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Abstract

Double-masking may be used to reduce the transmission of a virus. If additionally
the masks are compressible, with different permeabilities and behaviour under com-
pression, then it may be possible to design a mask that allows for easy breathing
under normal breathing conditions, but is relatively impermeable under coughing or
sneezing conditions. Such a mask could be both comfortable to wear and effective. We
obtain analytical solutions for the steady-state flow-through behaviour of such a double
mask under flow-out conditions. The results show that the reduction in permeability
required to produce a relatively impermeable mask under high flux expulsion (sneezing)
conditions could be achieved using either a single filter compressible mask or two
filters with different poroelastic parameters. The parameters can be more easily adjusted
using a double mask. For both single- and double-mask cases, there is an abrupt cut
off, whereby through-flux levels reduce from a maximum value to zero as pressure
drop levels increase beyond a critical value. Additionally, in the double-mask case,
there exists a second steady-state solution for particular parameter ranges. This second
solution is unlikely to occur under normal circumstances.

2020 Mathematics subject classification: 74F10.
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1. Introduction

There is considerable interest in the use of masks to reduce the spread of COVID-19.
In many countries, the wearing of a mask is compulsory in public places. Most of
the masks in use are one filter layer masks. Dr Fauci, who is the Director of the
United States National Institute of Allergy and Infectious Diseases, recently advised:
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“If you have a physical covering with one layer, you put another layer on, it just makes
common sense that it likely would be more effective. That is the reason why you see
people either use double masking or doing a version of an N-95” [2]. The MISG in
South Africa was asked to contribute to the understanding of the effects of masks on
the spread of infectious respiratory droplets as in COVID-19. One subgroup focused
on the effect of mask design (fitting accuracy, mask design, air permeability of the
filter) on the through-flow verses leakage flow behaviour of the mask [3]. The second
subgroup investigated the effect of “double masking” on the through-flow behaviour.
The mask could consist of either a mask made of two filter layers with different
material properties or two masks in perfect contact with no air gap between the masks.
The results obtained by this subgroup are the subject of this article.

Many filters in use can be described as being incompressible in the sense that the
permeability (and porosity) of such filters remains constant irrespective of the applied
pressure drop and accompanying flow through them. By virtue of the difference in
porosity between the two layers making up a double mask, there can be improved
performance, because the two layers can filter out different size particles. Typically,
the filter/mask closer to the face could be used to capture larger particles, with smaller
particles being captured in the outer filter/mask. However, filters may be compressible
in the sense that the permeability (and porosity) changes with applied pressure and this
affects the flow-through as well as particle capture [5, 7]. Such compressibility effects
may be advantageous when designing a double mask. The subgroup considered two
compressible masks in which the permeability depends linearly on the deformation
gradient of the mask. This article will focus on the fluid flow through the mask/s.
A later article will address the associated porosity/particle capture aspects of the
problem.

The structure of the paper is as follows. In Section 2, the model equations for
the double compressible masks are presented. A poroelastic model [4] is used to
describe the flow through the masks; a brief review of this model is presented in
Section 2.1. Analytic solutions of the model equations are obtained in Section 3. Two
subsections are included to massage the results into a suitable form for presentation and
interpretation. The compressible double masks results are presented in Section 4. The
simpler incompressible double masks case results are relegated to Appendix A. Finally,
conclusions are drawn in Section 5. Note that colours for all figures are available
online.

1.1. Previous work Face masks have been used for centuries to provide protection
from pollutants and pathogens, but attempts to understand the physics of the flow and
the filtration physics in this context are more recent, with an enormous increase in
activity since the advent of the COVID-19 pandemic. The associated fluid dynamics
is complicated involving, as it does, scales varying from nanometres (fibre diameter)
to metres (the distance travelled by a respiratory jet), with structural dynamics, droplet
and particle dynamics, and even electrostatics playing a role [8]. Computational
mask flow experiments have been undertaken using real world observations [1].
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A flood of mask types have entered the market broadly classified as being fixed
facepiece masks (including N95 masks), medical and surgical masks, and cloth masks
using either woven or unwoven fabrics. Permeability results are available for mask
materials, largely coming out of the textile industry [6]. A recent review of the fluid
dynamics-centric materials can be found in the work of Rajat et al. [8]. The work
presented in the current paper involves flow through a compressible filter which was
studied by Köry et al. [5] in the context of industrial filtering.

2. The two-layer compressible mask model

A two-layer mask could consist either of two masks in perfect contact with no air
gap between them, or a mask made of two layers of different material. A model of
a two-layer compressible mask is illustrated in Figure 1. It is assumed that the mask
can be represented by a one-dimensional model. The outer mask (Mask 1 or layer 1)
extends in the range 0 ≤ x ≤ L1, while the inner mask (Mask 2 or layer 2) is of width L2
and extends in the range L1 ≤ x ≤ L, where L = L1 + L2. There is an effective porous
grid attached to the outer face x = 0 of Mask 1, which is held in position by the mask
belt that extends around the head of the wearer. Fluid can flow through the porous grid
without resistance. An imposed pressure difference across the masks, ΔP = Pin − Pout
(where Pin is the pressure at the mouth of the wearer at x = L and Pout is the pressure
at the porous grid at x = 0) drives flow through the masks. The aim is to determine the
resulting through-flux under steady-state conditions as a function of the poroelastic and
thickness parameters of the masks. The mask will be modelled as an elastic matrix
containing small pores which are connected and so allow the flow of viscous fluid
through the mask. Poroelasticity is an appropriate setting for this work and so, before
proceeding with the main text, we will give a brief review of the work in this area [4].

Model applicability The effect of a cough or sneeze is to inject air into the space
between the mask and the face. The resultant pressure increase will cause air (with
droplets) to pass through the mask filter/s, or leak out around the sides of the mask.
The leakage versus mask through-flow problem is not addressed here (see however
[3]). Here, we focus on the through flow brought about by the pressure drop across the
filter/s. The timespan for a cough or sneeze is approximately 0.1 s [1] and the time span
for mask deflation is largely determined by the leakage flow, because the filters offer
more resistance to flow. Estimates typically give about 0.3 s or greater for the mask
deflation time. During this time, the pressure drop will marginally vary with location
within the mask but a one-dimensional (1D) model should provide a good estimate of
filter performance in the mask context. The above time scales are very much greater
than the transition time scale for flow through the mask/s (approximately 0.2 × 10−5 s),
so a (quasi) steady-state 1D model has been adopted.

