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The transition to turbulence in pipe flow proceeds through several distinct stages,
eventually producing aggressively expanding regions of fluctuations, ‘slugs’, surrounded
by laminar flow. By examining mean-velocity profiles, fluctuating-velocity profiles
and Reynolds stress profiles, the seminal study of Wygnanski & Champagne (J. Fluid
Mech., vol. 59 (2), 1973, 281–335) concluded that the flow inside slugs is ‘identical’
to fully turbulent flow. Although this conclusion is widely accepted, upon closer
examination of their analysis, we find that their data cannot be used to substantiate
this conclusion. We resolve this conflict via new experiments and simulations wherein
we pair slugs and fully turbulent flow at the same value of Reynolds number (Re).
We conclude that the flow inside a slug is indeed indistinguishable from a fully
turbulent flow but only when the two flows share the same value of Re. Our work
highlights the rich Re-dependence of transitional pipe flows.

Key words: turbulent transition

1. Introduction

A pipe flow can stay laminar at any arbitrarily large value of Reynolds number
(Re). But, if finite-amplitude perturbations are present, other flow states come into
being for Re & 1600. (Here, Re ≡ UD/ν, where U is the mean flow speed, D is
the pipe diameter and ν is the kinematic viscosity of the fluid.) When the value of
Re is smoothly increased, patches of intense eddies suddenly appear and invade the
laminar flow, creating a heterogeneous blend of fluctuations and quiescence. In 1883,
Osborne Reynolds first observed these travelling patches of eddies and called them
‘flashes’ (Reynolds 1883). Since then, scores of experiments (see, e.g. Mullin (2011)
for a review) have elucidated a growing list of fascinating features of flashes. For

† Email addresses for correspondence: rory.cerbus@oist.jp, pinaki@oist.jp

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

86
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://orcid.org/0000-0001-7393-6684
mailto:rory.cerbus@oist.jp
mailto:pinaki@oist.jp
https://doi.org/10.1017/jfm.2019.863


883 A13-2 R. T. Cerbus and others

example, low-Re flashes can remain of fixed size, split to form new flashes or decay
into laminar flow, whereas high-Re flashes expand. This led to the categorization of
flashes into ‘puffs’ (1600.Re. 2250) and ‘slugs’ (Re& 2250), which can expand as
well as split (2250 . Re . 2700) or monotonically expand (Re & 2700).

A puff travels downstream at a speed ≈0.9U (Mullin 2011). The laminar flow
enters the puff at its upstream interface, turns into fluctuating flow and exits at its
downstream interface, reverting to laminar flow. This fluctuating flow evolves over the
whole length of the puff, never reaching a fully developed state – the flow appears to
be distinct from fully turbulent flow (see, e.g. Van Doorne & Westerweel 2007; Song
et al. 2017). (Here we define fully turbulent flow to mean fluctuating flow that fills
the whole pipe without any intervening regions of laminar flow; further, its statistical
properties are independent of axial position, i.e. the flow is fully developed.)

As a slug travels downstream, its upstream interface travels at a speed <U and the
downstream interface at a speed >U, which causes the slug to continually expand.
(The speeds of the interfaces systematically change with Re.) At the upstream
interface, the laminar flow enters the slug near the wall, turns into fluctuating flow,
reverses direction and exits the same interface near the centreline, reverting to laminar
flow. (Likewise, at the downstream interface there is a recirculating flow, but it is
reversed in direction compared with the flow at the upstream interface.) Inside the
slug, the fluctuating flow spreads over an ever-expanding domain. This flow inside
the slug – slug flow – is the subject of our study.

We focus on Re & 2700. In the presence of finite-amplitude perturbations, the flow
assumes one of two states: transitional with slugs (when the perturbations are applied
intermittently) or fully turbulent (when the perturbations are applied continually); see
figure 1. But are these two states fundamentally distinct? For slugs, the recirculating
flow near the interfaces is clearly distinct from fully turbulent flow. But, in the interior
of a slug, if the slug flow becomes fully developed and is unaffected by the flow at
the interfaces, it could be indistinct from – even identical to – fully turbulent flow.
Or, it could be distinct from fully turbulent flow, corresponding to a unique state
of fluctuating flow. That is, at the same Re, the flow may manifest multiple states
of fluctuating flow, as indeed has been observed for puff flow and low-Re slug flow
(Darbyshire & Mullin 1995; Mullin 2011), and, more recently, for high-Re turbulent
Taylor–Couette flow (Huisman et al. 2014). Which of these two possibilities holds
determines the statistical nature of fluctuations in slug flow. Based on the pioneering
exposition of Wygnanski & Champagne (1973), hereafter WC, the former possibility is
widely thought to hold true. By comparing slug flow with fully turbulent flow using
several diagnostic profiles for the spatial structure of the flow, WC concluded: ‘the
structure of the flow in the interior of the slug is identical to that in a fully developed
pipe flow’.

