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We explore the near-resonant interaction of inertial waves with geostrophic modes in
rotating fluids via numerical and theoretical analysis. When a single inertial wave is
imposed, we find that some geostrophic modes are unstable above a threshold value of
the Rossby number kRo based on the wavenumber and wave amplitude. We show this
instability to be caused by triadic interaction involving two inertial waves and a geostrophic
mode such that the sum of their eigenfrequencies is non-zero. We derive theoretical
scalings for the growth rate of this near-resonant instability. The growth rate scaled by the
global rotation rate is proportional to (kRo)2 at low kRo and transitions to a kRo scaling for
larger kRo. These scalings are in excellent agreement with direct numerical simulations.
This instability could explain recent experimental observations of geostrophic instability
driven by waves.
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1. Introduction

Rotating turbulent flows are ubiquitous in geophysical and astrophysical systems such as
stellar interiors, planetary cores, oceans and atmospheres. In a large number of numerical
simulations and experiments (see the review by Godeferd & Moisy (2015)), rotating
turbulence is observed to develop a strong anisotropy and to spontaneously form vortices
that are invariant along the rotation axis. The latter correspond to a first-order balance
between the Coriolis force and pressure gradients and are called ‘geostrophic modes’.
Yet, the systematic observation of strong geostrophic modes is at odds with various
evidence suggesting that rotating turbulence could also be dominated by inertial waves
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that are sustained by the restoring action of the Coriolis force. Recent numerical (Le Reun
et al. 2017) and experimental (Le Reun, Favier & Le Bars 2019; Brunet, Gallet & Cortet
2020) studies have shown that injecting energy in waves solely creates a turbulent state
comprising of inertial waves only when the forcing amplitude is sufficiently small, i.e.
a discrete version of inertial wave turbulence (Galtier 2003). It is only at larger forcing
amplitudes that a secondary instability leads to the classical geostrophic-dominated
turbulence. Asymptotic theories describing rotating turbulence in the limit of vanishing
forcing amplitude and dissipation also suggest that waves could dominate over geostrophic
modes in such a regime (Bellet et al. 2006; Sagaut & Cambon 2018). Hence, although
bi-dimensionalisation in the form of geostrophic eddies has been commonly observed,
it may not be the only equilibrium state of rotating turbulence, be it at moderate
(Yokoyama & Takaoka 2017; Favier, Guervilly & Knobloch 2019) as well as small (van
Kan & Alexakis 2019) forcing amplitudes. In addition, the nature of the forcing seems
fundamental in determining the equilibrium state of rotating turbulence.

These results altogether call for a better understanding of the fundamental processes by
which waves give rise to balanced geostrophic modes. The studies of Le Reun et al. (2019)
and Brunet et al. (2020) suggest that such a transfer occurs through an instability. Although
wave-to-wave interactions are primarily governed by triadic resonance (Vanneste 2005;
Bordes et al. 2012), they cannot account for wave-to-geostrophic transfers (Greenspan
1969), at least in the asymptotic limit of vanishing velocity amplitude and dissipation.
Several alternative mechanisms, outside the framework of Greenspan’s theorem, have been
proposed. Four-mode interactions can transfer energy from waves to geostrophic flows,
either directly (Newell 1969; Smith & Waleffe 1999) or through an instability mechanism
(Kerswell 1999; Brunet et al. 2020). The growth rate of such an instability scales as Ro2,
with Ro the dimensionless wave amplitude or Rossby number. It develops over longer
time scales than triad-type interactions between waves. The other inviscid mechanism
that has been proposed to account for wave-geostrophic transfer is quasi-resonant triadic
interaction (Newell 1969; Smith & Waleffe 1999), that is, a triad between waves whose
frequencies do not exactly satisfy the resonance condition (Bretherton 1964). Their
presence and their role in the bi-dimensionalisation of rotating turbulence have been
assessed by several numerical studies (Smith & Lee 2005; Alexakis 2015; Clark di Leoni
& Mininni 2016). While it has been shown that such triads can directly transfer energy
from two pre-existing waves to geostrophic modes, we show that this transfer can arise
spontaneously through an instability mechanism. More precisely, we show with direct
numerical simulations (DNS) and theoretical analysis that there exists a linear mechanism
by which a single inertial wave drives exponential growth of geostrophic modes through
near-resonant triadic interaction.