2.1. Poroelasticity The net stress tensor in a poroelastic medium containing mov-
ing fluid is the sum of an elastic stress tensor in the solid matrix and the stress tensor in
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FIGURE 1. Two-layer compressible mask model. The outer mask (Mask 1 or layer 1) extends from x = 0
to x = L1 and is joined to the inner mask (Mask 2 or layer 2) which extends from x = L1 to the face at
x = L1 + L2. The pressure drop ΔP = (Pin − Pout) > 0 across the masks drives a volume flux −q1 = −q2
through the masks.

the fluid. We assume here that the medium is isotropic and homogeneous. The elastic
contribution to the stress tensor in Cartesian coordinates (x1, x2, x3) is

τe
ik = λeff (∇ · u) δik + 2 μeff Eik, (2.1)

where u is the displacement vector, ∇ is the del vector operator and Eik is the strain
tensor

Eik =
1
2

(
∂ui

∂xk
+
∂uk

∂xi

)
.

The effective Lamé constants, λeff and μeff are different from the Lamé constants of the
material of the matrix. It is assumed that the stress in the fluid averages, on a length
scale of many pore sizes, to an isotropic pore fluid pressure P with stress tensor

τ
f
ik = −P δik.

The net stress tensor of the porous elastic medium is therefore

τik = τ
e
ik + τ

f
ik = (−P + λeff ∇ ·u) δik + μeff

(
∂ui

∂xk
+
∂uk

∂xi

)
; (2.2)
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the inertia and body force terms due to gravity are neglected. Under steady conditions,
the net stress tensor satisfies the equations of static equilibrium

∂

∂xk
τki = 0, i = 1, 2, 3. (2.3)

Substituting (2.2) into (2.3) leads to the Navier displacement equation for static
equilibrium

μeff∇2u + (λeff + μeff)∇(∇ ·u) = ∇P. (2.4)

The fluid flux q is the volume flow rate per unit surface area through the porous
medium. Under the steady-state conditions of interest here, Darcy’s law applies so that

q = −K
η
∇P, (2.5)

where η is the viscosity of the fluid and K is the permeability of the medium.
Additionally, we need to impose mass conservation for the fluid which, under
steady-state conditions (and neglecting fluid compressibility) gives

∇ ·q = 0. (2.6)

Poroelastic theory [4] takes into account the effect of solid matrix compressibility
on the flow through the matrix, and assumes that the permeability depends on the
displacement gradient [5, 7], so that, assuming a linear constitutive equation and a
one-dimensional displacement u(x), we write

K = k + α∗n
du
dx

, (2.7)

where k is the permeability of the material in its undeformed state. The poroelastic
parameter α∗ is assumed to be positive (or zero) for the mask situation of interest
here, so that the permeability reduces as the material compresses. The elastic constants
λeff , μeff and η are assumed to remain constant. Note that the elastic and fluid flow
equations are coupled in the poroelastic model.

The effect of compression is to change the pore size in the matrix which is closely
related to the porosity, φ, of the medium. An example of the relationship used in
practice is the Kozeney–Carman equation

K =
K0φ

3

(1 − φ)2 ,
dK
dφ
=

K0(3 − φ)φ2

(1 − φ)3 , 0 < φ < 1,

according to which the permeability is an increasing function of φ. Whilst porosity is
a major factor for determining particle capture, we will not be addressing this issue in
this paper, so we will not need to impose a specific constitutive equation between the
permeability and the porosity; it suffices to work directly with permeabilities.

https://doi.org/10.1017/S1446181123000056 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000056


34 N. D. Fowkes and D. P. Mason [6]

2.2. The model equations We return to the double-mask problem (see Figure 1).
Since the model is assumed to be one-dimensional, all quantities depend only on x.
The quantities of Mask 1 are denoted by suffix 1 and Mask 2 by suffix 2. Thus,

un = (un(x), 0, 0), Pn = Pn(x), n = 1, 2.

We take the fluid flux to be positive in the negative x-direction so that the fluid flux
from the mouth and nose into the mask is positive. Hence,

qn = (−qn(x), 0, 0), n = 1, 2, (2.8)

where qn(x) ≥ 0. To simplify the notation, λeff and μeff will be denoted by λ and μ,
respectively. Since the same fluid flows through both masks, the fluid viscosity is
denoted simply by η.

Only the x-components of the equations of poroelasticity are not identically zero.
The x-component of the Navier displacement equation (2.4) in each layer is

(λn + 2μn)
d2un

dx2 =
dPn

dx
, n = 1, 2. (2.9)

The x-component of Darcy’s law, (2.5), is

qn(x) =
Kn

η

dPn

dx
, n = 1, 2. (2.10)

The permeability of the mask materials is assumed to depend linearly on the
displacement gradient du/dx. So we have from (2.7)

Kn = kn + α
∗
n

dun

dx
, n = 1, 2,

where kn is the permeability of the medium in its undeformed state and is a positive
constant, and we have assumed that the constant α∗n ≥ 0. We write

Kn = kn

(
1 + αn

dun

dx

)
, (2.11)

where αn = α
∗
n/kn, which we will refer to as the “poroelastic ratio”. This ratio is dimen-

sionless and is a suitable small perturbation parameter to determine compressibility
effects since for the rigid mask, αn = 0. Equation (2.10) becomes

qn(x) =
kn

η

(
1 + αn

dun

dx

) dPn

dx
. (2.12)

The conservation of mass equation (2.6) reduces to

dqn

dx
= 0, n = 1, 2. (2.13)

Next, we consider the boundary conditions. Mask 1 is attached to a porous grid at
x = 0. The displacement at x = 0 must therefore be zero:

u1(0) = 0. (2.14)

https://doi.org/10.1017/S1446181123000056 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000056


[7] Double layered compressible masks 35

At x = L, the end is not compressed and therefore is free of applied stress. Thus,
from (2.1),

τe
xx(L) = (λ2 + 2μ2)

du2

dx
(L) = 0. (2.15)

The pressure at x = 0 and x = L is Pout and Pin which are constants. Hence,

P1(0) = Pout, P2(L) = Pin. (2.16)

The pressure Pin is prescribed, but we will see that the fluid flux and the pressure Pout
cannot both be prescribed.

Finally, there are matching conditions at the interface between the masks at x = L1.
We assume that the two masks are in perfect contact, and therefore at x = L1, the
displacement is continuous, so

u1(L1) = u2 (L1), (2.17)

and the fluid flux is continuous, so

q1(L1) = q2 (L1). (2.18)

The normal elastic stress is also continuous at x = L1,

τe
xx (L1−) = τe

xx(L1+), (2.19)

which, from (2.1), gives the matching condition

(λ1 + 2μ1)
du1

dx
(L1) = (λ2 + 2μ2)

du2

dx
(L1). (2.20)

Since the stress in the fluid is continuous at x = L1, the pore fluid pressure is
continuous. Hence,

P1(L1) = P2(L1). (2.21)

We will be interested in the flow for which Pin > Pout. The mask is then under
compression since the porous grid is fixed at x = 0. The fluid flows in the negative
x-direction and the x-component of the fluid flux in (2.8), qn(x), is positive. The model
also applies for Pout > Pin.