Most reviews of the field (see, e.g. Eckhardt et al. 2007; Barkley 2016) appeal
to this definitive conclusion and recent models of the transition build on it as well
(Barkley et al. 2015; Barkley 2016). Although scarce, some recent works have
also studied the same diagnostic profiles as WC (Shan et al. 1999; Priymak &
Miyazaki 2004) and echoed the same conclusion. In addition, recent studies using
other diagnostics have furnished further support for this conclusion: the friction in
slug flow (that is, the unitless pressure drop per unit length of slugs) is found to
obey the Blasius law, a signature macroscopic diagnostic of fully turbulent flow
(Cerbus et al. 2018); and the energy spectra in slug flow is found to conform to
Kolmogorov’s small-scale universality, a signature microscopic diagnostic of fully
turbulent flow (Cerbus et al. 2017). (For transitional flow with slugs, the slug flow
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FIGURE 1. Contrasting slug flow and fully turbulent flow: (a) transitional flow with
a slug; (b) fully turbulent flow. We plot a grey scale intensity map (where darker
shares correspond to higher intensity) of the kinetic energy of off-axis fluctuations in an
x–y (axial–wall-normal) plane through the pipe centreline; the white regions are devoid
of fluctuations and correspond to laminar flow. The data are from our simulations at
Re = 5300 (see § 2). A slug (a) travels downstream and continually expands into the
surrounding laminar flow, whereas in a fully turbulent flow (b), the fluctuating flow fills
the whole pipe. Note that a monotonically expanding slug, regardless of how large the
value of Re is, cannot completely fill a pipe with fluctuating flow since it continuously
travels downstream, leaving laminar flow behind. (However, for simulations with periodic
boundary conditions, owing to the artificial set-up of the problem, a slug eventually
fills the pipe with fluctuating flow.) We compare slug flow (schematically marked by
rectangular boxes in a) with fully turbulent flow (b; here the box spans the whole pipe).

and the surrounding laminar flow share the same Re, but the friction in slug flow
obeys the Blasius law whereas the friction in laminar flow obeys the Hagen–Poiseuille
law (Cerbus et al. 2018).) To wit, slug flow and fully turbulent flow appear to be the
same flow state.

And yet, a re-examination of WC’s evidence undermines this widely accepted
conclusion.

1.1. A close look at WC’s evidence for slug flow = fully turbulent flow
WC reported the results of their extensive experimental study comparing slug flow
and fully turbulent flow. These experiments are very challenging, particularly for slug
flow – slugs incessantly travel and expand, which makes the probing of their interior
a non-trivial undertaking. It is also noteworthy that because WC were able to maintain
laminar flow in their pipe until an impressive Re≈ 45 000, which still surpasses most
modern experiments (Mullin 2011), they were able to examine slugs over a wide range
of Re. WC, a veritable tour de force, remains unmatched as the most comprehensive
study to date that compares slug flow and fully turbulent flow.

WC studied the following diagnostic profiles: mean-velocity profiles (MVPs),
root-mean-square of fluctuating-velocity profiles (r.m.s. profiles) and Reynolds stress
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FIGURE 2. Representative diagnostic profiles from WC. (a) MVPs: u/u(y=D/2) versus
y/D (cf. figure 16 in WC) and (b) r.m.s. profiles: u

′
+ versus y/D (cf. figure 17 in WC).

WC measured ensemble-averaged profiles for slug flow at a distance of 20D from the
interfaces. Here, we show results for the profiles near the upstream interface; the profiles
near the downstream interface are similar. There is considerable scatter in the data: the
MVPs, near the wall, show large variation; the r.m.s. profiles for slug flow (at Re= 4200)
and fully turbulent flow are not only distinct but, near the wall, show opposite trends. (WC
did not report error bars, so we cannot evaluate whether the scattered data lie within the
experimental error.)

profiles. The guiding principle is that, if the profiles for slug flow are identical to
those for fully turbulent flow, then the flows are identical. But, in WC’s study, because
the different profiles correspond not only to different flows but also to different Re,
the variation in Re needs to be explicitly accounted for. To that end, WC rendered
the profiles unitless. Thus, WC’s conclusion that slug flow and fully turbulent flow
are identical is predicated on the attendant unitless profiles collapsing onto a common
curve.