2. The stability of a single inertial wave

2.1. Governing equations and numerical methods
Let us consider an incompressible fluid rotating at rate Ωez. We investigate the stability
of a single plane inertial wave with wavevector k and eigenfrequency ω

sk
k . Its amplitude is

proportional to Uw with
Uw = hsk

k exp i(k · x − ω
sk
k t) + c.c. (2.1)

Here, hsk
k is a helical mode, that is, when k is not parallel to the axis of rotation ez (Cambon

& Jacquin 1989; Waleffe 1992)

hsk
k = 1√

2

(
(k × ez) × k
|(k × ez) × k| + i sk

k × ez

|k × ez|
)

, (2.2)
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where sk = ±1 is the sign of the helicity of the plane wave. If k is parallel to ez, hsk
k = ex +

i skey. Here, Uw automatically satisfies the incompressibility condition since ∇ · Uw ∝
k · hsk

k = 0 and Uw satisfies the linearised rotating Euler equation,

∂tUw + 2Ω × Uw = −∇πw, (2.3)

provided that ω
sk
k and k are related by the dispersion relation of inertial waves

ω
sk
k = 2skΩ

kz

k
= 2skΩ cos θ, (2.4)

θ being the angle between the wavevector k and the rotation axis ez (ranging from 0 to π),
and k = |k|. We solve for the time evolution of perturbations u to the wave Uw maintained
at a constant amplitude via the following set of equations:

∂tu + Ro (Uw · ∇u + u · ∇Uw) + u · ∇u + 2ez × u = −∇π + E∇2u, (2.5a)

∇ · u = 0, (2.5b)

where time is scaled by Ω−1 and length by the domain size L. We have introduced
the Ekman number E = ν/(L2Ω), ν being the kinematic viscosity, and an input Rossby
number Ro quantifying the dimensionless amplitude of the plane wave.

Equations (2.5) are solved numerically in a triply periodic cubic box using the code
‘Snoopy’ (Lesur & Longaretti 2005). The dynamics of the perturbation flow {u, π} is
determined with pseudospectral methods, that is, {u, π} is decomposed into a truncated
sum of Fourier modes {ûq, π̂q}ei q·x. A wavevector q writes 2π/L(nx, ny, nz) where nx,y
are integers varying from −N to N and nz is an integer ranging from 0 to N because of
Hermitian symmetry. In the following, N = 96; higher resolutions have been tested and
yield the exact same results. The temporal dynamics of the modes ûq is solved using
a third-order Runge–Kutta method. Note that the size of the box L is artificial and we
thus expect our results to depend on the intrinsic Rossby number based on the imposed
wavelength kRo rather than Ro alone.

2.2. Numerical results
Keeping the Ekman number to E = 10−6, two simulations of the stability of the
inertial wave k = 2π[4, 0, 8] (with sk = 1) are performed at low (Ro = 2.83 × 10−3)
and moderate (Ro = 2.83 × 10−2) wave amplitudes. They are both initiated with a
random noise comprising wavenumbers ranging between 0 and 15π, with very small
initial amplitude. The use of spectral methods allows the separation of kinetic energy
of the perturbation flow u into a two-dimensional component E2-D, accounting for all
modes q with qz = 0, and a complementary three-dimensional component E3-D. In
addition, performing a Fourier transform in space and time allows the projection of the
kinetic energy in the sub-space of the dispersion relation of inertial waves to draw the
spatiotemporal spectrum E(θ, ω) (Yarom & Sharon 2014; Le Reun et al. 2017). Note that,
in these maps, θ is restricted to [0, π/2] since the flow is real and only the wavevectors
q with qz ≥ 0 are simulated due to the Hermitian symmetry. Moreover, the spectra are
symmetrised with respect to ω = 0 and the maps are shown as a function of |ω| to be
more compact.

The kinetic energy time series and maps are shown for both simulations in figure 1.
At low imposed wave amplitude (figure 1a,b), three-dimensional perturbations dominate
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FIGURE 1. Kinetic energy time series (a and c) and heat map of log(E(θ, ω)) (b and d) resulting
from two numerical simulations of the stability of the inertial wave k = 2π[4, 0, 8] at Ro =
2.83 × 10−3 and Ro = 2.83 × 10−2. In panels (a) and (c), the labels indicate the slope of the
best fit for the exponential growth. In panel (b) and (d), the plain line materialises the dispersion
relation of inertial waves and the horizontal dashed line the frequency of the imposed wave
(ωsk

k � 1.78). For the spectral energy maps, the temporal Fourier transforms have been performed
until t = 800 for panel (b) and t = 100 for panel (d). In panel (b), we have indicated the extremal
frequencies of the two energy locations.

the growth of the instability. The energy map displays two spots aligned on the dispersion
relation with negative frequencies ω1,2 such that ω

sk
k + ω1 + ω2 = 0 which is indicative

of several waves undergoing triadic resonance with the imposed mode. The growth of
two-dimensional modes is delayed and their growth rate is approximately two times larger
than the rate of three-dimensional modes. Removing the nonlinear term u · ∇u (see (2.5))
suppresses the growth of two-dimensional modes which are thus not unstable themselves,
at least on the time scale of the growth of waves. In fact, we find that E2-D � 3 ×
10−2(kE3-D)2 (see figure 1a) in the growth phase, which suggests that two-dimensional
modes’ growth is due to direct forcing by nonlinear interaction of two growing waves
involved in triadic resonances, with close frequencies and opposed vertical wavenumbers.
This mechanism corresponds to the direct excitation of geostrophic modes by two waves
identified by Newell (1969) and Smith & Waleffe (1999).