The problem is to solve the six equations (2.9), (2.12) and (2.13) for the six
quantities un(x), Pn(x) and qn(x), where n = 1 and 2, subject to the boundary conditions
(2.14), (2.15) and (2.16), and the matching conditions (2.17), (2.18), (2.20) and (2.21).

We do not make the equations dimensionless, because we find that the solution can
be expressed in terms of the ratios of α, k and λ + 2μ in the two layers.

3. Analytic solutions

We first detail the solution process in Section 3.1. The results are however com-
plicated both in solution form and also because of the many parameter combinations
occurring, so further processing is required to reduce the results to a form suitable for
plotting and interpretation (Sections 3.2, 3.3 and 3.4).
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3.1. Solution extraction From (2.13),

qn(x) = qn0, n = 1, 2,

where qn0 is a constant. However, from the matching condition (2.18),

q10 = q20 = q0,

where q0 is a constant.
Equation (2.12) becomes

dPn

dx
=

q0η

kn

[
1 + αn

dun

dx

]−1
, (3.1)

and by inserting (3.1) into (2.9), we obtain for un the second-order differential equation

d2un

dx2 + αn
dun

dx
d2un

dx2 =
q0 η

kn(λn + 2μn)
. (3.2)

Equation (3.2) can be rewritten as

d2un

dx2 +
αn

2
d
dx

((dun

dx

)2)
=

q0 η

kn(λn + 2μn)
,

and by integrating with respect to x, we obtain

αn

2

(dun

dx

)2
+

dun

dx
−
(
An +

q0 η

kn(λn + 2μn)
x
)
= 0, (3.3)

where An is a constant. Equation (3.3) is a quadratic equation for dun/dx. Hence,

dun

dx
= − 1
αn
± 1
αn

[
1 + 2αn

(
An +

q0 η

kn(λn + 2μn)
x
)]1/2

. (3.4)

To decide which sign to take in (3.4), we expand (3.4) for small values of αn and
compare with the corresponding result for a rigid two-layer mask. Now,

dun

dx
= − 1
αn
± 1
αn
±
(
An +

q0 η

kn(λn + 2μn)
x
)
+ O (α) as α→ 0. (3.5)

However, for a rigid mask, αn = 0 and solving in the same way as for a compressible
mask, we find that, instead of (3.5),

dun

dx
= A0n +

q0 η

kn(λn + 2μn)
x,

where A0n is a constant. By letting αn → 0 in (3.5), we see that the “+” sign must be
taken in (3.4). The constant An could depend on αn, but in such a way that it tends to
the finite constant A0n as αn → 0. Equation (3.4) becomes

dun

dx
= − 1
αn
+

1
αn

[
1 + 2αn

(
An +

q0 η

kn(λn + 2μn)
x
)]1/2

, (3.6)
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and by integrating again, we obtain for the displacement

un(x) = − x
αn
+

kn(λn + 2μn)
3α2

n q0 η

[
1 + 2αn

(
An +

q0 η

kn(λn + 2μn)
x
)]3/2

+ Bn, (3.7)

where Bn is a constant.
The pressure in the fluid, Pn(x), is obtained by substituting (3.6) into (3.1). This

gives

dPn

dx
=

q0 η

kn

[
1 + 2αn

(
An +

q0 η

kn(λn + 2μn)
x
)]−1/2

,

and by integrating with respect to x, we obtain

Pn(x) =
(λn + 2μn)
αn

[
1 + 2αn

(
An +

q0η

kn(λn + 2μn)
x
)]1/2

+ Cn, (3.8)

where Cn is a constant.
We now apply the boundary conditions. Imposing the boundary conditions (2.14)

on (3.7), (2.15) on (3.6) and the first condition in (2.16) on (3.8) gives

k1(λ1 + 2μ1)

3α2
1 q0 η

(1 + 2α1 A1)1/2 + B1 = 0, (3.9)

A2 = −
q0 ηL

k2(λ2 + 2μ2)
, (3.10)

(λ1 + 2μ1)
α1

(1 + 2α1 A1)1/2 + C1 = Pout. (3.11)

Imposing the second pressure boundary condition in (2.16) on (3.8) and using (3.10)
gives

C2 = Pin −
(λ2 + 2μ2)
α2

. (3.12)

It remains to impose the matching conditions at the interface x = L1. By using (3.7)
for un(x) and replacing A2 in terms of q0 by (3.10), the matching condition (2.17)
becomes

− L1

α1
+

k1(λ1 + 2μ1)

3α2
1 q0 η

[
1 + 2α1

(
A1 +

q0 ηL1

k1(λ1 + 2μ1)

)]3/2
+ B1

= −L1

α2
+

k2(λ2 + 2μ2)

3α2
2 q0 η

[
1 − 2α2 q0 η(L − L1)

k2(λ2 + 2μ2)

]3/2
+ B2. (3.13)

By using (3.6) and eliminating A2 with (3.10), the matching condition (2.20) becomes

(λ1 + 2μ1)
[
− 1
α1
+

1
α1

[
1 + 2α1

(
A1 +

q0 ηL1

k1(λ1 + 2μ1)

)]1/2]

= (λ2 + 2μ2)
[
− 1
α2
+

1
α2

[
1 − 2α2 q0 η(L − L1)

k2(λ2 + 2μ2)

]1/2]
. (3.14)
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The remaining matching condition (2.21) becomes, using (3.8) for Pn(x), (3.10) for A2
and (3.12) for C2,

(λ1 + 2μ1)
α1

[
1 + 2α1

(
A1 +

q0 η1 L1

k1(λ1 + 2μ1)

)]1/2
+ C1

=
(λ2 + 2μ2)
α2

[
1 − 2α2 q0 η(L − L1)

k2(λ2 + 2μ2)

]1/2
− (λ2 + 2μ2)

α2
+ Pin. (3.15)

There are eight quantities, A1, B1, C1, A2, B2, C2, q0 and Pout, and there are seven
equations, (3.9)–(3.15). Since Pin is prescribed, the constant C2 is given by (3.12). The
constant A2 is determined in terms of q0 from (3.10), while A1 is determined in terms
of q0 from the matching condition (3.14). With A1 determined in terms of q0, B1 and
C1 are obtained in terms of q0 from (3.9) and (3.15), while B2 is now obtained in terms
of q0 from (3.13). Since A1 and C1 can be expressed in terms of q0, the remaining
boundary condition (3.11) is a relation between q0 and Pout. The fluid flux q0 and
the exit pressure Pout cannot both be prescribed. Either q0 or Pout is prescribed. The
quantity not prescribed is then determined from (3.11).