In figure 2, we plot WC’s data for MVPs and r.m.s. profiles in the unitless
coordinates adopted by WC. (We discuss the Reynolds stress profiles in § 4.3.) At
each wall-normal distance, y, we denote the time-averaged velocity by u and the
r.m.s. of velocity fluctuations by u′. To render the profiles unitless, WC normalized
the abscissae as y/D, and the ordinates as u/u(y=D/2) for the MVPs and u

′
+
≡ u′/uτ

for the r.m.s. profiles (where uτ ≡
√
τw/ρ is the friction velocity, τw is the wall stress

and ρ is the density of the fluid). There is considerable scatter in the data, and it is
difficult to argue that the profiles collapse. In discussing their data, WC postulated
reasons for the scatter, e.g. influence of the interfaces (see § 3) and ‘experimental
error’ (p. 301 in WC). The gist of their argument is that, but for these artefacts, the
profiles would collapse. This brings us to the core problem with WC’s analysis: even
if the profiles unequivocally showed collapse, it would be incorrect to conclude that
the corresponding flows are identical.

To understand why, consider how the profiles are rendered unitless. The underlying
theoretical framework for how the profiles change with Re is furnished by scaling laws.
For the MVPs, WC’s choice, u/u(y=D/2) versus y/D, is at odds with the classical
scaling laws. Further, the scaling laws themselves break down for the typical Re of
slug flow (see § 4.1). For the r.m.s. profiles, there are no standard scaling laws, but
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WC’s choice, u
′
+
≡ u′/uτ versus y/D, is at odds with empirical data (see § 4.2). In

other words, the very premise on which WC’s analysis of MVPs and r.m.s. profiles
is predicated cannot be used to compare flows at different Re. In fact, if the profiles
of figure 2 manifested collapse, that would signal a problem, not a solution.

We submit that WC’s conclusion – slug flow is identical to fully turbulent flow
– warrants a re-examination. Of crucial import in comparing slug flow and fully
turbulent flow is to properly account for the Re-dependence of the profiles. This
accounting guides our re-examination. Specifically, we argue that the profiles for slug
flow and fully turbulent flow must be compared at the same Re (see § 4). Because
such data are not available – in WC or, to our knowledge, any other study – we
conduct our own experiments and numerical simulations.

2. Experimental and numerical set-up
Our experimental set-up is a gravity-driven, recirculating flow of water through

a smooth, cylindrical, horizontal pipe of inner diameter D = 2.5 cm ± 10 µm. The
pipe is 20 m long, made of 1 m long cylindrical glass tubes connected using acrylic
connectors, which also have an inner diameter of D = 2.5 cm ± 10 µm. Several of
these connectors have holes of diameter 1 mm, which serve as pressure taps or as an
injection point for a perturbation. The flow begins at a reservoir tank whose height we
adjust to set the pressure head, which, in turn, sets the flow rate. To further control
the flow rate, we use a ball valve at the exit of the reservoir and a ball valve at the
end of the pipe. After exiting the reservoir, the water passes through a heat exchanger,
which maintains a constant temperature (typically 23.5± 0.1 ◦C) and then a Yokogawa
magnetic flowmeter, which measures the flow rate Q. From Q, we compute the mean
flow speed, U = Q/π(D/2)2, and from U, we compute Re. We conduct experiments
for Re= 3000, 4000, 5300 and 8000. After the flowmeter, the flow enters the pipe via
an entrance section, which homogenizes and smoothens the flow. The largest pressure
drop occurs in the segments before the pipe and in a smaller diameter section we
place at the end of the pipe; consequently, the fluctuations in Re during the transition
are typically <1 %. At the end of the pipe the water exits into a discharge tank. We
pump the water back to the reservoir tank, completing the flow circuit. Without any
external perturbation, the flow can remain laminar up to Re≈ 10 000.

We perturb the flow by injecting and withdrawing fluid in the radial direction
using syringes. At a fixed Re, we generate a pair of flows: fully turbulent (for which
we perturb the flow continually) and transitional with slugs (for which perturb the
flow intermittently). At distances >100D downstream from the perturbations, we
measure the velocity fields using particle imaging velocimetry (PIV). To that end, we
use a 5 W, 532 nm laser (FK-LA5000, Omicron) and a series of lenses to form a
vertical laser sheet. The sheet pierces the top of an acrylic encasement filled with
water (in which the measurement section of the pipe is housed to reduce optical
distortion). Straddling the centreline of the pipe, the sheet effects a measurement
volume of ≈1D (radial)× 0.7D (axial)× 0.03D (thickness) and illuminates the flow,
which we seed with 10 µm silver-coated, density-matched glass particles. For the PIV
measurements, we record the movement of the particles using a high-speed camera
(Phantom v1610) with 12-bit dynamic range at a resolution of 768× 512 pixels. We
optimize the conditions for maximum spatial resolution, while following standard
operating procedure for particle displacement and density (Adrian & Westerweel
2011). We take the particle images in double-burst mode, with a pair of images taken
at 100 Hz. The temporal spacing between the images in each pair is of the order
of 1 ms, which we modify for each Re such that the particles move 5–10 pixels.
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We process the images using PIVLab (Thielicke & Stamhuis 2014). Each image pair
yields one velocity field – a vertical plane through the pipe centreline that spans an
area ≈1D (radial) × 0.7D (axial) and consists of axial and radial velocity vectors.
(We use cylindrical coordinates, with the origin on the centreline of the pipe and x
as the axial direction, r as the radial direction and θ as the azimuthal direction.)

