```
Josefina Casasayas* and Jaume Llibre**
* Facultat de Matemàtiques, Universitat de Barcelona, Bar-
celona 7, Spain.
**Secció de Matemàtiques, Facultat de Ciències, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
```

ABSTRACT. The anisotropic Kepler problem has a group of symmetries with three generators; they are symmetries respect to zero velocity curve and the two axes of motion's plane. For a fixed negative energy level it has four homothetic orbits. We describe the symmetric periodic orbits near these homothetic orbits. Full details and proofs will appear elsewhere (Casasayas-Llibre).

1. INTRODUCTION AND EQUATIONS OF MOTION.

The anisotropic Kepler problem was introduced by Gutzwiller (1973) to model certain quantum mechanical systems. But for us it has a mathematical interest because it is an easy model in order to study usual tools in the analysis of the n-body problem as non-integrability, collision manifold,... (Devaney, 1981).

This problem deals with the motion of a body which is attracted by a gravitational potential and has an anisotropic mass. It is described by the Hamiltonian system

$$
\begin{align*}
& \dot{q}=M^{-1} p \\
& \dot{p}=-\nabla V(q) \tag{1}
\end{align*}
$$

where

$$
q=\left(q_{1}, q_{2}\right) \in R^{2}-\{(0,0)\} \text { and } p=\left(p_{1}, p_{2}\right) \in R^{2}
$$

are the position and momentum coordinates of the body,

$$
M^{-1}=\left(\begin{array}{ll}
\mu & 0 \\
0 & 1
\end{array}\right)
$$

is the masses matrix and $\mu, 1 \leq \mu \leq+\infty, \quad$ is the mass parameter and 263
V. V. Markellos and Y. Kozai (eds), Dynamical Trapping and Evolution in the Solar System, 263-270. © 1983 by D. Reidel Publishing Company.
$V(q)=-|q|^{-1}$ is the potential energy. The total energy function is given by the Hamiltonian

$$
H(q, p)=1 / 2 p^{t} M^{-1} p+V(q) .
$$

System (1) is actually a one parameter family of Hamiltonian systems with two degrees of freedom depending analytically on the parameter μ. When $\mu=1$, we have the Kepler problem and $\mu>1$ introduces the anisotropic matrix M which means that q_{2} is the "heavy axis".

Equations (1) have a singularity of collision when $q=0$ which can be studied using the "blow up" technique of McGehee (Devaney, 1981).

Thereafter we will assume that the energy level $H=h$ is fixed and takes a prescribed negative value. Otherwise, if $h \geq 0$ there are no periodic orbits.

2. SYMMETRIES OF THE PROBLEM

The anisotropic Kepler problem has the following symmetries:

$$
\begin{aligned}
& s_{1}\left(q_{1}, q_{2}, p_{1}, p_{2}, t\right)=\left(q_{1},-q_{2},-p_{1}, p_{2},-t\right), \\
& s_{2}\left(q_{1}, q_{2}, p_{1}, p_{2}, t\right)=\left(-q_{1}, q_{2}, p_{1},-p_{2},-t\right), \\
& s_{3}\left(q_{1}, q_{2}, p_{1}, p_{2}, t\right)=\left(q_{1}, q_{2},-p_{1},-p_{2},-t\right),
\end{aligned}
$$

which can be interpreted in the following way.
Let $\gamma(t)=\left(q_{1}(t), q_{2}(t), p_{1}(t), p_{2}(t)\right)$ be a solution of (1), then

$$
S_{1}(r(t))=\left(q_{1}(-t),-q_{2}(-t),-p_{1}(-t), p_{2}(-t)\right)
$$

is another solution, see Figure 1 . In a similar way $S_{2}(\gamma(t))$ and $S_{3}(\gamma(t))$ are solutions of (1), see Figures 2 and 3.

Figure 1.

Orbits which cross orthogonally the q_{1}-axis (resp. q_{2}-axis) are the symmetric orbits respect to S_{1} (resp. S_{2}), that is $S_{1}(\gamma)=\gamma$ (resp. $S_{2}(\gamma)=\gamma$). Orbits which have some point on the zero velocity curve (z.v.c.) are the symmetric orbits respect to S_{3}.

Figure 2.

Figure 3.

