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SEMI-SIMPLICITY RELATIVE TO KERNEL 
FUNCTORS 

ROBERT A. RUBIN 

Introduction. Let A be a ring and a a kernel functor (left exact preradical) 
on the category of left A-modules. A left A-module M is called a-semi-simple if 
whenever N is a submodule of M with M/N o--torsion, TV is a direct summand 
of M. In Section 1 we consider alternative characterizations and properties of 
a--semi-simplicity for modules. In Section 2 conditions equivalent to the a-
semi-simplicity of the ring are obtained. Section 3 is devoted to the condition, 
which frequently arises in Section 2, that every <7-torsion module be semi-
simple. 

The terminology and notation in this paper are that of Goldman [1], with 
which familiarity is assumed. In particular, K(A) (respectively /(A)) denotes 
the set of kernel functors (respectively idempotent kernel functors) of the 
ring A, and when we have a module M and a submodule N of M with M/N 
(j-torsion we say that N is a-open in M. Finally, by the term l'module" we mean 
a left module over the ring in question. 

1. (7-Semi-simplicity. 

Definition. Let a £ K(A). A module M is called a-semi-simple if every c-open 
submodule of M is a direct summand of M. 

Note. Throughout this section a will stand for a fixed but arbitrary kernel 
functor. 

We begin with some immediate consequences of the definition. 

PROPOSITION 1.1. A a-torsion module is a-semi-simple if and only if it is 
semi-simple. 

Proof. Surely any semi-simple module is o--semi-simple. Conversely, if M is 
a-torsion, every submodule is a-open. Hence if M is a-semi-simple as well, 
every submodule is a direct summand. 

PROPOSITION 1.2. If M is a-semi-simple, and if N is any submodule of M, then 
M/N is a-semi-simple. 

Proof. Let L/N Q M/N be o-open. Then M/L « (M/N)/(L/N), so L is 
o--open in M. Hence M = L © T for some submodule T, from which it follows 
that M/N = L/N © (T + N)/N. 
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The following concepts are useful for obtaining alternate characterizations of 
cr-semi-simplicity. 

Definitions. A submodule N of a module M is called a-dense in M if for every 
o--open submodule P of M, P + N = M. (Note that since cr-open submodules 
topologize a module, cx-dense submodules are precisely those that are dense in 
the topological sense.) 

A submodule L of a module M is called a-essential in ikT, or M is called a 
c-essential extension of L, if L is both cr-open and essential in M (or equivalent-
ly, for every 0 9^ x 6 M, (L : x) 6 J ^ and (L : x)x ^ 0, where (L : x) = 
{r e A|rx G L}). 

The a-socle of a module Af =̂  0, denoted ^^(ikf), is the intersection of all 
cr-essential submodules of M. If M = 0 we define M = y„(M). 

THEOREM 1.3. For any module M, the following are equivalent: 
(1) M is (j-semi-simple; 
(2) If L is a-essential in My L = M; 
(3) M = y.(M); 
(4) Every essential submodule of M is a-dense in M; 
(5) For any submodule N of M, there exists a submodule N' of M with 

N C\ N' = 0, and N + N' a-dense; 
(6) £f(M), the socle of M, is a-dense in M. 

Proof. (1) => (2) and (2) => (3) follow immediately from the definitions. 
(4) => (5) follows from the definitions and the well-known existence of com
plements, i.e., given any submodule X of M there is a submodule Y such tha t 
X C\ Y = 0 and X + Y is essential. 

(3) =» (4) Let N be essential in M. Then for any o--open P, N + P is both 
cr-open and essential. Thus M = S^ff(M) Q N -{- P. So N is c-dense. 

(5) =» (1) Let L be cr-open in M, and let iV C AT be such that iV H L = 0 
and N + L is cx-dense. Then N + L = (N + L) + L = M. Thus M = N ® L. 

(1) => (6) Let L be cr-open in ikf and consider S^ (M) + L. Suppose that 
Sf\M) + L 9^ M. Then since S^(M) + L is cr-open, for some submodule 
N 5* 0 we have (Sf (M) + L) ® N = M. But then N is cr-torsion, and by 
Proposition 1.2, iV is cr-semi-simple. So by Proposition 1.1, N is semi-simple. 
Thus N Ç 5^(Af), which contradicts iV ^ 0. Therefore S? (M) is cr-dense. 

(6) => (4) Since 5?(M) is contained in every essential submodule of M, 
this is immediate. 

We can consider cr-semi-simplicity more closely via the following concept. 

Definition. A module M is called a-simple if for any cr-open submodule L of 
My either L = M or L = 0. 

PROPOSITION 1.4 (1). Every simple module is a-simple; 
(2) Every a-simple module is a-semi-simple; 
(3) A a-torsion module is a-simple if and only if it is simple; 
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(4) A a-torsion-free module is a-simple if and only if it is a-semi-simple; 
(5) Any factor module of a a-simple module is a-simple. 