At larger wave amplitude (figure 1c,d), this picture changes: two- and three-dimensional
modes grow at the same rate from the start of the simulation. The vertical vorticity field
of the growing perturbation and its vertical average are displayed in figure 2(a,b). The
frequency of two-dimensional modes (θ = π/2) is close to 0 according to figure 1(d), they
are thus geostrophic, that is, slow as well as invariant along the z axis. As it may be seen
in figure 2(b), the geostrophic unstable flow contains the wavevector p = 2π[0, 5, 0] (and
−p for hermiticity), which grows along with other three-dimensional structures whose
energy location in the (θ, ω) space is reminiscent of triadic resonant instability, but with
significantly more spreading. Note that the properties of the transition and the instability
we report are robust to changes in the aspect ratio of the box, which discards any spurious
effect of the discretisation (Smith & Lee 2005).

To further characterise the growth of geostrophic modes, we carry out simulations
with the same imposed wave, but we use as initial condition only one wavevector,
p = 2π[0, py, 0] with py ∈ {1, 3, 5} and sp = ±1, instead of random noise. The Ekman
number is set to 10−8 to discard effects of viscosity in the mode growth. The growth rate
of geostrophic modes is reported in figure 2(c) where Ro is systematically varied. At large
wave amplitude, the growth rate increases linearly, but it goes to zero at a finite value
of Ro ∼ 10−2. This value is very large compared with the viscous damping k2E ∼ 10−5

which plays no role here, hence suggesting an inviscid mechanism.
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FIGURE 2. (a) Three-dimensional vertical vorticity field of the growing perturbation at Ro =
2.83 × 10−2 and (b) its vertical average. The fields are normalised by their maximum values.
(c) Growth rate of the geostrophic modes p = 2π[0, py, 0] with py ∈ {1, 3, 5} as a function of
the imposed wave amplitude Ro. The vertical line materialises kRo = 1. The lines joining the
markers are used to facilitate the identification of each curve. (d) Heat map of log(E(θ, ω)) in
the case py = 3 and Ro = 1.3 × 10−2. The same lines as in figure 1(b,d) are reported and a
vertical line materialises the angle of the modes closing the triad, that is −k ± p.

On the kinetic energy map E(θ, ω) (figure 2d) two particular spots appear, one at
the location of geostrophic modes and the other at the angle of the vectors closing the
triads between k and ±p, which is indicative of triad-type interactions. This may seem
a priori in contradiction with the result of Greenspan (1969). Yet, our results are outside
Greenspan’s theorem framework in two aspects. First, our study is necessarily limited to
finite Rossby number. Second, the frequency of the closing mode −k ± p (figure 2d) is
outside its eigenfrequency. In fact, the discrepancy between the observed frequencies and
eigenfrequencies of the closing mode corresponds to the sum of the eigenfrequencies of
the three modes, Δωkpq. Moreover, as Ro is decreased, the fastest growing mode pg in
figure 2(c) goes from py = 5 with Δωkpq = 0.22 to py = 1 with Δωkpq = 0.01: the triad is
nearly resonant and draws closer to exact resonance. Two mechanisms may be considered
to explain the growth of geostrophic modes. One hypothesis is that the growth of the
geostrophic modes is a by-product of a classical resonance between, say, k and −q that
forces q (by Hermitian symmetry) and hence p. However, in this case, the mode closing the
wave triad would have an eigenfrequency −ω

sk
k + ω

sq
q = Δωkqp − 2ω

sk
k which is outside

the range of inertial waves for small Δωkpq since ω
sk
k � 1.78. Instead, our results point

towards a near-resonant triadic instability that transfers energy from an inertial wave to a
z-invariant geostrophic mode.

