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1. Introduction

It is well known* that certain types of partial differential equation may
be solved using integral transforms with suitable kernels. In general, these
equations may be solved by the classical method of separating variables, but
the use of an integral transform yields the solution in a more direct way in
the sense that the boundary values are contained in the solution.

It is the purpose of this note to apply this technique to obtain the solution
of the differential equation associated with the transverse motion of an elastic
beam for a wide class of boundary conditions.

The inversion theorem for a finite integral transform is in the form of a
series expansion of the characteristic functions of the differential system,
and the normalisation of these functions may involve laborious integrations.
It is shown in §3 how the expansion coefficients may be obtained algebraically,
thereby simplifying the process.

2. The Differential Equation

The partial differential equation with which we are concerned has the
form

where p(x) > 0, and p(x) > 0 are continuous functions in the range 0 < x ̂  I.
Associated with this equation is the characteristic equation

It may readily be shown that this equation is self-adjoint. A solution <j>{x, £)
of (2) satisfying certain linear homogeneous relations between the values of
<j>, <j>, <f>", <f>'", at x = 0 and x = l, and involving certain parameters, is used to
define the kernel of the integral transform which will reduce equation (1) to
an ordinary differential equation in t, containing the values of y, y', y", y'",\
at the points x = 0 and x = l.

From the solution of this equation in t is obtained the solution of (1) by
applying the inversion theorem discussed in the next section.

* See, for example, Sneddon (4), and Tranter (7).
f ' denotes differentiation with respect to x.

E.M.S.—F
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The solutions of specific problems are obtained by assigning suitable values
to the parameters.

3. The Inversion Theorem

We consider now the differential equation

(3)

p(x)>O,p{x)> 0,
and we subject <f> to the linear homogeneous boundary conditions

6.(^)=^*-«oosai+(3^")<2-«sina. = 0, t = l, 2

where <f>^ denotes the value of the nth derivative of ̂  at x = 0, and the a( are
parameters. There are similar conditions associated with the point x = l in
terms of <£<n) and the parameters /?,-, and these for convenience will be denoted
by 6,0) = 0, * = 3, 4.

If <f>j(x, £), j = l, ..., 4 is a fundamental set of solutions of equation (2),
and if we write b^j) as bijt then, the Green's function of the system is given
by (Ince (3), p. 259).

G(x,z, £) = N(x,z,£)ID(g)

where D(g) denotes the determinant | btj |, i, j = l, ..., 4, and

(4)

N(x,z,£) = g(x,z,£)
b12

633

bi3

.(5)

In this determinant

where a = J, if x<z, and a= — \, if x>z, and

.(6)

•(7)

W(z) denotes the Wronskian of <f>j{z, £),j = \, ..., 4, with respect to z. I t can
be shown (Darboux (2), p . 114) that since equation (2) is self-adjoint, the
<f>j(z, $) may be chosen such that

Xk(z, £)= Zc,d>t(z, & (8)

where ckj — \ (— l)*+1Sfcj5_j-1, Smn denoting the Kronecker S-function.
I t can also be shown (Titchmarsh (6), p. 5 ; Ince (3), p. 258) that if F(x) is

an integrable function then

F(x)=- ^ *> z> (9)
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where the contour of integration in the £-plane encloses all the poles of
G(z, z, g), that is, the zeros of D(£)/4£3 = w;(!), say- The zeros of w(g) are the
characteristic numbers of the system and form an infinite sequence of real
numbers (Temple (5), p. 260). It will be assumed that the zeros are simple.

If gn is a characteristic number, then the cofactor of g(x, z, £n) in N(x, z, £„)
is zero, and so N(x, z, £n) is a continuous function of x and z. Expanding
N(x, z, £n) by the elements of the first column, and making use of (6), (7), and
(8) we obtain

N(x, z, £,)= S Z ( -1 )^+4 1 (-l)k+1Bkrbk,5}<f>r(x, £n)&(z, U
l l U l )

in which Btj denotes the minor of bu in the determinant D(£). We have used

the fact that 2 Bkrbkt5_s = 0; this is so because D(£) = 0 in the case r + s = 5,

and because it is an expansion in terms of alien minors in the case
Furthermore,

4

, £„)= (-l)^B(kct>k(x, U ,» = !, . . . , 4, (11)

are characteristic functions of the differential system, and by virtue of its
self-adjointness we can write

= -\(UrZisZ(-l)r+s+1BirBis<l>r(x, £n)Uz> U (12)

Equating elements of the matrices of the bilinear forms (10) and (12)
gives

X(U= 2 (-i)k+1BkrBk,5JBirBis
4=1

= s\-l)*BkrBkiiJBirBis

Putting r = s=j, and writing A(£n)=An, we get

An= S (-l^B^B^^KBij)2 (13a)
4 = 1

= 2'(-l)J:5w5,c,5_:,/(JB,J)
2 (136)

in which Bit =£ 0. At least one minor Bti of Z)(f) must be non-zero if the system
is singly-compatible.

Equation (9) now becomes

F(x) = Z - A - r P(x)<j>(x, U (<j>(z, UF(z)dz (14a)
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in which wA^) denotes the derivative of w(£) with respect to £. Writing

F(x)=p(x)f(x) and x\s{x, £„)={ " [ <$>{x, £„), this becomes

f(x)= E <P(x,$n)(
lp(z)t(z, UfWdz (146)

» = 1 J 0

It may readily be shown that

p t W
0

so that the {p(x)}* ifi(x, £„) form a complete orthonormal set. The convergence
of the expansion (14) is discussed by Birkhoff ((1), p. 389).