Proof. (1) and (2) follow immediately from the definitions, while (3) follows 
from Proposition 7.7 and (2). Now if M is c-torsion-free and a-semi-simple, 
let P be a d-open submodule of AT. Then M = P © X, for some X. But X is 
a-torsion and contained in M. Thus X = 0, and P = AT; this proves (4). 
(5) follows from the fact that if N is a submodule of M and if L/N is cr-open 
in M/N, then L is c-open in AT. 

Remarks, (i) 0 G K(A) is defined by 0(AT) = 0 for all AT. Then every 
module is 0-semi-simple, and so by (4) above, 0-simple. 

(ii) z 6 K(A) is defined by s (AT) = the singular submodule of AT, or equi-
valently^"2 is the set of essential left ideals. If a g: z, the concepts of essential 
and o--essential coincide. Hence whenever a ^ z, a module is cr-semi-simple if 
and only if it is semi-simple. 

THEOREM 1.5. Let {Ma} be a family of a-semi-simple modules. If M = IIaATa, 
then M is a-semi-simple. 

Proof. Let L be a o--open submodule of AT. Then, as usual, there is a sub-
module P of AT maximal with respect to P C\ L = 0. Suppose that for some 0, 
M0 $£ P + L. Consider TV̂  = AT,? Pi L. Np is o--open in AT̂ , hence AT̂  = 
Nfi 0 X, for some X. Then X is non-zero, cr-torsion and o--semi-simple, so X is 
semi-simple by Proposition 1.1. If X C P + L, then we have ATp = N$ + X Ç 
L + P, which is not the case. Therefore X $£ L + P , and so there is a non
zero simple submodule 5 of X with S $£ L + P. Consider (P + 5) P\ L. If 
y G (P + 5) Pi L, we have y (z L and y = s + £ for some s G S and p £ P. 
But then 5 Ç L + P , and so 5 = 0 (else 5 Ç L + P ) . Therefore y t L C\ P = 
0. Hence (5 + P ) P L = 0, which by the maximality of P implies that 5 Ç P , 
a contradiction. Thus for all 0, A^ C P + L. Since P P L = 0, AT = P © L , 
and we are done. 

It is clear from this theorem and Proposition 1.4 that any direct sum of 
0--simple modules is o--semi-simple. We shall later give an example to show that 
the converse is false. As we show now, if certain restrictions are imposed, then 
a converse is obtained. 

THEOREM 1.6. Let p G /(A), and let M be a p-semi-simple module. If p(M) is 
finite dimensional (i.e., p(M) contains no infinite collection of submodules 
whose sum is direct), then M has d.c.c. on p-open submodules, and so contains a 
unique minimal p-open submodule Mo. Furthermore AT0 is p-simplef and M = 
ATo © X, where X is a p-torsion semi-simple module. Thus M is a direct sum of 
p-simple modules. 

Proof. Since p(AT) is finite dimensional, there is an integer n such that p(AT) 
contains no family of more than n submodules whose sum is direct [4, p. 55]. 
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Let 

M = M O J I f 2 D . . . 

be a descending chain of p-open submodules. Then each M/Mt is p-torsion and 
p-semi-simple, and thus semi-simple. Therefore for each i, there is a semi-
simple Xt C p(M) such that M = Mt © Xu and since if* D Mf+i, X i + i D 
X*, which after n + 1 steps yields a contradiction. Thus M has d.c.c. on p-open 
submodules, and so M has minimal p-open submodules. But the intersection of 
any two p-open submodules is again p-open; hence M has a unique smallest 
p-open submodule M0. Since M is p-semi-simple M = M0 © X, where X is 
semi-simple and p-torsion. It remains to be shown that Mo is p-simple. But this 
is clear, since the idempotence of p guarantees that a p-open submodule of a 
p-open submodule of M is itself p-open in M [1, p. 18]. 

2. c-semi-simplicity of the ring. In this section we investigate the 
condition that the ring A be c-semi-simple with respect to some given a G K(A). 
Some preliminaries are needed. 

PROPOSITION 2.1. a is an exact functor if and only if for every 31 G 3Ta, 31 + 
a (A) = A; i.e. if and only if <J(A) is a-dense in A. 

Proof. (=>) Let 31 G ^~<T, and consider 

0 - > 3 l - * A - + A / 3 l - + 0 . 

Applying a we obtain 0 - • <r(3I) -> <r(A) -> (7(A/31) -> 0. Thus 

* (A/31) « <r(A)/er(A) « a (A)/(ci (A) H 31) « ((7(A) + 30/31. 