3. Near resonance of geostrophic modes: theoretical approach

3.1. The low Rossby number limit
To provide theoretical insight into the inertial-wave destabilisation observed in the
numerical simulations, we turn to linear stability analysis. The flow is U = u + Ro Uw
where Ro Uw is the base flow (Ro being the finite Rossby number) and u 	 Ro Uw is now
an infinitesimal perturbation. We consider a Cartesian domain with periodic boundary
conditions and we decompose U into a superposition of plane waves h

sp
p exp i( p ·

x − ω
sp
p t) with time-dependent amplitudes b

sp
p (t). The Euler equation governing U is

then equivalent to a set of ordinary differential equations governing the amplitudes b
sp
p
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(Smith & Waleffe 1999)

db
sp
p

dt
=

∑
k+p+q=0

∑
sk,sq=±1

C
spsksq
pkq bsk∗

k b
sq∗
q exp(i Δωkpqt), (3.1)

with

C
spsksq
pkq ≡ 1

2
(sqq − skk) h

sp∗
p ·

(
hsk∗

k × h
sq∗
q

)
and Δωkpq ≡ ω

sk
k + ω

sq
q + ω

sp
p ,

(3.2a,b)

and where k, p = |k|, |p|. Here, Δωkpq is the sum of the eigenfrequencies of the three
modes involved in the triad. In general, maximum energy transfer between the three modes
is ensured when the oscillations due to the detuning in the right-hand side of (3.1) are
cancelled, that is, when Δωkpq → 0. If all three modes k, p and q are inertial waves, this
leads to the well known mechanism of triadic resonance (Bretherton 1964; Vanneste 2005;
Bordes et al. 2012). When the mode k is imposed with an amplitude Ro and helicity sk,
p and q grow exponentially with a rate proportional to kRo. This picture is changed when
one of the modes, say p, is geostrophic (i.e. ω

sp
p = 0 and pz = 0, regardless of sp). The

spatial interaction condition k + p + q = 0 forces kz = −qz and the resonance condition
becomes

Δωkpq = kz

(
sk

k
− sq

q

)
= ω

sk
k

1
q

(
q − sq

sk
k
)

→ 0. (3.3)

It may be fulfilled only when sq = sk and q − k → 0. At exact resonance, these conditions
impose the location of p on a circle centred on −k⊥ = −[kx, ky] with radius |k⊥|.
Moreover, in the governing equation for ḃ

sp
p , the slow oscillation terms involve a coupling

coefficient C
spsksk
pkq ∝ k − q → 0. At exact resonance, the coupling coefficient vanishes:

there is no energy transfer from waves to geostrophic modes, as proved by Greenspan
(1969).

Nevertheless, wave-to-geostrophic transfer is still possible when the detuning Δωkpq
is small but non-zero (Newell 1969; Smith & Waleffe 1999; Alexakis 2015), and we
investigate instabilities of geostrophic modes driven by this mechanism. Let us assume
that the wave k with helicity sk is imposed with a small constant amplitude Ro, and
that p is geostrophic. To infer from (3.1) the time evolution of the geostrophic mode
amplitude, we proceed to an asymptotic expansion using a two-time method involving
a fast time τ = t and a slow time T . The hierarchy between them must be a power
of kRo, the intrinsic Rossby number based on the imposed wavelength. Because the
wave-to-geostrophic transfer coefficient C

spsksk
pkq vanishes as Δωkpq → 0, we find via a

heuristic analysis, detailed in appendix A, that T = (kRo)2t, instead of (kRo) t for classical
wave triads. In addition, it imposes the condition that the amplitude of p be smaller by a
factor kRo compared with the mode closing the triad q = −k − p. The amplitudes of the
modes interacting with the imposed wave ( p and q with both helicity signs sp,q) are thus
expanded as

b
sq
q = (kRo)B

sq
q1(T, τ ) + (kRo)3B

sq
q2(T, τ ),

b
sp
p = (kRo)2B

sp
p1(T, τ ) + (kRo)4B

sp
p2(T, τ ),

}
(3.4)

where the B j
i are all O(1). The hierarchy between orders is imposed by the need to match

the slow time derivative of the leading order with the next order in the multiple scale
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expansion. Since the slow derivation introduces a factor (kRo)2, there must be a (kRo)2

hierarchy between the first and second orders.
To find the equations governing the leading-order coefficients, we follow the method of

Bretherton (1964) and inject the ansatz (3.4) into (3.1). First, the leading-order coefficients
are found to be independent of τ and their long-time evolution with T is determined at next
order. As noted by Bretherton (1964), for fast triads with detuning larger than O((kRo)2),
the imposed wave only drives fast and bounded oscillations of the second-order terms, and
the leading-order terms must be zero to avoid secular growth. It is only for slow triads,
i.e. when Δωkpq = O((kRo)2), that the exponential term in (3.1) drives slow oscillations
that contribute to secular growth. Such a condition on the detuning is consistent with
the numerics: the fastest growing modes at Ro = 1 × 10−2 (kRo ∼ 0.6) in figure 2(c) is
p = 2π[0, 3, 0] for which Δωkpq � 0.1 ∼ 0.3(kRo)2. The condition Δωkpq = O((kRo)2)
may be fulfilled only for the modes p with sp = ±1 and q with sq = sk and, as noted
earlier, the wave-to-geostrophic transfer coefficient C

spsksk
pkq is also O((kRo)2). Cancelling

the secular growth terms at second order gives the following amplitude equations :

