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ABSTRACT. The anisotropic Kepler problem has a group of symmetries 
with three generators; they are symmetries respect to zero velocity 
curve and the two axes of motion's plane. For a fixed negative energy 
level it has four homothetic orbits. We describe the symmetric perio­
dic orbits near these homothetic orbits. Full details and proofs will 
appear elsewhere (Casasayas-Llibre). 

1. INTRODUCTION AND EQUATIONS OF MOTION. 

The anisotropic Kepler problem was introduced by Gutzwiller 
(1973) to model certain quantum mechanical systems. But for us it has 
a mathematical interest because it is an easy model in order to study 
usual tools in the analysis of the n-body problem as non-integrabili-
ty, collision manifold,... (Devaney, 1981). 

This problem deals with the motion of a body which is attracted by 
a gravitational potential and has an anisotropic mass. It is described 
by the Hamiltonian system 

q = M p, 

(1) 
p = - V V(q), 

where 

q = (q1,q2)eR
2-{(0,0)} and p = ( p ^ p ^ R 2 

are the position and momentum coordinates of the body, 

is the masses matrix and (J , 1_< p _< +°°, is the mass parameter and 
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-1 V(q) = -| q| is the potential energy. The total energy function is 
given by the Hamiltonian 

H(q,p) = Vz p ^ ^ p + V(q). 

System (1) is actually a one parameter family of Hamiltonian 
systems with two degrees of freedom depending analytically on the 
parameter y. VJhen y=l, we have the Kepler problem and y> 1 introduces 
the anisotropic matrix M which means that q is the "heavy axis". 

Equations (1) have a singularity of collision when q=0 which can 
be studied using the "blow up" technique of McGehee (Devaney, 1981). 

Thereafter we will assume that the energy level H=h is fixed and 
takes a prescribed negative value. Otherwise, if h^O there are no 
periodic orbits. 

2. SYMMETRIES OF THE PROBLEM 

The anisotropic Kepler problem has the following symmetries: 

Sl^qi'q2'Pl'P2't' = ^i'_cl2'_Pl'P2'_t^' 

S2(q1>q2>P1,P2,t) = (-ql,q2,P1,-P2,-t), 

S3(q1,q2,P1,P2,t) = (q1,q2,-P1,-P2,-t), 

which can be interpreted in the following way. 

Let y(t) = (q.(t) ,q (t),p (t),p (t)) be a solution of (1), then 

S1(y(t)) = (qi(-t),-q2(-t),-pi(-t),p2(-t)) 

is another solution, see Figure 1. In a similar way S (y(t)) and 
S (Y(t)) are solutions of (1), see Figures 2 and 3. 

z.v.c. 

Figure 1. 
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Orbits which cross orthogonally the q -axis (resp. q -axis) are 
the symmetric orbits respect to S (resp. S ), that is S (Y ) = Y 
(resp. S (Y)=Y). Orbits which have some point on the zero velocity 
curve (z.v.c. ) are the symmetric orbits respect to S . 

Figure 2. Figure 3. 

If an orbit crosses two times orthogonally the q -axis (resp. 
q -axis) then it is a symmetric periodic orbit for S (resp. S ). 
Similarly, if an orbit has two points on the zero velocity curve then 
it is a symmetric periodic orbit for S , for more details see Devaney 
(1976). This fact is essential for our study of the symmetric periodic 
orbits. 

3. SYMMETRIC PERIODIC ORBITS FOR THE KEPLER PROBLEM {v- =1) . 

For the Kepler problem is not difficult to prove the following. 

(1) There is a bijection between the symmetric periodic orbits respect 
to S., for each i=l,2, and two copies of the segment (0,-1/h). One 
copy corresponds to the direct ellipses and the other one to the re­
trograde ellipses, see Figures 4 and 5. 

(2) There is a bijection between the symmetric periodic orbits respect 
to S and S and the two points ± (2h) . They correspond to the cir­
cular orbits, see Figure 6. 

(3) There is a bijection between the symmetric orbits (but not perio­
dic) respect to S and the circle. They are orbits of elliptic colli­
sion. If we regularize the equations then the orbits become periodic, 
see figure 7. 

So when V=l we have a complete description for the symmetric 
periodic orbits (note that the system is integrable). 
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Figure 4. Figure 5. 

Figure 6. Figure 7. 

4. SYMMETRIC PERIODIC ORBITS FOR U>9/8. 

A solution (q(t),p(t)) of the anisotropic Kepler problem is 
called homothetic if we can obtain (q(t ),p(t )) from (q(t ),p(t )) 
through a dilation, for every t , t where the solution is defined. An 
orbit (q(t),p(t)) of system (1) is called a collision (resp. ejection) 
orbit if there exists t such that q(t)-»- 0 as t+ t 

o o 
(resp. t+ t ), 

It is known that the anisotropic Kepler problem has only four 
homothetic orbits u, for i= 1,2,3,4, which are also of ejection-
collision type, see Figure 8 (Devaney, 1981). We have studied the 
neighborhood of these orbits in order to prove the following theorem 
(see Casasayas-Llibre). 
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Figure 8. 

THEOREM. There exists a positive integer number n such that for every 
n,m^n the following statements hold. 

(i) There are four symmetric periodic ejection-collision orbits res­
pect to S (resp. S ) such that the number of crossings with the q -
axis is 2n (resp. 2n+l), see Figures 9 and 10 (resp. Figures 11 and 
12). There are similar figures for the region q„^0. 

(ii) There are two symmetric periodic orbits respect to S (resp. S 
and S ) such that the qualitative behaviour is given in Figure 13 
(resp. Figure 14). There are similar figures for the region q > 0 
obtained by the change 8 = 6 + tr . 

(iii) There is one symmetric periodic orbit respect to S (resp. S ) 
such that the qualitative behaviour is shown in Figure 15 (resp. Figure 
16) When m=n the orbit is also symmetric respect to S 

(iv) There are four (resp. two) 
S„ and 

symmetric periodic orbits respect to 
S (resp. S„ and S ) such that the qualitative behaviour is given in 
Figures 17 and 18 (resp. Figure 19). There are similar figures for the 
region q < 0 obtained by the change 6=6 + TT . 
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Figure 9. Figure 10. 

Figure 11. Figure 12. 

Figure 13. Figure 14. 
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Figure 15. Figure 16. 

Figure 17. Figure 18. 

Figure 19. 
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