Where possible, the constants are expressed in terms of the ratio of the parameters
in the two masks. The following results are obtained for the constants:

A1 = −
qo ηL1

k1(λ1 + 2μ1)
− 1

2α1

+
1

2α1

[
1 − α1

α2

(
λ2 + 2μ2

λ1 + 2μ1

){
1 −
(
1 − 2α2 q0 ηL2

k2(λ2 + 2μ2)

)1/2}]2
, (3.16)

C1 = Pin −
(λ1 + 2μ1)
α1

, (3.17)

B1 = −
k1(λ1 + 2μ1)

3α2
1 q0 η

(1 + 2α1 A1)3/2, (3.18)

B2 = L1

( 1
α2
− 1
α1

)
+

k1(λ1 + 2μ1)

3α2
1q0η

[(
1 + 2α1A1 +

2α1q0ηL1

k1(λ1 + 2μ1)

)3/2
− (1 + 2α1A1)3/2

]

− k2(λ2 + 2μ2)

3α2
2 q0 η

[
1 − 2α2 q0 η (L − L1)

k2(λ2 + 2μ2)

]3/2
. (3.19)

We will be mainly interested in the permeabilities, K1 and K2, which depend on A1
and A2, and in the pressure difference, Pin-Pout, which depends on A1 and C1. The
displacements, u1 and u2, depend on B1 and B2, which depend on A1 given by (3.16).
Equation (3.11), which is the relation between q0 and Pout, becomes
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Pin − Pout =
(λ1 + 2μ1)
α1

[
1 − (1 + 2α1 A1)1/2

]
, (3.20)

where

1 + 2α1 A1 = −
2α1 q0 ηL1

k1(λ1 + 2μ1)

+

[
1 − α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

+
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

(
1 − 2α2 q0 ηL2

k2(λ2 + 2μ2)

)1/2]2
. (3.21)

3.2. Permeability and fluid pressure The permeability of each mask is obtained
from (2.11) and (3.6) as

Kn(x) = kn

[
1 + 2αn

(
An +

q0 η

kn(λn + 2μn)
x
)]1/2

, n = 1, 2.

By using (3.21) for A1 and (3.10) for A2, we find that

K1(x) = k1

[
− 2α1 q0 η

k1(λ1 + 2μ1)
(L1 − x)

+

{
1 − α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

+
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

(
1 − 2α2 q0 ηL2

k2(λ2 + 2μ2)

)1/2}2]1/2
(3.22)

for 0 ≤ x ≤ L1, and

K2(x) = k2

[
1 − 2α2 q0 η

k2(λ2 + 2μ2)
(L − x)

]1/2
(3.23)

for L1 ≤ x ≤ L.
The fluid pressure is given by (3.8) for n = 1 and 2. By using (3.21), (3.10), (3.17)

and (3.12) for A1, A2, C1 and C2, it can be verified that

P1(x) = Pin −
(λ1 + 2μ1)
α1

[
1 −
{
− 2α1 q0 η

k1(λ1 + 2μ1)
(L1 − x)

+

(
1 − α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

+
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

(
1 − 2α2 q0 ηL2

k2(λ2 + 2μ2)

)1/2)2}1/2]
(3.24)

for 0 ≤ x ≤ L1 and

P2(x) = Pin −
(λ2 + 2μ2)
α2

[
1 −
(
1 − 2α2 q0 η

k2(λ2 + 2μ2)
(L − x)

)1/2]
(3.25)

for L1 ≤ x ≤ L.
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The difference between the fluid pressure at the entry at Mask 2, x = L, and at the
exit at Mask 1, x = 0, is given by (3.20). By using again (3.21), the following relation
between q0 and the pressure drop ΔP is obtained:

Pin − Pout = ΔP

=
(λ1 + 2μ1)
α1

[
1 −
{
− 2α1 q0 ηL1

k1(λ1 + 2μ1)

+

(
1 − α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

+
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

(
1 − 2α2 q0 ηL2

k2(λ2 + 2μ2)

)1/2)2}1/2]
.

(3.26)

It is readily verified that (3.26) agrees with (3.24) evaluated at x = 0.
The displacement components, u1(x) and u2(x), are given by (3.7), where B1 and

B2 are given by (3.18) and (3.19). The constants B1 and B2 are expressed in terms
of 1 + 2α1 A1 and can be expanded using again (3.21). We will not analyse u1(x) and
u2(x) since it is sufficient to investigate the properties of the permeability and pressure
difference across the double mask to understand the working of the double mask.

3.3. Scaling and nondimensionalization We first introduce scaled physical quan-
tities.

Note that (from (3.23)) the permeability K2(x) is real for values of x in the range
L1 ≤ x ≤ L, provided

q0 ≤ qs, where qs =
k2(λ2 + 2μ2)

2α2 ηL2
. (3.27)

We choose the following scales for the physical variables in both masks:

fluid flux scale = qs, fluid pressure scale Ps =
λ1 + 2μ1

α1
,

permeability scale = k2, length scale = L.

We emphasize that the scales are not characteristic quantities. They are suitable scales
that produce dimensionless variables and give a useful way to present the results.
To obtain the actual pressure, for example, we would need to multiply the scaled
result by Ps.

The scale qs is the maximum value for the fluid flux in Mask 2, and therefore in
the double mask, for given values of α2, λ2, μ2, k2 and L2. It depends only on the
parameters and width of Mask 2. The pressure scale Ps is a factor in the pressure
difference (3.26) across the double mask. The scale Ps for given values of α1, λ1 and
μ1 depends only on the parameters in Mask 1. It is used to scale the pressure in both
Mask 1 and Mask 2. The permeability scale, k2, is the permeability of Mask 2 in its
undeformed state. The length L is based on the width of the double mask because we
are interested, for example, in the pressure difference across the double mask.
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We define the following scaled quantities:

q∗0 =
q0

qs
, 0 ≤ q∗0 ≤ 1,

x∗ =
x
L

(0 ≤ x∗ ≤ 1), L∗1 =
L1

L
, L∗2 =

L2

L
, L∗1 + L∗2 = 1,

K∗1(x∗) =
K1(x)

k2
, K∗2(x∗) =

K2(x)
k2

,

P∗1(x∗) =
P1(x)

Ps
, P∗2(x∗) =

P2(x)
Ps

, ΔP∗ =
ΔP
Ps

.