∂TB
sq
q1 =

∑
sp

C
sksksp
qkp B

sp ∗
p1 e

i
Δωkpq
(kRo)2

T
and ∂TB

sp
p1 =

C
spsksk
pkq

(kRo)2 B
sq ∗
q1 e

i
Δωkpq
(kRo)2

T
, (3.5a,b)

the rescaled quantities C
spsksk
pkq /(kRo)2 and Δωkpq/(kRo)2 being O(1). These equations

have exponentially growing solutions and the complex growth rate of the instability
normalised by the rotation rate is

σ = i
Δωkpq

2
+ 1

2

√
4

∑
sp

C
spsksk
pkq C

sksksp ∗
qkp Ro2 − Δω2

kpq ≡ i
Δωkpq

2
+ σk( p; Ro). (3.6)

Note that the product of coupling coefficients C
spsksk
pkq C

sksksp ∗
qkp is real. The expression of the

real part of growth rate, σk( p; Ro), is consistent with the numerical findings: for a given
near-resonant triad, it drops to zero at a finite value of Ro and it is proportional to Ro at
larger Ro. However, in the small Rossby number limit, because the detuning Δωkpq and
the coupling coefficient C

spsksk
pkq are both O((kRo)2), the maximum geostrophic growth rate

remains O((kRo)2) at most.
The (kRo)2 scaling governing the maximum growth rate of geostrophic near resonance

is found quantitatively by expanding the frequency detuning, the transfer coefficients and
then σk( p; Ro) in the neighbourhood of exact resonance. The fact that the growth rate is
non-zero only close to the exact resonance is illustrated qualitatively in figure 3(a). We
thus introduce p = p0 + (kRo)2δp where δp is an O(1) vector in the geostrophic plane.
Consider the closing modes q0 = −(k + p0) and q = −(k + p), then q = q0 − (kRo)2δp.
The imposed mode k is left unperturbed. Since Δωkpq = C

spsksk
p0kq0

= 0 at exact resonance,
the leading orders of the frequency detuning and the transfer coefficients are found from
(3.2a,b) and (3.3) to be O((kRo)2). The perturbation of the wavevectors is thus consistent
with the asymptotic expansion. At leading order,

Δωkpq

(kRo)2 � skω
sk
k

q0 · δp
k2 and

C
spsksk
pkq

(kRo)2 � 1
2

sk

(
h

sp ∗
p0 ·

(
hsk ∗

k × hsk ∗
q0

)) q0 · δp
k

, (3.7a,b)

900 R2-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

45
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.454


T. Le Reun, B. Gallet, B. Favier and M. Le Bars

where we have used that q0 = k and sq = sk. In the growth rate σk( p; Ro), the product of
the coupling coefficients is

∑
sp

C
spsksk
pkq C

sksksp ∗
qkp � 1

4
(k Ro)2 k2 q0 · δp̂

k2

∑
sp

(
1 − sp

p0

k

) ∣∣∣hsp
p0 ·

(
hsk

k × hsk
q0

)∣∣∣2
. (3.8)

Therefore, at leading order in powers of Ro, the growth rate is

4σk( p; Ro)2 = (Ck( p0)X − ω
sk
k

2X2)(kRo)4, (3.9)

where X ≡ (q0 · δp)/k2 and Ck( p0) is the sum in the right-hand side of (3.8).
When Ck( p0) > 0, the growth rate reaches an optimum at X = Ck/(2ω

sk
k

2
) with

value (kRo)2Ck( p0)/|4ω
sk
k |, which remains to be maximised over all exactly resonant

wavevectors p0. The coefficient Ck( p0) is shown in figure 3(b) for several wavevectors
k with different frequencies ω

sk
k . When plotted against p0/k⊥, all the curves Ck collapse

on a master curve that reaches a maximum value of 1 at p0 → 0, regardless of the helicity
sign sk of the imposed wave. As (kRo) → 0, the unstable geostrophic mode becomes
large-scale and stems from the interaction between k and q � −k. In the low Rossby
number limit, the maximal growth rate is then

σmax
k (Ro) = 1

4
(kRo)2

|ωsk
k | . (3.10)

We confirm that kRo, the Rossby number based on the wavelength, is the relevant
parameter to describe the growth rate of the instability. While each geostrophic mode
follows the law (3.6), all the growth rate curves lie below a (kRo)2 upper envelope. More
details are given below in § 3.3 where we compare the law (3.10) to the exact computation
of the growth rate curves from (3.6).