If £„ is a repeated root of w(g) = 0, formula (14a) must be suitably modified
by calculating the residues of G(x, z, £) at £n accordingly.

4. The Integral Transform
We now define the integral transform to be used in the solution of (1).

Taking I/J(X, £„), as defined in the previous section, to be the kernel of the
transform, we write

/(£„)= f'p(a#(«, L)f(z)dz, (15)
•> o

then the inversion theorem is given by (146) as

/(*)= Zf(£n)t(x, U, (16)
n = l

where £v £a ... are the roots of w(g)=0.

5. The Solution of the Differential Equation

If we multiply d2/dx2(pd2yldx2) by tfi(x, £n) and integrate by parts with
respect to x between the limits x=0 and x = l, we obtain

Now ifi(x, £n) satisfies the boundary conditions (3) and so
^*-1> = 8i sin av ( ^ " ) f -o = 8. cos a., » = 1, 2 ;

where
Si(^) = ^ ' 1 ) sina.-^,/.") '2-^ cos

ls-i><x»Pi,i = l, 2 (18)
cos a.;

and (17) becomes
ffln, t) (19)

where

f p(x)J,(x,tn)y(x,t)dx (20)
o0
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and

B(gn, t)=E {-IKHQiiVy'X^ aino. + ̂ -W cos a,}
i = 1

+ Vi(tn){(Py")f-i) s i n ^ + ̂ - D cos j3J] (21)

Thus if we multiply equation (1) by >p(x, $„) and integrate with respect to
x between x = 0 and x = I, we obtain

Pt)-£it(en,t) (22)

where P(£n, t) is the transform of P(x, t)jp{x).
The solution of this equation in t is (Sneddon (4), p. 116)

y(£n, t)=y(£n, 0) cos ̂ t+ -^ yt(g , 0) sin ^t

1 Cl

+ j2 {P(£n> T)-B{gn, T)}sin^( (_T)^T (23)

where

and

J o

in which t/((a;, 0) is the value of the derivative of y with respect to t at < = 0.
The solution y(a;, <) follows by applying the inversion theorem, giving

y{x, t)= S y(£n,t)>P(x, U (24)
n = X

6. Applications

(a) Beam of uniform cross-section
In the case of a beam of uniform cross-section, (1) becomes

P(x, t)
&

where El and p are constants, and the characteristic equation is

The fundamental set of solutions of this equation satisfying (7) and (8)
are ^ = (2^)-»8inh fa:, ^a = (2f»)-»ain far, & = (2f»)-*cos fas, 04 = (2f»)-»oosh fx.

We consider in the first instance the problem of a uniform beam of length I,
hinged at the ends, with bending moments M0(t) and Mt{t) specified at x = 0
and x = l respectively. Thus the end conditions are

2/(0, t) = 0, y"(0, t) = M0(t)IEI, at x = 0 ;
y(l, «) = 0, y"(0, t) = Ml(t)lEI, &tx = l.

E.M.S.—F2
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In order to remove the unspecified end conditions in (21), we chose

i ft 2 P2 fr
This yields D(g) for this particular problem. From this we obtain a>(£) which

reduces to 75 si

of the equation

reduces to 75 sinh. £1 sin £Z and so the characteristic numbers are the roots

•75 sinh £Z sin £Z = 0,

that is £„= —j- , where n=l, 2, 3, ....

We note that in D(ij), B12^0, and so taking i = l,j = 2 in formulae (11) and
(13a) we obtain the orthonormal set of characteristic functions

2 • /nirx\
«n( — ).

Making the appropriate substitutions in (18) and (21) gives

B(n, t) = Jj ^{MM + Mtf) cos n-n).
\J I Jail

Equation (23) then becomes

) 0+ EM?

which is in agreement with Sneddon ((4), p. 116) in case M0{t) = Ml{t) = Q.
As a further example of the uniform beam we shall take the case in which

the bending moment M(t) and shearing stress S(t) are specified at the end
x = 0, and the beam is free at the other end. The end conditions are then

y"(0, t) = M{t)IEI, y"'(0, t) = S(t)IEI, at x = 0 ;
y"(l, t)=0, y'"(l, t) = 0, at x = l.

The unspecified end conditions in (21) are removed by taking
a i = a 2 = P i = P2 = \"y

and the characteristic numbers are the roots of

The normalised characteristic function corresponding to the characteristic
number £„ is

- (Cs-Sc)(cosh£nx +cos £nz)} (25)

where we have written Cf = cosh gnl, c = cos tjnl, ̂  = sinh gnl, s = sin gnl.
We find also that

(26)
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For the characteristic number zero we find by expanding (25) and (26) in
series of powers of £„ and letting £„—M), that

if,(x, 0) = l-*(3xll-2), B(0, t) = 2l-*{S(t) + 3M(t)l2}.
Substituting in (23) and using (24) yields the required solution.

(b) Truncated cone with circular cross-section

Taking the a;-axis along the axis of the cone and writing m={dQ — dl)\d0

where d0 and dh are the diameters of the cross-sections of the ends x = 0 and
x = l, equation (1) becomes

where EI0 and p0 are constants. The characteristic equation is

of which the fundamental solutions are

& = {m*f (1 -mx)}-UM V(l -mx)},

with similar expressions for cf>2, <f>3, 04 in terms of Y2, J2, K2 respectively where
I? Y, J, K denote Bessel functions in the usual notation.

The subsequent calculations do not differ in principle from those of the
previous example, but, because of the complexity of the expressions, are not
given here. From the point of view of numerical calculation it is probably
better to leave the expressions in determinantal form.
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