If an orbit crosses two times orthogonally the q_{1}-axis (resp. q_{2}-axis) then it is a symmetric periodic orbit for S_{1}^{1} (resp. S_{2}). Similarly, if an orbit has two points on the zero velocity curve then it is a symmetric periodic orbit for S_{3}, for more details see Devaney (1976). This fact is essential for our study of the symmetric periodic orbits.
3. SYMMETRIC PERIODIC ORBITS FOR THE KEPLER PROBLEM ($\mu=1$).

For the Kepler problem is not difficult to prove the following.
(1) There is a bijection between the symmetric periodic orbits respect to S_{i}, for each $i=1,2$, and two copies of the segment $(0,-1 / h)$. One copy corresponds to the direct ellipses and the other one to the retrograde ellipses, see Figures 4 and 5.
(2) There is a bijection between the symmetric periodic orbits respect to S_{1} and S_{2} and the two points $\pm(2 h)^{-1}$. They correspond to the circular orbits, see Figure 6 .
(3) There is a bijection between the symmetric orbits (but not periodic) respect to S_{3} and the circle. They are orbits of elliptic collision. If we regularize the equations then the orbits become periodic, see figure 7.

So when $\mu=1$ we have a complete description for the symmetric periodic orbits (note that the system is integrable).

Figure 4.

Figure 6.

Figure 5.

Figure 7.
4. SYMMETRIC PERIODIC ORBITS FOR $\mu>9 / 8$.

A solution $(q(t), p(t))$ of the anisotropic Kepler problem is called homothetic if we can obtain $\left(q\left(t_{1}\right), p\left(t_{1}\right)\right.$) from $\left(q\left(t_{2}\right), p\left(t_{2}\right)\right)$ through a dilation, for every t_{1}, t_{2} where the solution is defined. ${ }^{2}$ An orbit ($q(t), p(t)$) of system (1) is called a collision (resp. ejection) orbit if there exists t_{0} such that $q(t)+0$ as $t \uparrow t_{o}\left(r e s p . ~ t \downarrow t_{0}\right)$.

It is known that the anisotropic Kepler problem has only four homothetic orbits π_{i} for $i=1,2,3,4$, which are also of ejectioncollision type, see Figure 8 (Devaney, 1981). We have studied the neighborhood of these orbits in order to prove the following theorem (see Casasayas-Llibre).

Figure 8.

THEOREM. There exists a positive integer number n_{0} such that for every $n, m \geq n_{o}$ the following statements hold.
(i) There are four symmetric periodic ejection-collision orbits respect to S_{3} (resp. S_{2}) such that the number of crossings with the q_{2} axis is $2 n$ (resp. $2 n+1$), see Figures 9 and 10 (resp. Figures 1.1 and 12). There are similar figures for the region $q_{2} \leq 0$.
(ii) There are two symmetric periodic orbits respect to S_{2} (resp. S_{2} and S_{3}) such that the qualitative behaviour is given in Figure 13 (resp. Figure 14). There are similar figures for the region $q_{2} \geq 0$ obtained by the change $\theta=\theta+\pi$.
(iii) There is one symmetric periodic orbit respect to S_{2} (resp. S_{3}) such that the qualitative behaviour is shown in Figure 15 (resp. Figure 16). When $m=n$ the orbit is also symmetric respect to S_{1}.
(iv) There are four (resp. two) symmetric periodic orbits respect to S_{3} (resp. S_{2} and S_{3}) such that the qualitative behaviour is given in Figures 17 and 18 (resp. Figure 19). There are similar figures for the region $q_{2} \leq 0$ obtained by the change $\theta=\theta+\pi$.

Figure 9.

Figure 11.

Figure 13.

Figure 10.

Figure 12.

Figure 14.

Figure 15.

Figure 17.

Figure 16.

Figure 18.

Figure 19.

REFERENCES
Casasayas, J. and Llibre, J., The global flow of the anisotropic Kepler problem (to appear).

Devaney, R. (1976), Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc. 218, pp. 89-113.

Devaney, R. (1981), Singularities in Classical Mechanical Systems, Progress in Mathematics vol. 10, Birkhäuser, Basel, pp. 211-333.

Gutzwiller, M. (1973), The anisotropic Kepler problem in two dimensions, J. Math. Phys. 14, pp. 139-152.