3.2. The moderate to large Rossby number regime
The Ro2 law governing the growth rate in the small Rossby number limit cannot hold as
the wave amplitude is increased since the growth rate has an upper bound following an Ro
law. This is proved directly by multiplying (2.5) by u and integrating over the fluid domain
V , thus giving

σ = 1
2

d ln ‖u‖2
2

dt
= − Ro

‖u‖2
2

∫
V

u · ∇Uw · u (3.11)

where ‖·‖n denotes the Ln-norm. In virtue of Hölder’s inequality (Gallet 2015),

|σ | ≤ Ro ‖∇Uw‖∞ ≤ kRo. (3.12)

This upper bound applies in particular to the low Ro scaling (3.10), which thus holds
up to kRo ∼ 1 at most. Note that, beyond that point, non-triad type instabilities (shear,
centrifugal) may add to near resonance in driving the dynamics of the flow excited by the
maintained wave.

3.3. Comparison with exact computation
In figure 3, we sample the growth rate curves given by (3.6) of many geostrophic modes
in near-resonant interaction with k = 2π[4, 0, 8], as functions of the Rossby number.
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FIGURE 3. (a) Map of the growth rate of geostrophic modes at Ro = 7.5 × 10−3 computed
from (3.6). The imposed wave is 2π[4, 0, 8]. The white dashed circle locates the exactly
resonant geostrophic modes. The colour scale gives the amplitude of the growth rate. Where
it is maximum ( px = 0, py � ±2), the detuning is approximately 0.04 ∼ 0.24(kRo)2. (b) Plot
of Ck( p0) on the exact resonant circle against p0 normalised by the horizontal wavenumber k⊥
for several wavevectors k with different frequencies ω

sk
k . The curve is the same regardless of the

imposed helicity sign s. (c) Growth rate curves of the geostrophic modes as a function of the
Rossby number. The geostrophic modes are sampled over 15 circles whose centres are the same
as the exact resonance circle with five points on each circle. The line colour codes the frequency
detuning |Δωkpq|. The upper envelope is compared with the law (3.10) and the upper bound
(3.12).

We notice that each growth rate curve follows an Ro scaling at sufficiently large Ro,
which is consistent with the asymptotic expansion carried out in § 3.1. However, because
for all modes the growth rate vanishes at a finite value of Ro (which decreases to
0 close to exact resonance), the upper envelope is an Ro2 law that perfectly matches
the theoretical prediction (3.10). This instability is thus fundamentally different from
four-modes interactions for which each growth rate curve follows a Ro2 law (Kerswell
1999; Brunet et al. 2020). Besides, in agreement with the upper bound (3.12), we observe
the Ro2 maximum growth rate law to break down above kRo ∼ 1. Beyond that, the
near-resonant growth rate derived from (3.6) remains below the upper bound and follows
an Ro law. However, additional instabilities (shear, centrifugal, etc.) may also drive the
growth of geostrophic modes in this regime.

3.4. Finite size and viscous effects
Finite size domain translates into discretisation of the modes. Since the exactly resonant
geostrophic modes lie on a finite radius circle, they cannot be approached with arbitrarily
low detuning Δωkpq as Ro → 0. Hence, discretisation implies the existence of a finite
value of Ro below which the near-resonant instability vanishes (Bourouiba 2008).
Regarding viscous effects, at finite but low Ekman number, i.e. when (kRo)2 � k2E, the
low Rossby number scaling is unaltered since the near-resonant modes p and q have at most
similar wavenumbers to k. The O(Ro) upper bound on the growth rate is also unaltered by
the inclusion of viscosity.

4. A refined model: the double near-resonant triad

Although promising, the model of the previous section needs to be refined to fully
account for numerical results. It misses by a factor two the growth rate curves of figure 2(c)
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k

FIGURE 4. (a) Schematic cartoon of a geostrophic mode p in near resonance with both imposed
modes ±k at the same time, based on the map of figure 3(a). The ⊥ indices denote the horizontal
component of wavevectors. (b) Comparison between theory (4.4) and the direct numerical
simulations of figure 2(c). The imposed wave is k = 2π[4, 0, 8] and the geostrophic modes are
p = 2π[0, py, 0], py being given in the legend. (c) Samples of the growth rate curves σk( p; Ro) of
modes p interacting with ±k = 2π[4, 0, 8] including simple (dark grey) and double (light grey)
triad mechanisms. The double triad growth rate curves are determined by finding the roots of P
(see (4.2)) for wavevectors p restricted to |px| < π and |py| < 12π. We recall the Ro2 law (3.10)
and the growth rate upper bound (3.12). The dots represent the geostrophic growth rate found in
the DNS with imposed wavevector k = 2π[4, 0, 8] (DNS 1), k = 1.5 × 2π[4, 0, 8] (DNS 1.5)
and k = 2 × 2π[4, 0, 8] (DNS 2).