From (3.22) and (3.23), the scaled permeabilities in Mask 1 and Mask 2 are

K∗1(x∗) =
k1

k2

[{
1 − α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

+
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

(1 − q∗0)1/2
}2

− α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

k2

k1
q∗0

(L∗1 − x∗)
(1 − L∗1)

]1/2
(3.28)

for 0 ≤ x∗ ≤ L∗1, and

K∗2(x∗) =
[
1 − q∗0

(1 − x∗)
(1 − L∗1)

]1/2
(3.29)

for L∗1 ≤ x∗ ≤ 1. From (3.26), the scaled pressure difference across the double mask is

ΔP	 = 1 −
[{

1 − α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

+
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

(1 − q∗0)1/2
}2

− α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

k2

k1
q∗0

L∗1
(1 − L∗1)

]1/2
. (3.30)

Equation (3.30) is a relation between q∗0 and ΔP∗: only one of q∗0 and ΔP∗ can be
specified. The other is obtained from (3.30).

The fluid pressure is continuous across the interface x = L1, and it is readily verified
from (3.24) and (3.25) that P1(x) for 0 ≤ x ≤ L1 and P2(x) for L1 ≤ x ≤ L are increasing
functions of x. The quantity of interest is the pressure difference (3.26) across the
double mask. We will therefore not investigate P1(x) and P2(x) in each mask separately,
and therefore we do not write P1(x) and P2(x) in scaled form.

The results will be fully analysed in Section 4. We give here a few elementary
properties of the solutions. From (3.28) and (3.29),

dK∗1
dx∗
=

1
2
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

k1

k2

q∗0
K∗1(x∗)(1 − L∗1)

> 0, 0 ≤ x∗ ≤ L∗1,

dK∗2
dx∗
=

q∗0
2K∗2(x∗)(1 − L∗1)

> 0, L∗1 ≤ x∗ ≤ 1.

(3.31)
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Hence, K∗1(x∗) and K∗2(x∗) are increasing functions of x∗. In general, the permeabilities
K∗1(x∗) and K∗2(x∗) will not be equal at the interface x∗ = L∗1. It can be verified that

K∗1(L∗1) = K∗2(L∗2) (3.32)

provided

q∗0 =

(
1 − k1

k2

) (
1 +

k1

k2
− 2k1

k2

α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

)
(
1 − k1

k2

α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

)2 (3.33)

and

k1

k2

α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

� 1.

When

α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

=
k2

k1
,

(3.32) is satisfied for all 0 ≤ q∗0 ≤ 1 provided k1 = k2.
From (3.31) and (3.33),

K∗1(0) =
k1

k2
[F2(q∗0) − G(q∗0)]1/2,

ΔP∗ = 1 − [F2(q∗0) − G(q∗0)]1/2,
(3.34)

where

F(q∗0) = 1 − α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

+
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

(1 − q∗0)1/2, (3.35)

G(q∗0) =
α1

α2

(λ2 + 2μ2)
(λ1 + 2μ1)

k2

k1
q∗0

L∗1
(1 − L∗1)

, (3.36)

and

F(0) = 1, G(0) = 0. (3.37)

From (3.37) and (3.34),

ΔP∗ = 1 − k2

k1
K∗1 (0). (3.38)

The pressure difference ΔP∗ and the permeability K∗1(0) which are related through
(3.38) are important scaled quantities in the understanding of the working of the double
mask and are fully analysed in terms of the functions F2(q∗0) and G(q∗0) in Section 4.
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3.4. Parameter reduction The dimensionless parameters involved are the zero
flow permeability ratio k1/k2, the “compressibility” ratio α1/α2, the elastic modulus
ratio (λ1 + 2μ1)/)λ2 + 2μ2) and the filter thickness ratio L∗1/(1 − L∗1). However, an
examination of the results in Section 3.3 indicates that the compressibility and elastic
parameters only occur in combination leaving just three dimensionless groups:

Λ21 =
(λ2 + 2μ2)/α2

(λ1 + 2μ1)/α1
, k21 =

k2

k1
, L∗12 =

L∗1
1 − L∗1

.

The implication of this observation is that a changed flow behaviour can be
achieved by either adjusting the permeability parameters αi or by adjusting the elastic
parameters λi + 2μi. In terms of this new set of parameters, the expressions for the
scaled permeabilities are given by

K∗1(x∗) ≡ K1(x∗)
k2

=
1

k21

√
F2(q∗0) − G∗(q∗0, x∗),

K∗2(x∗) ≡ K2(x∗)
k2

=

√
1 − q∗0

( 1 − x∗

1 − L∗1

)

with

G(q∗0, x∗) = k21Λ21 q∗0L∗12(x∗), L∗12(x∗) =
(L∗1 − x∗

1 − L∗1

)
.

The scaled pressure difference is given by

ΔP∗ = 1 − [F2(q∗0) − G(q∗0, 0)]1/2

with

G(q∗0, 0) = G(q∗0) = k21Λ21 q∗0 L∗12, F(q∗0) = 1 − Λ21 (1 − (1 − q∗0)1/2).

It is useful to think of the above results as determining the (scaled) pressure
drop ΔP∗ > 0 required to drive a prescribed flow q∗0 through the two masks under
steady-state conditions.

4. Compressible double mask results

It is easier to solve the problem of two masks in the incompressible (constant
permeability) mask case directly than to take the small compressibility limit in the
general case, so we have relegated this work to Appendix A. A few of the results in
this case are however worth noting. In a double mask with constant permeabilities, the
pressure drop required to drive flux q0 through the mask is given by (A.1), which can
be written in the more understandable (unscaled) form

ΔP = q0 η
[L2

k2
+

L1

k1

]
;
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we have two resistances in series determining the through-flow. Note that the
through-flux increases in direct proportion to the applied pressure drop, so that there is
no upper bound on the through-flux in the incompressible masks case; we will see
that for compressible masks, there is an upper bound. Note also that the pressure
is continuous through the masks but the permeability is discontinuous across the
interface between the filters.

For compressible filters, there are two primary dimensionless parameters governing
the flow behaviour: the zero flux permeability ratio k21 and the poroelastic ratio
parameter Λ21. In the covid mask context, it is sensible to have k21 ≥ 1 so that larger
particles are filtered out by the filter closest to the face; we will assume this is the
case for the simulations. The results we obtain are not obvious so before undertaking
an analysis of the general situation, it is useful to plot out some steady-state solutions
corresponding to fixed values of the zero flux permeability ratio k21.

4.1. Preliminary simulations

4.1.1. The k21 = 1,Λ21 = 1 case Note that this case includes the case in which both
filters are identical, which we will refer to as the single-filter case, but also includes
cases with different values of α but compensating values of λ + 2μ arranged so that
the poroelastic parameter ratio Λ21 remains unchanged; this feature may be significant
in terms of mask design.

