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Deconvolution is a computational technique that can be applied to digital imagery to compensate for 
the optical limitations of the imaging instrument by reducing out-of-focus blurring or haze.  The 
increased contrast and resolution of the restored data improves not only the visual quality but also 
the ability to quantify both object dimensions and image intensity.  Deconvolution algorithms have 
been particularly effective in processing 3D fluorescence microscopy data and have been developed 
into software applications that the general microscope user can routinely use on standard computer 
hardware.   
 
Unlike astronomical imaging which essentially images a flat 2D scene, in biological microscopy the 
specimens are typically three-dimensional, requiring multiple optical sections to be captured at 
different focal positions.  With proper Nyquist sampling in both lateral and axial directions a 3D 
volume of data can be captured that encompasses the whole specimen.  However, diffraction in a 
standard epi-fluorescence microscope limits the smallest lateral resolvable feature to about half the 
emission wavelength with high numerical-aperture objective lenses, and the axial resolution is even 
worse.  The aberrations inherent in the microscope are modeled by the characteristic point-spread-
function (PSF) which describes how every point of light emitted by the specimen is observed by the 
user or camera.   The PSF can be easily observed by imaging sub-resolution fluorescence 
microspheres and focusing through the sample to observe the characteristic hourglass shape.   
 
Mathematically the image observed at the CCD camera is modeled as a convolution between the true 
3D light distribution of the specimen and the spatially invariant 3D PSF of the instrument, which is 
contaminated with Poisson-distributed noise due to photon counting.  The ability to restore an 
accurate representation of the true specimen is limited by the accuracy of the PSF model and the 
amount of noise contamination.  The process to improve the quality of the observed imagery is 
termed deblurring or deconvolution, depending on the type of algorithm.  The convolution operation 
can be efficiently calculated in the frequency domain using the Fast Fourier Transform (FFT), thus 
most algorithms make extensive use of FFT’s. 
 
One simple deblurring algorithm is the Nearest-Neighbors (NN) method that attempts to remove the 
blur contribution in the focal plane by subtracting defocused versions of adjacent slices, similar to 
un-sharp masking.  This method requires only 3 optical slices and has low memory and 
computational requirements; however, the result is only visually qualitative because so much of the 
image intensity is removed.  By contrast deconvolution algorithms attempt to restore the true image 
intensities and are either linear or iterative (non-linear) in nature. 
 
The inverse or Wiener filter is the typical linear algorithm that can be applied to the whole 3D 
volume in a single step.  There is often a parameter that is adjustable to control the balance between 
resolution improvement and noise suppression.  The Wiener filter can be quickly applied, however, 
frequencies outside the diffraction bandlimit cannot be restored and there is no inherent limitation on 
the result having negative intensities values, limiting quantification. 
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The most advanced deconvolution algorithms are iterative, requiring multiple cycles to converge 
towards a desired solution.  The iterative algorithms impose non-negativity on the solution, can 
suppress noise, and even recover frequencies beyond the bandlimit.  They come at the cost of 
increased memory requirements and computational processing.  Rather than trying to directly 
reverse the blurring process, the iterative algorithms estimate the object and use an optimization 
procedure to improve the result based on the observed data and physical constraints.  Typical 
iterative algorithms are based on measures such as least squares and maximum likelihood (ML).  
Figure 1 shows the maximum intensity projections of a 3D fluorescence image of spirogyra 
collected with a 0.75 NA objective lens at 540nm, and after 10 iterations of a ML-based algorithm.   
 
The quality of the restoration is directly based on the accuracy of the PSF model applied, and 
estimating an accurate PSF can be difficult.  Three typical methods are theoretical calculation using 
microscope parameters, empirical measurement using sub-resolution beads, and blind or adaptive 
deconvolution that estimates the PSF directly from the observed data.  Each approach has different 
effects on restoration accuracy, imaging protocol, user effort, and computational requirements. 
 
Once the data has been accurately restored closely based features should be more easily resolvable, 
object borders more defined, the apparent brightness of the specimen increased, background noise 
suppressed, and total image intensity preserved.  Deconvolution will not make poorly acquired data 
good, but rather make good data better.  In fact, deconvolved data will often show many imaging 
problems that were previously obscured by the out-of-focus blur.  For more in-depth reading see the 
references [1] – [5].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Maximum intensity projections of original image of spirogyra (left), and after iterative 
deconvolution (right). XY, XZ and ZY views shown.  Volume dimensions (XYZ) are approximately 
108 x 88 x 25µm.  Original data courtesy of Olympus-Soft Imaging Solutions (Münster, Germany). 
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