But (7 (A/31) = A/31, so (7(A) + 3Ï = A. 
(<=) Let 0 -> iV —> i f —> M/N -> 0 be exact, and let x G M be such that 

x + N £ <r(M/N). Then for some 31 G ^ , Six £ TV. Now 31 + o-(A) = A, so 
there are a G 31, and 5 G o-(A) such that 1 = a + s. So x = 1 - x = ax + sx ^ 
N + <r(M). Thus a (M/N) C (cr(M) + iV)/iV. Since c is a functor the reverse 
inclusion is true as well, and so a (M/N) = (a(M) + N)/N. But 

(a(M) + N)/N « cr(M)/(<r(Af) Pi iV) = <r(M)/a(N). 

Thus (7 is exact. 

LEMMA 2.2. 7/ o- is aw exact functor, £/zen a- is idempotent. 

Proof. Let M be a module and consider 0 —> o-(M) —> jfcf —> M/a(M) —> 0. 
Applying <r we obtain 0 -» c7 (c7 (M) ) —> (7 (M) —> o- (M/cr (Af) ) —> 0. Since 
(r(o-(M)) = (7(if), o-(M/o'(M)) = 0, and a is idempotent. 

We can now describe the <7-semi-simplicity of A. 

THEOREM 2.3. For a G K(A), the following are equivalent: 
(1 ) A is a-semi-simple; 
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(2) every A-module is a-semi-simple; 
(3) every A-module is <J-infective; 

(4) every a-open left ideal is a direct summand; 

(5) every G-open left ideal contains a a-op en direct summand of A, and every 
a-torsion module is semi-simple; 

(6) a is an exact functor•, and every a-torsion module is semi-simple; 
(7) S^ (A) is a-dense in A. 

Proof. The equivalence of (1), (4), and (7) follows from Theorem 1.3. 
(1) => (2) From Theorem 1.5, every free module is cr-semi-simple, and so 

by Proposition 1.2, every module is cr-semi-simple. 
(2) =» (3) Since any o--open submodule of any module is a direct summand, 

any homomorphism from a cr-open submodule of any module extends to the 
whole module. 

(3) => (4) T h e identi ty map of any cr-open left ideal splits the inclusion map 
into A. 

(4) => (5) The first par t of (5) follows trivially from (4), and since (4) <=> (1), 
the second par t follows from (2) and Proposition 1.1. 

(5) => (6) Let 21 be a cr-open left ideal. Then there is a cr-open left ideal 93, 
with 33 Q 21, and A = 33 © F, for some F. Since F is cr-torsion we have 

21 + c(A) 2 S3 + o-(A) 3 S3 + F = A. 

Hence by Proposition 2.1, a is exact. 
(6) =» (4) Let 21 be a cr-open left ideal. Then by Proposition 2.1, 21 + cr(A) = 

A. Since a (A) is semi-simple, <r(A) = (a (A) P\ 21) © X for some X. Since 
X C CT(A), we have X C\ 21 = 0. Now 

A = cr(A) + 21 = (a (A) n 2 I ) + X + 2 I = X + 2I. 

T h u s A = X © 21. 

From (6) above and Lemma 2.2 it follows that if A is cr-semi-simple, then a is 
idempotent , and thus a ring of quotients Q<r(A) exists. The next theorem 
describes cr-semi-simplicity in terms of this ring. 

L E M M A 2.4. If a is an exact functor, then a has Property (T ) . 

Proof. As we have just noted, if a is exact, then a is idempotent , and so 
Qff(A) exists. Let i : A —» Qff(A) be the canonical map, and let 21 be a o--open 
left ideal of A. Then by Proposition 2.1, A = cr(A) + 21, and there is a G 21 
such tha t i(a) = i(l) = 1. Thus 1 G i(2l), and so Qcr(A)i(2I) = Q,(A). Hence 
by Theorem 4.3 of [1], a has Proper ty (T) . 

T H E O R E M 2.5. For a Ç K(A), the following are equivalent: 

(1) À w a-semi-simple; 
(2) a is idempotent and has Property (T) , Q<T(A) = A/cr(A), and every a-

torsion module is semi-simple. 

Proof. (1) =» (2). From Theorem 2.3 (6) and Lemmas 2.2 and 2.4, a is 
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idempotent and has Property (T). That Qff(A) = A/c(A) is a consequence of 
Theorem 2.3(3). 

(2) => (1) Let 31 be a c-open left ideal of A. Since a has Property (T), 
Qa(A)i(3l) = or (A), where i : A —> Ça (A). Using the hypotheses, this translates 
to A/o-(A) = 31 + o-(A)/o-(A), whence by Proposition 2.1, o- is exact. Thus, 
Theorem 2.3(6) holds. 