Plots of permeability through the mask (two filters) are displayed in Figure 2. We
note that for zero flux conditions, compressibility effects disappear and the scaled
permeability K∗(x) = 1, as required by the scaling. As influx q∗0 levels increase from
zero, the permeability decreases uniformly according to our poroelastic model under
the mask compression circumstances

ΔP∗ = P∗in − P∗out > 0

of interest here.
This particular parameter set is special in that the (local) permeability is continuous

through the mask; for all other parameter combinations, there is a discontinuity across
the interface x∗ = L∗1 between the two filters. The reader will recall that the external
face of the mask (x = 0) is rigidly constrained by a porous grid, so that the compression
is greatest here and thus the permeability K∗(x) reaches a minimum at x∗ = 0 and
increases with distance from this outer mask face, as seen in Figure 2.

Of course no steady-state solution is possible if the permeability is zero anywhere
within the mask, and the first location to realise such a zero flux state is the external
face of the mask x∗ = 0. Once this happens the flow “shuts down”, so that there is an
abrupt change in through-flux from a maximum value (of q∗0 = 0.5 for our present set
of parameters, as seen in Figure 2) to zero. Higher steady-state flux levels than this
maximum value are not possible basically because the pores in filter 1 have closed. Of
course a higher pressure drop than ΔP∗ = 1 can be applied to the mask, but the excess
pressure will simply be taken up elastically by the filter fibres.

https://doi.org/10.1017/S1446181123000056 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000056


[17] Double layered compressible masks 45

FIGURE 2. The k21 = 1, Λ21 = 1 single-mask case. Local permeability variations K∗(x) through the mask
for increasing through-flux levels: q∗0 = 0 (top, black), then 0.2 (red), 0.4 (green), 0.5 (lowest, blue). The
maximum possible (scaled) flux through the mask is q∗0 = 0.5 corresponding to the blue curve.

(a) (b)

FIGURE 3. The k21 = 1, Λ21 = 1 single-mask case: (a) Global permeability versus flux results. Note that
zero global permeability occurs with a maximum through-flux of q∗0 = 0.5. Note that the permeability is
continuous across the interface (x = 0.5) in this special case. (b) Pressure drop versus flux results. Note
that the maximum pressure drop ΔP∗ = 1 occurs when the through-flux is maximal at q∗0 = 0.5.

The mask consisting of the two filters can be thought of as an equivalent single mask
with effective global (or bulk) permeability defined by the pressure drop across the
two filters verses through-flux relation, which is determined by K∗(0), see (3.38). This
effective global permeability will be dependent on the through-flux and will vary from
K∗(0) = 1 when q∗0 = 0 to K∗(0) = 0 when q∗0 = 0.5, see Figure 3(a). The associated
pressure drop verses flux relation is shown in Figure 3(b); the maximal pressure drop
(ΔP∗ = 1) is realized with a through-flux of q∗0 = 0.5. It should be noted that a mask
consisting of a single filter (just filter 2) would allow the maximal through-flux q∗0 = 1,
the thickness of the single-layer mask being half that of the double mask.

4.1.2. The k21 = 1, λ21 � 1 case Note the abrupt drop in the (local) permeability
K∗(x) across the interface (here at x = 0.5) between the two layers in the case when
λ21 = 2; see Figure 4(a). Flux shut down now occurs at a lower maximum flux
level compared with the Λ21 = 1 case of q∗0 = 0.26 < 0.5 due to the increase in the
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(a) (b)

FIGURE 4. The k21 = 1, Λ21 = 2 case. (a) Local permeability variations through the mask for increasing
through-flux levels: q∗0 = 0 top (black) curve, then 0.2 (red), 0.25 (green), 0.26 (blue, lowest). A (scaled)
maximum flux level of q∗0 = 0.26 is possible (blue curve). (b) The associated pressure drop versus flux
relationship.

(a) (b)

FIGURE 5. The k21 = 1,Λ21 variable case. (a) Global permeability verses flux results for Λ21 = 0.1 (top,
red), then 0.2 (green), 0.38 (blue) · · · 2.0 (bottom, black). (b)The pressure drop verses flux relationship for
Λ21 = 0.1 (bottom, red), then 0.2 (green), 0.38 (blue), · · · 2 (top, black). The blue curve with Λ21 = 0.38
separates out the two possible scenarios.

poroelastic ratio. The associated pressure drop versus flux relationship is shown in
Figure 4(b). Again, shut down is abrupt; flux levels reduce to zero if the pressure drop
exceeds the maximal value ΔP∗ = 1.

The effect of varying the poroelastic parameter ratio Λ21 (with k21 = 1) on the
permeability and pressure drop is shown in Figure 5. There are two distinctly different
cases.

(1) Either curves hit the maximal flux value of the q∗ = 1 barrier. This occurs
for smaller poroelastic ratio situations (Λ21 = 0.1 (red), 0.2 (green)). Note that
q∗ = 1 corresponds to an unscaled flux value of

qs =
k2(λ2 + 2μ2)

2α2 ηL2
;

it is mask 2 (the inner mask) that controls the limiting behaviour.
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(a) (b)

FIGURE 6. The k21 = 2, Λ21 = 1 case. (a) (Local) permeability variations through the mask for increasing
through-flux levels varying from zero to cut-off (q∗0 = 0 (top, black), then 0.2 (red), 0.3 (green), 0.335
(bottom, blue)). Cut off occurs at a flux level of q∗0 = 0.334 (the blue curve). (b) The pressure drop verses
flux relationship.

(a) (b)

FIGURE 7. The k21 = 2,Λ21 variable case. (a) Global permeability verses flux results for Λ21 = 0.1 (top,
red), then 0.2 (green), 0.27 (blue), 0.5 (magenta), 1 (brown), 2 (bottom, black). (b) The pressure drop
verses flux relationship for the same Λ21 range; Λ21 = 0.1 (bottom, red) etc.. The (blue) Λ21 = 0.27 case
separates out the two possible scenarios.

(2) Or curves hit the maximal pressure drop barrier ΔP∗ = 1. This occurs for
poroelastic values larger than Λ21 = 0.38. Note that this corresponds to a real
(unscaled) pressure drop of (λ1 + 2μ1)/α1; it is mask 1 (the outer mask) that
controls the limiting behaviour.

The blue curve, corresponding to Λ21 = 0.38, separates the two cases.

4.1.3. The k21 = 2 case Qualitatively, the results in the k21 = 2 case are similar to
those obtained with k21 = 1. First, we present the Λ21 = 1 case (see Figure 6). The
maximum possible flux is q∗0 = 0.335 < 1 which results if a maximal pressure drop of
ΔP∗ = 1 is applied.