and (3.6) predicts a frequency Δωkpq/2 /= 0 for the geostrophic modes, while it is 0
according to figure 2(d). We must include in our model that not only k, but also −k
(with the same helicity sign s) is imposed due to Hermitian symmetry. Consider two triads
k + p + q = 0 and −k + p + q′ = 0 (see figure 4) with helicity signs sq = sq′ = sk and
sp = ±1. As shown schematically in figure 4(a), the exact resonance circles associated
with ±k coincide at p = 0. In a neighbourhood of this point (the dark grey intersection in
figure 4a), a geostrophic mode p is in near resonance with both ±k with both detunings
Δωkpq and Δω−kpq′ small. It is all the more important that p = 0 corresponds to the largest
near-resonant growth rate as Ro → 0.

In a very similar way to the two-time asymptotic expansion of § 3.1, we can retrieve the
amplitude equations governing the slowly varying envelopes B

sp
p1 and Bs

Q1, with K = ±k,
Q = −K − p (i.e. Q = q or q′) and sp = ±1. Similarly to (3.5a,b), the four amplitude
equations are

∂TBsk
Q1 =

∑
sp=±1

C
sksksp
QKp B

sp ∗
p1 e

i
ΔωKpQ
(kRo)2

T
,

∂TB
sp
p1 =

∑
K=±k

C
spsksk
pKQ

(kRo)2 Bsk ∗
Q1 e

i
ΔωKpQ
(kRo)2

T
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

The characteristic polynomial P(σ ) of this set of four linear differential equations in terms
of the Rossby number Ro and the detunings is

P(σ ) =
(
σ 2 − i Δωkpqσ − Ro2Sk

) (
σ 2 − i Δω−kpq′σ − Ro2S−k

)
− Ro4P0, (4.2)
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with SK and P0 two real coefficients defined as

SK =
∑

sp

C
spsksk
pKQ C

sksksp ∗
QKp and P0 =

⎛
⎝∑

sp

C
sksksp
qkp C

spsksk
p−kq′

⎞
⎠

⎛
⎝∑

sp

C
sksksp
q′−kpC

sps+ksk
pkq

⎞
⎠ .

(4.3a,b)

In general, the growth rate σk( p; Ro) is found by numerical computation of the roots of P .
Nevertheless, an estimate of the maximum growth rate can be obtained in the limit |px| 	
|py|, which is relevant to our DNS. In this case, symmetries impose Δωkpq = −Δω−kpq′ ,
Sk = S−k and P0 = S2

k . The polynomial P then has a purely real root,

σk( p; Ro) =
√

2Ro2Sk( p) − Δω2
kpq (4.4)

and the frequency of the growing geostrophic mode is 0. We show in figure 4(b) the
excellent agreement between this theoretical law and the DNS data of figure 2(a).
An expansion similar to § 3.1 reveals that the maximum growth rate follows the exact
same (kRo)2 law as in the case of the single triad (3.10). This is confirmed by the
systematic computation of the growth rate in the double triad case, as shown in
figure 4(c). Note that although this instability is driven by two imposed modes, it remains
different from the four-mode interaction mechanism detailed in Brunet et al. (2020).
The latter features intermediate, non-resonant modes that are absent in the double triad
mechanism. Moreover, the near-resonant growth rate (4.4) is proportional to Ro when
Ro is sufficiently large, whereas it always follows an Ro2 law in the case of four-mode
interaction.

We compare in figure 4(c) our theoretical predictions with the geostrophic growth rate
extracted from DNS initiated with a large-scale noise, as in § 2, down to Ro = 5 × 10−3.
We use the same imposed wavevector as previously (k = 2π[4, 0, 8]) but also 1.5 and
2 times longer wavevectors to confirm that the growth rate is a function of the intrinsic
Rossby number kRo. Such a dependence is expected since in the infinite-domain limit,
L → ∞, L becomes irrelevant and 1/k is the only remaining length scale, and the
associated Rossby number is kRo. As shown in figure 4(c), the numerical growth rate
coincides with the maximum near-resonant growth rate in the low Ro regime but also in
the moderate Ro regime where it is proportional to kRo. Note that for the three lowest kRo
points, the noise has been implemented on two-dimensional modes ( pz = 0) to facilitate
the isolation of the geostrophic instability. It delays the growth of two-dimensional modes
with non-zero frequency by direct forcing at the lowest values of Ro. Despite their
rapid growth, the latter are subdominant in the saturation of wave-driven flows, and do
not prevent the long-term growth of unstable geostrophic modes under the mechanism
examined here.

