some $a \in A$, otherwise, $\delta(n)=0$. Since $(f(\alpha))^{2}=\sum_{k=2}^{\infty} R(k) \alpha^{k}$, we have

$$
\begin{aligned}
(f(-\alpha))^{2}= & \sum_{k=1}^{\infty} R(2 k) \alpha^{2 k}-\sum_{k=1}^{\infty} R(2 k+1) \alpha^{2 k+1} \\
= & 2 \sum R_{2}(2 k) \alpha^{2 k}-2 \sum R_{2}(2 k+1) \alpha^{2 k+1}-f\left(\alpha^{2}\right) \\
= & U(\alpha)+2 \sum R_{2}(2 k)\left(\alpha^{2 k}-\alpha^{2 k+1}\right) \\
= & U(\alpha)+(1-\alpha)\left(\sum R_{2}(2 k) \alpha^{2 k}+\sum R_{2}(2 k+1) \alpha^{2 k+1}\right) \\
& \quad+(1-\alpha)\left(\sum R_{2}(2 k) \alpha^{2 k}-\sum R_{2}(2 k+1) \alpha^{2 k+1}\right) \\
= & U(\alpha)+(1-\alpha) \sum R_{2}(k) \alpha^{k}+(1-\alpha) \sum R_{2}(k)(-\alpha)^{k} \\
= & U(\alpha)+\frac{1-\alpha}{2} \sum\left(R(k) \alpha^{k}+\delta(k) \alpha^{k}\right)+\frac{1-\alpha}{2} \sum\left(R(k)(-\alpha)^{k}+\delta(k)(-\alpha)^{k}\right) \\
= & U(\alpha)+\frac{1-\alpha}{2}(f(\alpha))^{2}+\frac{1-\alpha}{2}(f(-\alpha))^{2}+2 \times \frac{1-\alpha}{2} f\left(\alpha^{2}\right)
\end{aligned}
$$

where $U(\alpha)=2 \sum_{k=1}^{\infty}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) \alpha^{2 k+1}-f\left(\alpha^{2}\right)$. Hence

$$
f\left(\alpha^{2}\right)=\frac{1-\alpha}{2 \alpha}(f(\alpha))^{2}-\frac{1+\alpha}{2 \alpha}(f(-\alpha))^{2}+2 \sum_{k=1}^{\infty}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) \alpha^{2 k}
$$

This completes the proof of Lemma 2.
Lemma 3. Let $x \geqslant e$ and $m(x)=x(\log x+\log \log x)$. Then

$$
\sum_{k=1}^{\infty}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) e^{-(2 k / x)}<\frac{5}{2}+\max _{n \leqslant m(x)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right)
$$

Proof: Let l be an integer with $l-1 \leqslant m(x)<l$, and

$$
\beta=e^{-2 / x}, \quad \sigma_{n}=\sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right), \quad n=1,2 \cdots, l-1
$$

Then

$$
\beta^{l}<\beta^{m(x)}=e^{-2(\log x+\log \log x)} \leqslant x^{-2}(\log x)^{-1}
$$

By Abel's Lemma, we have

$$
\begin{aligned}
\sum_{k=1}^{l-1}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) e^{-(2 k / x)} & =\left(\beta-\beta^{2}\right) \sigma_{1}+\cdots+\left(\beta^{l-2}-\beta^{l-1}\right) \sigma_{l-2}+\beta^{l-1} \sigma_{l-1} \\
& \leqslant\left(\beta-\beta^{2}+\cdots+\beta^{l-2}-\beta^{l-1}+\beta^{l-1}\right) \max _{n \leqslant l-1} \sigma_{n} \\
& =\beta \max _{n \leqslant l-1} \sigma_{n} \\
& <\max _{n \leqslant m(x)} \sigma_{n}
\end{aligned}
$$

Since $R_{2}(2 k) \leqslant k$ and $1 /(1-\beta) \leqslant x$, we have

$$
\begin{aligned}
\sum_{k=l}^{\infty}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) e^{-(2 k / x)} & \leqslant \sum_{k=l}^{\infty} k \beta^{k}=\frac{l \beta^{l}}{1-\beta}+\frac{\beta^{l+1}}{(1-\beta)^{2}} \\
& <\frac{x(m(x)+1)+x^{2}}{x^{2} \log x} \\
& =\frac{x(\log x+\log \log x+1)+1}{x \log x} \\
& <\frac{5}{2}
\end{aligned}
$$

Hence

$$
\sum_{k=1}^{\infty}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) e^{-(2 k / x)}<\frac{5}{2}+\max _{n \leqslant m(x)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right)
$$