We compute the diagnostic profiles from an ensemble of velocity fields at a fixed
Re. For a fully turbulent flow, we measure the fields over a long time (typically, a
few 1000D/U); for a transitional flow with slugs, we measure the fields for several
passing slugs (each of typical length from a few 100D to about 1000D). (In both
flows, the number of statistically independent fields – that is, fields separated in time
by several turnover times, D/U – is typically &300.) For a fully turbulent flow, we
compute the diagnostic profiles by averaging the profiles over the axial extent of each
field and averaging those profiles over all the fields in the ensemble; for a transitional
flow with slugs, we discuss the process in § 3.

We complement our experiments with direct numerical simulations (DNS), using the
hybrid spectral code OPENPIPEFLOW (Willis 2017). The pipe is 100D long and we
impose periodic boundary conditions in the axial direction. We run the simulations
for a fixed mass flux; this sets the value of Re. As in the experiments, we conduct
simulations for Re = 3000, 4000, 5300 and 8000. Along the x and θ directions, we
use Fourier modes. Along the r direction, we distribute the grid points according to
the roots of a Chebyshev polynomial (which places a larger density of points near the
wall to resolve the large velocity gradients) and we use finite differences to compute
derivatives. As an example of the spatial resolution, consider the DNS at Re= 8000:
we used 8192 and 168 modes in the x and θ directions, respectively, and 180 points
in the r direction. Elsewhere (Cerbus et al. 2018) we have verified that our spatial
resolution is sufficiently high to produce accurate results (see also figures 8, 9 and 12,
where we compare the diagnostic profiles from our simulations with those from Wu
& Moin (2008)).

We start a simulation by choosing an appropriate velocity and pressure field as the
initial condition. As in the experiments, at each Re, we generate a pair of flows. To
obtain a fully turbulent flow, we use the result of a simulation, at the same or different
Re, of a fully turbulent flow; to obtain a transitional flow with slugs, we use the result
of a simulation, at a different Re, of a transitional flow with puffs or a transitional
flow with slugs. We select fields separated in time by several D/U and, for each
snapshot, we average the fields along the x–r planes corresponding to θ = 0,π/4,π/2,
and 3π/4. The ensemble consists of these averaged planes of velocity fields with all
three components of the velocity vector. For fully turbulent flow, we compute the
diagnostic profiles using the same procedure as described above for the experimental
data. For transitional flow with slugs, we restrict attention to cases where: (i) the
slugs expand at a steady rate (that is, the speeds of the upstream and downstream
interfaces are constant), which typically occurs for slugs of length &30D, and (ii)
the maximum length of the slug is 80D (to ensure that the slug flow statistics are
unaffected by the length of the pipe). With these constraints, the typical number of
statistically independent fields in an ensemble for a transitional flow with slugs is
typically &100. From this ensemble, we compute the diagnostic profiles (see § 3).

See Cerbus et al. (2017, 2018) for additional details about the experiments and
DNS.

3. Is slug flow fully developed?
To compare slug flow with fully turbulent flow, the slug flow must satisfy a

necessary condition: it should be fully developed. This issue, to our knowledge, has
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FIGURE 3. Identifying interfaces in a slug. Using DNS of transitional flow with slugs at
Re= 8000, we plot a typical snapshot of (a) a grey scale intensity map of off-axis kinetic
energy, u2

r + u2
θ , in an x–y plane (where we have focused on the upstream interface of the

slug); (b) the unitless centreline axial velocity, u(y=D/2)/2U (blue curve), and unitless
off-axis kinetic energy, 〈u2

r + u2
θ 〉r/U

2 (×10 for better visualization; red curve), versus the
axial position, x/D. In (a), note that the y-position of the interface varies with x; that is,
the interface itself has a profile. In (b), the vertical lines indicate the interface position as
determined using the centreline velocity (- -) or the off-axis kinetic energy (— · —). The
discrepancy between the interface positions determined using these two methods can be
as large as ∼10D.

not been explicitly studied heretofore. To test whether a slug flow is fully developed,
we check whether the diagnostic profiles from a slug’s interior are independent of the
axial distance from its upstream and downstream interfaces, save for a region close
to the interfaces.