Lastly, our analysis allows us to understand the transition in the stability of the
geostrophic flow observed in the numerical study (see figure 1). Here, Ro = 2.83 × 10−2

(kRo � 1.6) corresponds to the transition zone where the geostrophic growth rate is
O(kRo), as the wave-only triadic resonances (see figure 4c). When the Rossby number
is decreased by one order of magnitude, as shown in figure 4(c), the growth rate of
geostrophic modes scales as (kRo)2, i.e. a factor kRo smaller than the growth rate of
wave-only triadic resonances. This is why the geostrophic instability is not observed in
the simulation at Ro = 2.83 × 10−3.
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5. Conclusion

By means of numerical simulations and theoretical analysis, we have described a new
instability mechanism by which inertial waves excite z-invariant geostrophic modes. We
have proved that this instability is driven by near-resonant triadic interaction and derived
its theoretical growth rate. When normalised by the global rotation rate Ω , the growth rate
follows a (kRo)2 law and a kRo law at small and moderate wave amplitude, respectively,
k being the imposed wavenumber. It translates into Ω−1 and Ω0 laws, respectively, for
the dimensional growth rate. The near-resonant instability completes the picture proposed
by Brunet et al. (2020) where another inviscid geostrophic instability based on two
imposed modes and four-mode interaction is detailed. Although of different nature, both
instabilities have a (kRo)2 growth rate in the limit of small Rossby numbers which makes
them possibly difficult to distinguish. On the one hand, in the linear growth phase,
the eigenmode of the four-mode instability consists of waves and geostrophic flow of
comparable amplitude, whereas the geostrophic flow is kRo times smaller than the waves in
the present mechanism. On the other hand, the near-resonant instability achieves a growth
rate of order kRo for kRo � 1. Our analysis may thus explain the experimental results of
Le Reun et al. (2019): they found at moderate Rossby number a geostrophic instability
with a growth rate proportional to Ro, which thus matches the moderate Rossby number
law derived here.

Our work paves the way for new studies dealing with the energy transfers from waves to
geostrophic modes in rotating fluids, in particular in rotating turbulence. Firstly, it remains
to be seen under which conditions the near-resonant instability may excite slow nearly
geostrophic modes with small but non-zero frequencies. These modes have been proved to
be important for the development of anisotropy in rotating turbulence (Smith & Lee 2005)
even in the asymptotic limit of small Rossby numbers (van Kan & Alexakis 2019). With
a heuristic analysis similar to the one developed in § 3.1 and appendix A, we can predict
again a (kRo)2 growth rate, but a detailed analysis is difficult and remains to be done.
Lastly, the instability we describe in the present article could play an important role in
the rotating turbulence dynamics that remains to be fully deciphered. Since wave–wave
triadic interactions grow at rate O(kRo) while wave–geostrophic interactions have a
O((kRo)2) growth rate, we may speculate that, at sufficiently low forcing amplitudes,
rotating turbulence may remain purely three-dimensional as the wave amplitudes would
remain below the threshold of geostrophic instabilities. Such states have been observed by
Le Reun et al. (2017), Le Reun et al. (2019) and Brunet et al. (2020), but a systematic
investigation of their existence in various realisations of rotating turbulence remains
to be carried out. In the future, our study could help bridge the gap between finite
Rossby number experiments and simulations of turbulence (Godeferd & Moisy 2015) and
asymptotic models of rotating turbulence (Galtier 2003; Bellet et al. 2006; van Kan &
Alexakis 2019).
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Appendix A. Heuristic justification of the (kRo)2 slow time scale

To investigate near-resonant instability, we proceed to an asymptotic expansion of the
spectral version of the Euler equation using a two-timing method involving a fast time
τ = t and a slow time T . The hierarchy between τ and T may be derived heuristically
from an analysis of the amplitude equation in a triad involving a geostrophic mode. Let
us assume the amplitudes bp,q to scale as εp,q and that the slow time is given by the
small detuning, Δωkpq = O(β). We further assume that β, εp,q = O(kRo) at least. The
two amplitude equations stemming from (3.1) governing bp,q give the following scaling
relationships:

βεp = kRoβεq and βεq = kRoεp, (A 1a,b)

where we have used that the wave-to-geostrophic coupling coefficient is proportional to the
detuning, hence β, as explained in § 3.1 below (3.3). We have also used that the coupling
coefficients scale as the wavenumber k. For the hierarchy between εp,q and β to hold,
the determinant of the system (A 1a,b) with unknowns εp,q must vanish. This condition
is satisfied when β = (kRo)2. Then, equations (A 1a,b) yield εp = kRoεq. Therefore, we
chose the amplitudes b

sp
p and b

sq
q to scale as (kRo)2 and kRo, respectively, at leading order.
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