This completes the proof of Lemma 3.
Proof of Theorem: Let $\psi(x)=f\left(e^{-(1 / x)}\right), x>0$, where

$$
f(\alpha)=\sum_{a \in A} \alpha^{a}, 0<|\alpha|<1
$$

Put $\alpha=e^{-(1 / N)}$. Then $f(\alpha)=\psi(N), f\left(\alpha^{2}\right)=\psi(N / 2)$. Note that

$$
\begin{gathered}
\frac{1-\alpha}{\alpha}=\frac{1}{N}+\frac{1}{2!} \frac{1}{N^{2}}+\cdots \leqslant \frac{1}{N}+\frac{1}{N^{2}}(e-2)<\frac{1}{N}+\frac{1}{N^{2}}, \\
\psi(N)=\sum_{a \in A} \alpha^{a} \leqslant \sum_{n=1}^{\infty} \alpha^{n}=\frac{\alpha}{1-\alpha}=\frac{1}{e^{1 / N}-1}<N,
\end{gathered}
$$

by Lemma 2 we have

$$
\psi(N / 2)<\frac{1}{2 N}(\psi(N))^{2}+\frac{1}{2}+2 \sum_{k=1}^{\infty}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) e^{-(2 k / N)}
$$

Thus

$$
(\psi(N))^{2}>2 N \psi(N / 2)-N-4 N \sum_{k=1}^{\infty}\left(R_{2}(2 k)-R_{2}(2 k+1)\right) e^{-(2 k / N)} .
$$

Let

$$
g(x)=11+4 \max _{n \leqslant m(x)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right), x \geqslant e .
$$

It is clear that $g(x)$ is a monotone increasing function and $g(x) \geqslant g(e)>0$. By Lemma 3 , we have

$$
\begin{equation*}
(\psi(N))^{2}>2 N \psi(N / 2)-N g(N) . \tag{2}
\end{equation*}
$$

Note that

$$
\psi(N / 2)=\sum_{a \in A} e^{(-2 a / N)}>\sum_{a \in A, a \leqslant N} e^{(-2 a / N)}>e^{-2} \sum_{a \in A, a \leqslant N} 1=e^{-2} A(N)
$$

by (1) there exists an $N_{2}>N_{0}$ such that for $N \geqslant N_{2}$ we have $\psi(N)>1$ and

$$
\begin{equation*}
g(N)<11+\frac{4}{36} A(N)<\frac{1}{8.8} A(N)<\psi(N / 2) . \tag{3}
\end{equation*}
$$

Then by (2) and (3) we have

$$
\begin{array}{cll}
\psi(N)>N^{1 / 2} \psi(N / 2)^{1 / 2}, & & \text { if } N \geqslant N_{2} \\
\psi(N / 2)>(N / 2)^{1 / 2} \psi(N / 4)^{1 / 2}, & & \text { if } N / 2 \geqslant N_{2}
\end{array}
$$

and so on. Choosing λ such that

$$
N_{2} \leqslant \frac{N}{2^{\lambda}} \leqslant 2 N_{2},
$$

we have

$$
\begin{aligned}
\psi(N) & >N^{1 / 2}(N / 2)^{1 / 4} \cdots\left(N / 2^{\lambda-1}\right)^{1 / 2^{\lambda}}\left(\psi\left(N / 2^{\lambda}\right)\right)^{1 / 2^{\lambda}} \\
& \geqslant \frac{1}{2} N^{1-1 / 2^{\lambda}}\left(\psi\left(N / 2^{\lambda}\right)\right)^{1 / 2^{\lambda}} \\
& \geqslant \frac{1}{2} N^{1-1 / 2^{\lambda}} .
\end{aligned}
$$

Noting that $N^{1 / 2^{\lambda}} \leqslant N^{2 N_{2} / N} \leqslant 2$ for $N \geqslant N_{3}$, where N_{3} is a constant with $N_{3}>2 N_{2}$, we have $\psi(N)>N / 4$ for all $N \geqslant N_{3}$. By (2), for all $N \geqslant 2 N_{3}$,

$$
(\psi(N))^{2}>2 N \psi(N / 2)\left(1-\frac{g(N)}{2 \psi(N / 2)}\right)>2 N \psi(N / 2)\left(1-\frac{4 g(N)}{N}\right)
$$

that is,

$$
\psi(N)>(2 N)^{1 / 2}(\psi(N / 2))^{1 / 2}\left(1-\frac{4 g(N)}{N}\right)^{1 / 2}
$$

By (3) we have $g(N)<N / 8.8$ for all $N \geqslant N_{2}$. So there exists an $N_{4}\left(\geqslant 2 N_{3}\right)$ such that $4 g(N)+2 N_{4} \leqslant N / 2$ for all $N \geqslant N_{4}$. Let $g_{1}(N)=4 g(N)+2 N_{4}$. Then for $N \geqslant N_{4}$,

$$
\psi(N)>(2 N)^{1 / 2}(\psi(N / 2))^{1 / 2}\left(1-\frac{g_{1}(N)}{N}\right)^{1 / 2}
$$