An immediate problem is how to objectively identify an interface, which itself has a
profile (figure 3a). We consider two methods for identifying the interface and illustrate
them using DNS data for transitional flow with slugs (figure 3b). For the first method,
like WC, we threshold the centreline axial velocity. We identify the interface position
as the point where this velocity drops 10 % below its laminar value. (WC did not
specify the threshold they employed.) For the second method, we threshold the off-
axis kinetic energy (per unit mass) averaged over the radius: 〈u2

r + u2
θ 〉r. (To denote the

velocity components of time-averaged velocity and r.m.s. of velocity fluctuations, we
use no subscript for the axial component, but for the radial and azimuthal components,
we use the subscripts r and θ , respectively.) We identify the interface position as the
point where this energy exceeds 5× 10−4U2. Note that changing this threshold value
by an order of magnitude shifts the position of the interface by only ∼1D.

The two methods give a similar position for the sharp upstream interface, differing
by ∼3D, but the difference can be much larger for the gradual downstream interface,
differing by ∼10D (figure 3). Our purpose is not to judge which method is superior,
but to point out the potential for ambiguity when discussing the interface. Following
the currently standard approach, here we use the second method; for the DNS, we
threshold 〈u2

r + u2
θ 〉r, and for the experiments, we threshold 〈u2

r 〉r.
We now consider how the flow in a slug develops near the interfaces. To illustrate,

in figures 4 and 5, using DNS data for transitional flow with slugs, we plot MVPs,
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FIGURE 4. How the flow in a slug develops near the upstream interface. Using DNS of
transitional flow with slugs at Re = 8000, in the panels top to bottom, we plot unitless
off-axis kinetic energy (which we use to identify the interface); MVPs; r.m.s. profiles; and
total stress profiles. Note that the abscissa, 1x/D, the distance from the upstream interface,
is plotted on a non-uniform scale, where the region near the interface is stretched.
(1x/D> 0 signals the interior of the slug.) We plot the diagnostic profiles (black curves)
at a few representative 1x/D; for comparison, we also plot the attendant interior profiles
(grey curves), which, by construction, are independent of 1x/D. For 1x/D & 10, the
diagnostic profiles (black curves) do not change with 1x/D and overlap with the interior
profiles (grey curves), signalling fully developed flow. (The MVPs become independent of
1x/D sooner – for 1x/D & 6.)

r.m.s. profiles and total stress profiles (τtot profiles; see § 4.3) at a few representative
axial distances, 1x, from the upstream and downstream interfaces, respectively. To
obtain a profile at a fixed 1x/D, we compute the profile at that 1x/D from each
velocity field in an ensemble and then average those profiles over all the fields in
the ensemble (see § 2). For ease of comparing the profiles at different 1x/D, we
also plot an ‘interior profile’, which we compute by averaging the profiles over the
entire axial extent of the slug save for the region 30D from both interfaces. (If
the flow is fully developed, the interior profile and the profile at a fixed 1x/D are
indistinguishable.) As expected, the profiles close to the interfaces depend on 1x/D.
However, in the interior of the slug, for 1x/D& 10 from either interface, the profiles
become independent of 1x/D and collapse onto the attendant interior profile – the
flow becomes fully developed.

WC measured the diagnostic profiles at 1x/D = 20. Even though this location
satisfies the requirement for fully developed flow discussed above, recall that
identifying the location of an interface itself can entail an ambiguity of ∼10D.
Although with the information provided in WC we cannot objectively evaluate
whether or not WC’s profiles are fully developed, WC’s choice of 1x/D= 20 might
have been too close to the interface, as the authors themselves suggest. But, if that is
true, it follows that their data cannot be used to draw conclusions about the nature of
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FIGURE 6. Testing the role of Re on flow development. Using DNS of transitional flow
with slugs at Re= 3000 and 8000, we plot the relative difference (at a fixed y/D) for the
following profiles versus 1x/D: (a) MVPs, (b) r.m.s. profiles and (c) total stress profiles.
In computing a profile at a fixed 1x/D, we average the corresponding profiles at a
distance 1x/D± 1 from both interfaces. We denote the interior profiles with the subscript
‘∞’. The vertical bars represent statistical error bars. The errors stem from the profiles at
a fixed 1x/D; the statistical errors in the interior profile, by comparison, are negligible.
For MVPs and r.m.s. profiles, we show y/D= 1/2 and for total stress profiles, y/D= 1/4;
the results for other y/D are comparable. For 1x/D & 15, the relative difference in the
MVPs is .0.01 and in the r.m.s. profiles and total stress profiles is .0.1.

slug flow. There is also an additional consideration: the role of Re, which we discuss
next.

In figure 6, we show the results from a quantitative analysis of how the profiles
develop with 1x/D using DNS data at Re= 3000 and 8000, the lowest and highest
Re, respectively, in our study. We consider profiles at a distance 1x/D from both
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interfaces and take their average. Our quantitative measure is the relative difference,
at a fixed y/D, between the value of a profile at 1x/D compared with the attendant
interior profile. By comparing the decay of the relative differences for the different
diagnostics with 1x/D at the two Re, we find that the distance needed for the flow
to become fully developed increases with Re. This suggests that WC’s high-Re data
must be interpreted with caution.