The results for variable poroelastic ratios (Λ21) are displayed in Figure 7.
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FIGURE 8. Maximal flux levels for two masks as a function of Λ21 for fixed values of k21 = 1 (top, red),
then k21 = 1.5 (green) and k21 = 2 (bottom, blue).

4.1.4. Maximal through-flux levels We have seen that through-flux levels are
reduced by increases of either the zero flux permeability factor k21 or the poroelastic
parameter Λ21. This may be useful for design purposes, so the dependence of the
maximum flux possible through the two masks as a function of the two parameters
is of interest. We can obtain this by the equation K∗(0) = 0 and solving for q∗0. Exact
(but complicated) results are obtained and are plotted in Figure 8. Note that reduced
maximum flux levels occur for larger values ofΛ21. Evidently, the same maximum flux
result can be obtained for a prescribed k21 by adjusting Λ21, as seen in Figure 8.

4.2. The general solution structure As noted earlier, real steady-state solutions for
mask flow exist in the range given by q∗0 ≤ 1 and ΔP∗ ≤ 1, otherwise the permeability
goes to zero or becomes complex, indicating that no steady-state flow is possible. In
terms of the solution components (F2, G) defined by (3.35) and (3.36), real values
for the pressure drop only exist if F2 ≥ G. When F2 = G, the scaled pressure reaches
its maximal value of P∗ = 1, with a global permeability of K∗1(0) = 0. With this in
mind, we plot in Figure 9 the functions F2(q∗0) and G(q∗0) for a range of values of the
poroelastic parameters k21 and Λ21. Note that G(q∗0) is a linear function of q∗0, whereas
F2(q∗0) can either curve upwards or downwards depending on the values of the zero flux
permeability ratio k21 and the poroelastic ratioΛ21. This means that, over the allowable
flux range 0 ≤ q∗0 ≤ 1, there will be for F2(q∗0) − G(q∗0) = 0 either no solutions, one
solution or two solutions for q∗0, depending on the poroelastic parameter values.

In Figure 9, we plot G and F2 for a conductivity ratio k21 = 1, and a range of
values of the poroelastic ratio Λ21. For increasing values of Λ21, the F2 and G curves
first cross at q∗0 = 1 so that a transition between the different solution structures can
be determined by equating F2(1) to G(1). This gives the result that, if the thickness
adjusted permeability ratio k21(L∗1/(1 − L∗1)) is greater than the critical value

kcrit
21 (Λ21) =

(1 − Λ21)2

Λ21
, (4.1)

then there is just one solution for q∗0 (given by q∗0 = 0.126 in the k21 = 1 case). The
critical k21 curve is plotted in Figure 10. Above this curve (the shaded region), there
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FIGURE 9. Plots for F2(q∗0, k21,Λ21) (solid curves) and G(q∗0, k21,Λ21) (dashed curves) for k21 = 1, and
Λ21 = 0.3 (black), 1 (red) and 3 (green). The curves for Λ21 = 0.3 (black) do not intersect. Those for
Λ21 = 1 (red) intersect at one point. Those for Λ21 = 3 (green) intersect at two points.

(a) (b)

FIGURE 10. The critical k21 curve (kcrit
21 (Λ21)) given by (4.1) and solution branches in the L∗1 = 1/2 case.

(a) The critical curve splits the parameter space into three regions (left, above and right). (b) Solution
curves corresponding to k21 = 1. The red curve (with Λ21 = 0.3) is in the small lambda range, the blue
curve (Λ21 = 1) is in the medium lambda range, with the green curve (Λ21 = 0.38) splitting the two
solution zones. The (two) magenta curves correspond to (Λ21 = 3) are in the large lambda range.

is just one solution for q∗0, to the left of this critical curve, there are no solutions,
while to the right, there are two solutions. In the case in which k21 = 1, the regions
are defined by the small lambda range (0, 0.38), the medium range (0.38, 2.6) and the
high lambda range > 2.6, see Figure 10(a). The associated ΔP∗(q∗0) solution curves
are displayed in Figure 10(b). In the small lambda range, there is a single solution
(the red curve) with flux levels increasing in response to the pressure drop ΔP∗ until
the maximum through-flux of q∗0 = 1 is reached (asymptotically) with ΔP∗ < 1; the
maximum possible pressure drop is not reached. In the medium lambda range, there
is a single solution (shaded region blue curve) with flux levels increasing with the
applied pressure drop until this reaches its maximal value ΔP∗ = 1, with a value of q∗0
less than its maximal value of unity. As described earlier, shut down occurs for higher
pressure drops. This medium lambda range includes the k21 = 1,Λ21 = 1 single-filter
case. In the large lambda range (Λ21 = 3 (magenta)), there are two solution branches.
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(a) (b)

FIGURE 11. Two possible solutions in the large Λ21 case with k21 = 1. (a) ΔP∗(q∗0). The red curve
corresponds to Λ21 = 2.6 which lies on the critical curve so there is just one branch. The blue curve
(Λ21 = 3) and magenta (Λ21 = 4) curves correspond to Λ21 > 2.6; there are two branches. (b) Local
permeability variations through the mask for the two possible solution branches with Λ21 = 4. The black
curves (left bottom and right top with q∗0 = 0.126) correspond to the normal (small q∗0) branch, the red
curves (left top and right bottom with q∗0 = 0.929) to the large flux branch.

Examples of solutions in the small and medium lambda range have been
described before. All these solutions continuously evolve from an initial no flow
(ΔP∗, q∗0) = (0, 0) state. The small q∗0 branch in the large lambda case also evolves
from an initial no flow state, but the second (large q∗0) branch does not connect onto
this zero flux state. In Figure 11(a), we have plotted pressure drop versus flux results in
the k21 = 1 case with Λ21 = 2.6, 3 and 4 (the large lambda range). Note that Λ21 = 2.6
lies on the border of the large/medium parameter range and there is a single solution
branch (the red curve) which matches the solutions in the neighbouring medium
lambda parameter range. For larger values of Λ21, a second (large q∗0) branch opens up
(the blue curve), indicating that under steady-state circumstances, the same pressure
drop can result in either a small or a large through-flux. Evidently, the flow behaviour
through the mask will be different in the two cases.

Figure 11(a) displays the pressure drop versu flux relation for Λ21 values close
to the transitional value of Λ21 = 2.6 (red curve). One can see the two branches
(blue, magenta) opening up for Λ21 = 3 and 4; both branches move to the left as Λ21
increases.