Remarks, (i) If A is c-semi-simple, and if a (A) is finite-dimensional, then 
Theorem 1.6 gives us some information about the structure of A. In particular 
if I is the unique minimal c-open left ideal of A, it is easy to show, using the 
idempotence of o-, that I is two-sided, idempotent and a direct summand of A. 
Furthermore, since A/I is semi-simple, 7 is a finite intersection of maximal left 
ideals. Conversely, for any ring r , if A is a two-sided ideal of T with A a direct 
summand and T/A a semi-simple T-module, then for ô £ K(T), defined by 
^h is the set of left ideals of V that contain A, then V is ô-semi-simple. 

(ii) Since the left ideal §1 satisfies 31 + «5̂  (A) = A if and only if A/31 is a 
semi-simple projective A-module (3Ï + 5 ^ (A) = 31 + ( (^ (A) Pi 31) 0 X) = 
31 0 X, for some I ç y ( A ) ) , the set of left ideals 31 of A for which SI + y (A) = 
A defines an idempotent kernel functor, which, according to Theorem 2.3(7), 
is the unique largest kernel functor with respect to which A is semi-simple. In 
[2], Goldman calls this set of left ideals the intrinsic topology of A, and presents 
a structure theorem for rings complete in their intrinsic topologies. 

We now give an example of a ring which is c-semi-simple, but without the 
above finiteness conditions. This also supplies the promised example of a 
c-semi-simple module which is not a direct sum of (7-simples. Let k be a field 
and let 

& = n *, 
a 

where a runs through any fixed infinite set I. Define a £ K(R) by 3?~a as the 
set of ideals that contain Tl^jk, where J is any subset of I with finite com
plement. Then it is easy to check that Theorem 2.3(7) holds, so that R is 
cr-semi-simple, and that R is not a direct sum of a-simples. 

3. Semi-simple <7-torsion modules. Since the condition that every 
(7-torsion module be semi-simple arises so frequently in Theorem 2.3, we con
sider that condition somewhat more closely in this section. Many of the results 
are straightforward generalizations of results about the singular torsion theory 
(the kernel functor z in our language) to be found in [3, Chapter III] . 

Note that if every cr-torsion module is semi-simple then every cr-open left 
ideal is a finite intersection of maximal left ideals, or equivalently, a ^ S^, 
where S^ is the kernel functor that assigns to every module its socle. The 
converse of this observation follows from the next proposition. 

PROPOSITION 3.1. For an idempotent kernel functor <r, the following are equiva
lent: 
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(1) every a-torsion module is semi-simple; 
(2) for every a-open left ideal St, A/St is semi-simple; 
(3) every a-torsion module is a-infective. 

Proof. That (1) => (2) is clear. 
(2) => (3) Let M be a o--torsion module, and l e t / : St —> M be a homomor-

phism from a c-open left ideal. Then Sl/Ker/is cr-torsion, and so by [1, Theorem 
2.5], K e r / i s o--open. Hence 

A/Ker / = St/Ker/ 0 Z / K e r / 

for some left ideal X. Then / can be extended to all of A by being 0 on X. 
Thus, [1, Proposition 3.2] M is cr-injective. 

(3) =» (1) If M is a cr-torsion module, and N is a submodule of M, then M/iV 
is a-torsion, so the inclusion of N in M splits, and thus N is a summand of M. 

PROPOSITION 3.2. Let a be an idempotent kernel functor for which every a-
torsion module is semi-simple. Then for any a-open left ideal St, St = St2. 

Proof. Let St be a <r-open left ideal. Then, since a is idempotent, St2 is also 
o--open, and so A/St2 is semi-simple. Thus there is a left ideal X, containing St2, 
such that A/3t2 = St/St2 0 X/Sl2. In other words, X + 3 t = A a n d X P i S t Ç 
St2. So there exist a £ St and x (z X such that a + x = 1. Thus for any 
b e St, b = b • 1 = ba + bx. But bx = b - ha. Hence bx G X C\ St C St2, and 
s o K St2. 

COROLLARY 3.3. Let R be a commutative noetherian ring, and let a Ç I(R)> 
Then R is a-semi-simple if and only if every a-torsion module is semi-simple. 

Proof. This follows from Proposition 3.2 and the fact that idempotent ideals 
in commutative noetherian rings are direct summands. 

Remark. In [3], Goodearl notes that if for a non-singular ring A every singular 
module is semi-simple, then the Jacobson radical of A, /(A), is contained in 
the socle of A, and thus J (A)2 = 0. This can be generalized to arbitrary idem-
potent kernel functors. For a G J (A) we define the a-radical, Ja(M), of a 
module M to be the intersection of the kernels of homomorphisms from M 
into cr-simple modules. It can readily be shown that J*(A) is a two-sided 
radical ideal of A. Then if every cr-torsion module is semi-simple, J* (A) is 
contained in every ^-essential left ideal, and thus in 5^(A), whence J*(A)2 = 0. 
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