In our study, the flow at Re= 8000 corresponds to the largest 1x/D needed for the
flow to be fully developed. From the profiles in figures 4 and 5, we have inferred that
the flow is fully developed for 1x/D& 10. From figure 6, we can ascribe quantitative
values to the flow development. At 1x/D= 10, the relative difference is .0.03 for the
MVPs and .0.3 for the r.m.s. profiles and total stress profiles; at 1x/D= 15, these
values are, respectively, .0.01 and .0.1. By 1x/D = 30, the lower limit we have
chosen to compute the interior profiles, the relative differences are of the order of the
statistical error.

Having demonstrated that the flow in a slug’s interior is fully developed, we can
now proceed to meaningfully compare the diagnostic profiles for slug flow with those
for fully turbulent flow. In the analysis henceforth, we identify the interior profiles as
the diagnostic profiles for slug flow.

4. Diagnostic profiles
4.1. MVPs

The MVP, u(y), was the first measure used by WC as evidence for the equivalence
between slug flow and fully turbulent flow. It also provides the clearest example of
pipe flow’s Re-dependence. The textbook manner in which to compare MVPs of fully
turbulent pipe flow at different Re is to collapse the MVPs using two classical scaling
laws (Pope 2001). Near the wall, the ‘law of the wall’ dictates that plots of u+≡ u/uτ
versus y+ ≡ yuτ/ν for different Re collapse onto one envelope. Away from the wall,
the ‘defect law’ dictates that plots of u+(y= D/2)− u+ versus y/D for different Re
collapse onto one envelope. These envelopes correspond to the asymptotic limit Re→
∞. At large but finite Re, the MVPs collapse onto the corresponding envelope for a
region and systematically peel away from the envelope as a function of Re: the higher
the Re, the longer the MVP collapses onto the envelope (figure 7). If MVPs from slug
flow also manifest these features, we can infer that slug flow is fully turbulent.

But – and this is a crucial point – at low Re this picture breaks down (figure 7).
The systematic peeling away abruptly changes. The MVPs no longer collapse onto the
envelopes, save for a small region (e.g. y+. 10 in figure 7a). This breakdown of the
collapse appears to occur at different Re for the two scaling laws, with the law of
the wall failing for Re . 10 000, and the defect law failing for Re . 44 000 (Patel &
Head 1969; Wu & Moin 2008). More important, because the breakdown corresponds
to the range of Re that is typical of transitional pipe flow (Mullin 2011), we can no
longer use the envelopes to determine if the slug flow MVPs are fully turbulent. These
circumstances necessitate a different approach.

Our approach is predicated on a key attribute of pipe flow we noted earlier: at
any Re & 2700, the flow exists as one of two states, transitional with slugs or fully
turbulent. We will consider different Re separately, and for each Re, we will compare
slug flow and fully turbulent flow as a pair, testing whether their MVPs as well as
other diagnostic profiles are identical. (Comparing slug flow with fully turbulent flow
at the same Re is equivalent to comparing them at the same friction Reynolds number,
Reτ ≡ uτD/ν; this is because the friction in both flows obeys the Blasius law (Cerbus
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FIGURE 7. Classical scaling laws of MVPs in fully turbulent flow: (a) the law of the
wall and (b) the defect law. The MVPs are from our DNS (we discuss Re= 3000 flow
in the manuscript; we compute Re= 16 000 flow using the same code) and from Wu &
Moin (2008) (Re=5300 and 44 000). The Re→∞ envelope is represented by a thick grey
line. At high Re, the MVPs systematically peel off from the corresponding envelopes as
a function of Re. But, at low Re, this picture of systematically peeling off breaks down.

et al. 2018).) This approach, which forms the leitmotif of our analysis, allows us to
account for the Re-dependence of the diagnostics without having to explicitly invoke a
theoretical framework that underlies the Re-dependence. (We mention in passing that
this approach cannot be used for puffs and for slugs at Re.2700, since fully turbulent
flow is not possible at the same Re.)

Before turning to our results, we first discuss the analysis of WC. They plotted
the MVPs (for flows at different Re) as u/u(y= D/2) versus y/D (figure 2a). WC’s
analysis is predicated on the expectation that the MVPs collapse in these unitless
coordinates. This expectation is equivalent to stating that

u
u(y=D/2)

= f1(y/D), (4.1)

where f1 is a function that depends only on y/D. This relation, however, is contrary
to the classical scaling laws. Consider, e.g. the defect law. The defect law can be
expressed as u− u(y=D/2)= uτ f2(y/D), where f2 is a function that depends only on
y/D. That is

u
u(y=D/2)

= 1+
uτ

u(y=D/2)
f2(y/D), (4.2)

which contradicts (4.1) because uτ/u(y=D/2) depends on Re. Thus, even if we ignore
the limitations of the classical scaling laws discussed above, the very basis of WC’s
analysis of the MVPs is erroneous. Now, considering the fact that no scaling laws
are known for the typical Re of interest in slug flow, we must adopt the approach
proposed above. But we cannot use this approach to analyse WC’s data because their
slug flow and fully turbulent flow correspond to different Re.