To examine this second branch situation further, we determine permeability vari-
ations through the mask for the two solutions corresponding to a pressure drop of
ΔP∗ = 0.951 close to maximal pressure drop of unity. The corresponding flux levels are
q∗0 = 0.131 and q∗0 = 0.928. The results for the (local) permeability variations through
the masks are displayed in Figure 11(b). In the (normal) small lambda branch case
(the black curve), the variations in permeability within filter 2 are moderate with
larger variations through the external filter 1, whereas in the large q∗0 branch, there are
large variations in permeability through both filters. As indicated earlier, the small flux
branch results from a (gradual) increase in pressure drop from zero, so this is indeed
the situation one would normally expect. If, however, the pressure drop across the mask
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is at its maximal value of unity (and so is “at” shut down), then the through-flux may
either be at a maximal value or zero, and a small change in the applied pressure may
cause the solution to switch branches.

In explanation, the external pressure drop on the mask can be either taken up in
filter 1 fibres or filter 2 fibres, and what happens depends on history. A slow build up
in pressure forcing will likely result in the low flux solution whereas an abrupt pressure
change will compress filter 2 before filter 1 responds, giving rise to the high-flux result.

5. Summary and observations

The objective of this work was to assess the benefits of using a mask with two
compressible filters, and we focused our attention on the steady-state flow-through
behaviour under flow out conditions. Of particular interest was the effect of filter
compressibility on the flow-through behaviour. The thought was that using two filters
may make it possible to design a mask that is both comfortable under normal breathing
conditions (allowing relatively free exchange of air) and yet relatively impermeable
under high flux expulsion (sneezing) conditions. The results we obtained showed that
the reduction in permeability required to produce this changed behaviour could be
achieved using either a single filter compressible mask or by using two filters with
different poroelastic parameters. However, a more dramatic change in behaviour is
possible using two filters, and the poroelastic parameters can be more easily adjusted.
A required behaviour can be achieved by either adjusting the permeability ratio param-
eter and/or the poroelastic ratio parameter and/or the filter thickness parameter, so there
is considerable flexibility (at least theoretically) available for the design engineer.

Some features of model results require further thought. We have seen that the effect
of compressibility on the flow behaviour for both a single mask or two masks is
dramatic. Whereas in the incompressible mask/s case there is no upper bound on the
through-flux, in the compressible single- and two-mask cases, there is an upper limit.
In the two-mask case, this limit is given by

qs =
k2(λ2 + 2μ2)

2α2 ηL2
,

which is determined by the poroelastic parameters of the near face inner filter only.
This maximum flux possibility will only be realized, however, with increasing applied
pressure drop if the outer filter does not shut down the flow before such flux levels are
reached. This will occur if pressure drop levels reach the critical value of

Ps =
λ1 + 2μ1

α1
;

again determined only by the poroelastic parameters of the outer mask. It is this second
scenario that is desirable in the covid mask context; we would like the outer mask
to trap all particles under sufficiently high-pressure sneeze or cough circumstances.
Under such circumstances, a maximum flux less than the qs will be realized when the
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pressure reaches Ps, and if a higher pressure drop is applied, then the flow will cease
entirely with the pressure taken up in the solid matrix. In addition to all this, there is a
third possible high-pressure scenario predicted by our model.

All the above scenarios are based on a linear poroelastic model (2.11) which is
not likely to apply at near pore closure (zero permeability) conditions. The filters
consist of pores of different sizes, and so the effect of increasing compression close
to cut-off conditions will be to cause the smaller pores to first close up but leaving
the larger pores open and thus allowing some reduced through-flow; evidently a
nonlinear permeability versus displacement relationship will result. It seems unlikely
that detailing this nonlinear behaviour is necessary in context; a “dribbling flow” is
for all practical purposes “no flow”. As indicated in the main text, the third scenario
corresponds to the situation of a garden hose under high pressure with the hose valve
almost closed; unstable oscillations may occur. Again, in context, this is not likely to
be a real issue.

Typically more sophisticated masks such as the N-95 have a thin inner layer to
absorb moisture and a thin outer water repellent layer to reject moisture. That is in
addition to the one or more filtering layers. Assuming these layers are incompressible
and thin, the above theory goes through with minor modifications to pressure drop
across the filters.

Future work will address the particle filtering issues.

Appendix A. Incompressible double masks

It is easier to solve the problem of two masks with constant permeability directly
than to take the limit of two compressible masks. The governing equations are (2.9),
(2.10) with Kn = kn = constant, and (2.13), subject to the boundary conditions (2.14),
(2.15) and (2.16) and to the matching conditions (2.17), (2.18) and (2.19). Since the
permeability is constant for each mask we solve for the displacements u1(x) and u2(x).

For Mask 1,

K1 = k1,

u1(x) = − q0 η

2k1(λ1 + 2μ1)
x
[
2
(
L1 +

k1

k2
L2

)
− x
]
,

P1(x) = Pin −
q0 ηL2

k2

[
1 +

k2

k1

(L1 − x)
L2

]
,

where 0 ≤ x ≤ L1.
For Mask 2,

K2 = k2,

u2(x) = u1(L1) − q0 η

2k2(λ2 + 2μ2)
(x − L1)(L1 + 2L2 − x),

P2(x) = Pin −
q0 η

k2
(L − x),
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where L1 ≤ x ≤ L and

u1(L1) = − q0 ηL1

2k1(λ1 + 2μ1)

(
L1 +

2k1

k2
L2

)
< 0.

Also the pressure difference satisfies

ΔP = Pin − Pout =
q0 ηL2

k2

[
1 +

k2

k1

L1

L2

]
, (A.1)

which is also the relation between Pout and q0.
Although the permeability is constant, the masks can deform and we see that for

the displacement, u1(x) < 0 for 0 ≤ x ≤ L1 and u2(x) < 0 for L1 ≤ x ≤ L.
Both P1(x) and P2(x) are increasing functions of x and the pressures match at the

interface x = L1. The pressure P2(x) ≥ 0 for all L1 ≤ x ≤ L provided

q0 ≤
Pin k2

ηL2
,

while P1(x) ≥ 0 for all 0 ≤ x ≤ L1 provided

q0 ≤
Pin k2

ηL2 {1 + (k2/k1)(L1/L2)} . (A.2)

Equation (A.2) follows directly from (A.1) and is the condition for Pout ≥ 0. Unlike
the maximum fluid flux qs given by (3.27) for the permeability K2(x) of the double
compressible mask to be real, the flux (A.2) is independent of the effective Lamé
constants, λ2 + 2μ2, and depends on the pressure Pin.

We do not introduce scaled variables, because we are focusing on compressibility
effects on the permeability and they are absent in the double mask with constant
permeabilities.
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