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ENTIRE SOLUTIONS OF THE DIFFERENTIAL EQUATION
Au = f(u)
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Abstract

The existence of spherically symmetric solutions of the equation Au = f(w) is proved for a large class
of functions f(z). Among others, functions satisfying an inequality zf{z) < 0 for |z| > A4, and in
particular the function f(z) = —sinh z, belong to this class.

1980 Mathematics subject classification (Amer. Math. Soc.): 35 J 15, 35 J 60.

0. Introduction

I learned from Dr. Norbert Steinmetz that the following problem was posed at
the Oberwolfach conference on complex variables (17-23 February 1980): Are
there solutions of Au + sinh ¥ = 0 existing in the whole plane (other than
functions of one variable u(x,y) = v(x), v” + sinh v = 0)? The question has
bearings on the minimal surface equation. It is of a quite different nature than
the corresponding question regarding equations such as Au = e, which have
been investigated by many authors; see Walter and Rhee (1979) and the
literature quoted there. The answer is yes. In fact, we will show that for a large
class of functions f(z), which includes all functions for which zf(z) < 0, there
exist spherically symmetric entire solutions of the equation Au = f(u).

1. Some preliminary remarks

Let x =(x;,...,%) ERY, |x|=(GI+--- +x)"? and R, =[0, x0). A
spherically symmetric function u(]x|) is in C%(R") if and only if u(r) is in C*(R,)
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and «’(0) = 0. The problem of finding a spherically symmetric solution of

€)) Au= f(u) inR", u(0)=a

of class C*(R") is therefore equivalent to the problem of finding a solution
u € C*R,)of

2) w + 2= ! u = f(u) forO<r<oo,u(0)=a, u(0)=0.

r

Another equivalent formulation is given by the integral equation

(3) u(r) = a + fo ’ f(u(s))sK(%) ds inR,,
where
-log ¢ forn = 2,
K@) = 1

_ 4n—2 2
n—2(1 t""%) forn >

is positive in (0, 1).

2. The main result

THEOREM. Assume that f: R — R is continuous and that
z
F(z) = f f(t) dt
0

is bounded above, say, F(z) < C for z € R. Then, for any given a € R, there exists
a spherically symmetric entire solution of (1) of class C*(R™).

PRrOOF. It is well known that there exist “local” solutions of (2) or (3) existing
in some interval 0 < r < R (this may be proved by replacing f by a bounded
function, using a cut-off procedure, and employing Schauder’s fixed point
theorem). Now consider the expression

E(r) = u? - 2F(u),
where u is a local solution. We have

E'(r) =2u'u” — 24 f(u) = _2(n—r—l) u? < 0.

Hence, E is decreasing, E(r) < E(0) = -2F(a), or
w*(r) < 2F(u(r)) — 2F(a) < 2(C + |F(a))).
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This inequality shows that ' remains bounded. By Peano’s existence theorem
the solution u can be continued to the right indefinitely.

COROLLARIES (). If F(z2) > -~ as |z]| — o0, then every solution of (2) is
bounded.

(b) If f is locally Lipschitz continuous, then (2) has exactly one entire solution.

(c) The theorem applies in particular, if there exists a constant A such that
zf(z) < 0 for |z] > A.

ProOF. (a) follows easily from the boundedness of E(r). In the case (b) one
may apply the contraction principle to the integral equation (3). Finally, (c) is
evident.
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