To test for correspondence between slug flow and fully turbulent flow, using
experiments and DNS, we generate two flows at the same Re: transitional flow with
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FIGURE 8. Comparing slug flow and fully turbulent flow using MVPs. We plot MVPs
from our experiments (expt.), DNS (sim.) and the literature (Patel & Head 1969; WC;
Westerweel et al. 1996; Wu & Moin 2008) for Re = 3000 (a), 4000 (b), 5300 (c) and
8000 (d) in the law-of-the-wall coordinates. The dashed line shows the linear profile,
u+ = y+, for the viscous sublayer. In (d) we include the MVPs from DNS at lower Re
(fully turbulent flow) in grey to highlight the Re-dependence of the MVPs. The statistical
errors in our data are comparable to the size of the symbols.

slugs and fully turbulent flow. (These data provide the basis for our analysis of all
the diagnostic profiles.) In figure 8(a–d), we plot the corresponding MVPs. (We plot
the MVPs as u+ versus y+, although this is of no significance since the Re is the
same in each panel.) In all cases, over the entire cross-section of the pipe, the MVPs
for slug flow and fully turbulent flow at the same Re are indistinguishable. Thus,
by the diagnostic of the MVP, slug flow is but fully turbulent flow. Our conclusion
echoes that of WC, though, with the crucial caveat that slug flow and fully turbulent
flow must be compared at the same Re.

4.2. The r.m.s. profiles
The r.m.s. profiles have not garnered as much attention as the MVPs, and are also
comparatively less understood. It is unclear if these profiles have an analogue of the
MVP scaling laws we discussed earlier. Indeed, recent experiments have demonstrated
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FIGURE 9. Comparing slug flow and fully turbulent flow using r.m.s. profiles. We
plot r.m.s. profiles from our experiments (expt.), DNS (sim.) and the literature (WC;
Westerweel et al. 1996; Wu & Moin 2008) for Re = 3000 (a), 4000 (b), 5300 (c) and
8000 (d). For our experiments, we report u

′
+ and u

′
+

r ; for our DNS, we report u
′
+, u

′
+

r

and u
′
+

θ . In (d) we include the u
′
+ curves from DNS at lower Re (fully turbulent flow)

in grey to highlight the Re-dependence of the r.m.s. profiles (also see figure 10). The
statistical errors in our data are comparable to the size of the symbols.

that, even at very high Re, no unitless coordinates are known in which the r.m.s.
profiles for different Re would collapse onto an envelope (Willert et al. 2017).

Consider WC’s analysis. They compared r.m.s. profiles (u′+, u
′
+

r and u
′
+

θ versus y/D)
for slug flow and fully turbulent flow at different Re, just as they did with the MVPs.
(In figure 2b, we show WC’s u

′
+ profiles.) And, just as was the case for the MVPs,

there is no justification for these unitless profiles to collapse onto one envelope. In
fact, empirical data for fully turbulent flow show that the unitless r.m.s. profiles do
not collapse onto one envelope for any range of Re. Thus, here too, the very basis of
WC’s analysis is erroneous.

The problem that no scaling laws are known to collapse r.m.s. profiles does not pose
any difficulty for our approach. As with the MVPs, we compare the r.m.s. profiles
of slug flow and fully turbulent flow at the same Re (figure 9). We find excellent
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FIGURE 10. The Re-dependence of the peak of the u
′
+ profile for fully turbulent flow. The

data are from our DNS (discussed in the manuscript as well as other higher-Re simulations
we conducted using the same code), from DNS of Wu & Moin (2008) (Re= 24 000 and
44 000) and from experiments of Willert et al. (2017) (Re> 250 000). We plot (a) unitless
positions of the peak, ypeak/D and y+peak, versus Re and (b) unitless magnitudes of the peak,
u′peak/U and u

′
+

peak, versus Re.

agreement between slug flow and fully turbulent flow over the entire cross-section
of the pipe. (We also compare the r.m.s. profiles from WC at Re = 4200 with ours
at Re = 4000 and find them to be in poor agreement; see figure 9b.) Based on our
analysis of r.m.s. profiles, we conclude that slug flow is identical to fully turbulent
flow.