For $N \geqslant N_{4}$, choose an integer μ such that

$$
1 / 4<\frac{2^{\mu-1} g_{1}(N)}{N} \leqslant 1 / 2 .
$$

Then

$$
\frac{N}{2^{\mu}} \geqslant g_{1}(N)>2 N_{4} .
$$

Since $g_{1}(N) \leqslant N / 2$, we have $\mu \geqslant 1$. If $\mu \geqslant 2$, then

$$
\psi(N / 2)>N^{1 / 2}(\psi(N / 4))^{1 / 2}\left(1-\frac{2 g_{1}(N / 2)}{N}\right)^{1 / 2} \geqslant N^{1 / 2}(\psi(N / 4))^{1 / 2}\left(1-\frac{2 g_{1}(N)}{N}\right)^{1 / 2}
$$

By Lemma 1, we have

$$
\psi(N)>(2 N)^{1 / 2}(N)^{1 / 4}(\psi(N / 4))^{1 / 4}\left(1-\frac{g_{1}(N)}{N}\right)^{2}
$$

Proceeding similarly, by Lemma 1, we have

$$
\begin{aligned}
\psi(N) & >(2 N)^{1 / 2} N^{1 / 4}(N / 2)^{1 / 8} \cdots\left(N / 2^{\mu-2}\right)^{1 / 2^{\mu}}\left(\psi\left(N / 2^{\mu}\right)\right)^{1 / 2^{\mu}}\left(1-\frac{g_{1}(N)}{N}\right)^{\mu} \\
& \geqslant 2^{\mu / 2^{\mu}} N^{1-\left(1 / 2^{\mu}\right)}\left(1-\frac{g_{1}(N)}{N}\right)^{\mu} \\
& \geqslant 2^{\mu / 2^{\mu}} N^{1-\left(1 / 2^{\mu}\right)}\left(1-\frac{2 \mu g_{1}(N)}{N}\right) \\
& >N\left(1-\frac{1}{2^{\mu}} \log N\right)\left(1-\frac{2 \mu g_{1}(N)}{N}\right) \\
& >N-\frac{N}{2^{\mu}} \log N-2 \mu g_{1}(N) \\
& \geqslant N-2 g_{1}(N) \log N-\frac{2}{\log 2} g_{1}(N) \log N \\
& >N-5 g_{1}(N) \log N .
\end{aligned}
$$

Let $\chi(n)$ be the characteristic function of set A. Then

$$
\sum_{n=1}^{\infty} \chi(n) e^{-(n / N)}>N-5 g_{1}(N) \log N>\sum_{n=1}^{\infty} e^{-(n / N)}-5 g_{1}(N) \log N
$$

Hence

$$
e^{-1} \sum_{n \leqslant N}(1-\chi(n)) \leqslant \sum_{n \leqslant N}(1-\chi(n)) e^{-(n / N)}<5 g_{1}(N) \log N .
$$

Thus

$$
g_{1}(N)>\frac{1}{5 e} \frac{N-A(N)}{\log N}
$$

That is,

$$
\max _{n \leqslant m(N)} \sum_{k \leqslant n}\left(R_{2}(2 k)-R_{2}(2 k+1)\right)>\frac{1}{80 e} \frac{N-A(N)}{\log N}-\frac{11}{4}-\frac{1}{8} N_{4}
$$

for all $N \geqslant N_{4}$.
This completes the proof of the theorem.

References

[1] R. Balasubramanian, 'A note on a result of Erdős, Sárközy and Sós', Acta Arith. 49 (1987), 45-53.
[2] Y.G. Chen and B. Wang, 'On additive properties of two special sequences', Acta Arith. 110 (2003), 299-303.
[3] P. Erdős and A. Sárközy, 'Problems and results on additive properties of general sequences, I', Pacific J. Math. 118 (1985), 347-357.
[4] P. Erdős and A. Sárközy, 'Problems and results on additive properties of general sequences, II', Acta Math. Hungar. 48 (1986), 201-211.
[5] P. Erdös, A. Sárközy and V.T. Sós, 'Problems and results on additive properties of general sequences, IV', in Number theory (Ootacamund, 1984), Lecture Notes in Math. 1122 (Springer-Verlag, Berlin, 1985), pp. 85-104.
[6] P. Erdös, A. Sárközy and V.T. Sós, 'Problems and results on additive properties of general sequences, V', Monatsh. Math. 102 (1986), 183-197.
[7] P. Erdős, A. Sárközy and V.T. Sós, 'Problems and results on additive properties of general sequences, III', Studia Sci. Math. Hungar. 22 (1987), 53-63.
[8] V.F. Lev, 'Reconstructing integer sets from their representation functions', Electronic J. Combin. 11 (2004), \sharp R78.
[9] M.B. Nathanson, 'Representation functions of sequences in additive number theory', Proc. Amer. Math. Soc. 72 (1978), 16-20.

Department of Mathematics
Nanjing Normal University
Nanjing 210097
China
and
Department of Mathematics
Anhui Normal University
Wuhu 241000
China

Department of Mathematics
Nanjing Normal University
Nanjing 210097
China
e-mail: ygchen@njnu.edu.cn.