As an aside, we comment on the peak of the u
′
+ profiles to highlight its rich

Re-dependence. In figure 9(d), we superpose the u
′
+ profiles for fully turbulent flow

at the different Re of our study. (In light of the discussion above, the same analysis
also holds for slug flow.) The y/D position of the peak decreases with Re and the
magnitude of the peak stays roughly the same. For a clearer picture, we plot the peak
position (ypeak) and peak magnitude (u′peak), using two unitless measures and over a
broad range of Re, in figure 10. Note that whereas ypeak/D decreases with Re, y+peak
remains roughly constant over the whole range of Re (figure 10a). The behaviour of
u′peak is more complex: u′peak/U monotonically decreases with Re, but u

′
+

peak is roughly
constant at low Re and increases with Re for Re & 15 000 (figure 10b).

4.3. Total stress profiles
Last, we turn to the total (shear) stress profiles, τtot(y). In a fully developed flow (of
which fully turbulent flow is a subset), the total stress profile obeys the exact relation
for stress balance (Pope 2001): τ+tot ≡ τ

+

ν + τ
+

Re = 1− 2y/D, where τ+tot, the total stress,
is the sum of τ+ν , the viscous stress, and τ+Re, the Reynolds stress; all stresses are
normalized by τw, the wall stress. Unlike the diagnostics of MVP and r.m.s. profile,
the τ+tot profile is independent of Re, although the τ+ν and τ+Re profiles themselves are
Re-dependent. The τ+tot profile provides an exact quantitative test of the fully developed
nature of slug flows, complementing our discussion of § 3.
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FIGURE 11. Representative Reynolds stress profiles from WC, τ+Re versus y/D
(cf. figure 20 in WC). Here, we show results for the profiles near the upstream
interface; the profiles near the downstream interface are similar. The dashed line
represents the stress-balance relation, τ+Re ≈ 1− 2y/D.

WC plotted τ+Re versus y/D for slug flows and fully turbulent flow (figure 11). Note
that although the τ+Re profile depends on Re, at high Re and away from the wall, τ+Re≈

τ+tot, so one can use the τ+Re profile as an Re-independent diagnostic. Thus, unlike their
analysis of the MVPs and r.m.s. profiles, WC’s analysis of τ+Re profiles (in the region
away from the wall) does not suffer from improper accounting for the Re-dependence
of the diagnostic profiles. The problem, however, is with the data themselves. Whereas
WC’s Re= 50 000 fully turbulent flow profile conforms to the stress-balance relation,
which corroborates the experimental accuracy, the Re = 19 000 and Re = 4200 slug
flow profiles undershoot and overshoot the said relation, respectively. This suggests
that slug flow is not fully developed, thereby casting doubt on the very exercise of
comparing it with fully turbulent flow.

We plot τ+tot versus y/D for slug flows and fully turbulent flow (figure 12). Although
this is an Re-independent diagnostic, for clarity we group the plots by the value of
Re. In stark contrast to WC, our data show excellent agreement with the stress-balance
relation for all values of Re. Based on our analysis of τ+tot profiles, we conclude that
slug flows are fully developed. This, coupled with the result that at the same Re the
τ+ν profiles for slug flows and fully turbulent flows are indistinguishable (cf. figure 8),
implies that the corresponding τ+Re profiles are indistinguishable as well.

5. Summary
Is slug flow identical to fully turbulent flow? Seeking a clear answer to this question

has motivated this study.
It is widely thought that a clear answer was furnished by the pioneering study of

WC, which concluded, ‘the structure of the flow in the interior of the slug is identical
to that in a fully developed turbulent pipe flow’. By reanalysing the diagnostic profiles
(MVPs, r.m.s. profiles and stress profiles) from WC, we have shown that this well-
known conclusion cannot be substantiated based on their data.
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FIGURE 12. Comparing slug flow and fully turbulent flow using total stress profiles.
We plot τ+tot profiles from our experiments (expt.), DNS (sim.) and the literature (WC;
Westerweel et al. (1996), Wu & Moin (2008)) for Re = 3000 (a), 4000 (b), 5300 (c)
and 8000 (d). The dashed line in each plot represents the stress-balance relation, τ+tot =

1− 2y/D. In (b), we also show WC’s τ+tot profile for slug flow. To compute that profile,
we added WC’s τ+Re profile at Re= 4200 and τ+ν profile at Re= 4000. (They did not report
these profiles at the same Re.) The statistical errors in our data are comparable to the size
of the symbols.

We conducted experiments and simulations, paying careful attention to two aspects.
First, we established that, for a slug, despite the inexorable march of its interfaces,
away from the interfaces and inside the slug, the flow diagnostics are independent
of the axial location – that is, the slug flow is fully developed. Second, noting the
Re-dependence of the diagnostic profiles in fully turbulent flow, we compared slug
flow with fully turbulent flow at the same value of Re. From our analysis we conclude
that slug flow is indeed identical to fully turbulent flow with the crucial caveat that
the two flows are compared at the same value of Re. Our re-examination of WC’s
seminal work reveals a richer – and a more accurate – picture of the Re-dependence
of transitional pipe flows.
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