J. Austral. Math. Soc. (Series A) 30 (1981), 366-368

ENTIRE SOLUTIONS OF THE DIFFERENTIAL EQUATION $\Delta u = f(u)$

WOLFGANG WALTER

(Received 25 April 1980)

Communicated by R. Vyborny

Abstract

The existence of spherically symmetric solutions of the equation $\Delta u = f(u)$ is proved for a large class of functions f(z). Among others, functions satisfying an inequality zf(z) < 0 for |z| > A, and in particular the function $f(z) = -\sinh z$, belong to this class.

1980 Mathematics subject classification (Amer. Math. Soc.): 35 J 15, 35 J 60.

0. Introduction

I learned from Dr. Norbert Steinmetz that the following problem was posed at the Oberwolfach conference on complex variables (17-23 February 1980): Are there solutions of $\Delta u + \sinh u = 0$ existing in the whole plane (other than functions of one variable u(x, y) = v(x), $v'' + \sinh v = 0$)? The question has bearings on the minimal surface equation. It is of a quite different nature than the corresponding question regarding equations such as $\Delta u = e^u$, which have been investigated by many authors; see Walter and Rhee (1979) and the literature quoted there. The answer is yes. In fact, we will show that for a large class of functions f(z), which includes all functions for which $zf(z) \leq 0$, there exist spherically symmetric entire solutions of the equation $\Delta u = f(u)$.

1. Some preliminary remarks

Let $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $|x| = (x_1^2 + \cdots + x_n^2)^{1/2}$ and $\mathbb{R}_+ = [0, \infty)$. A spherically symmetric function u(|x|) is in $C^2(\mathbb{R}^n)$ if and only if u(r) is in $C^2(\mathbb{R}_+)$

[©]Copyright Australian Mathematical Society 1981

and u'(0) = 0. The problem of finding a spherically symmetric solution of

(1)
$$\Delta u = f(u) \quad \text{in } \mathbf{R}^n, u(0) = a$$

of class $C^2(\mathbb{R}^n)$ is therefore equivalent to the problem of finding a solution $u \in C^2(\mathbb{R}_+)$ of

(2)
$$u'' + \frac{n-1}{r}u' = f(u)$$
 for $0 < r < \infty, u(0) = a, u'(0) = 0.$

Another equivalent formulation is given by the integral equation

(3)
$$u(r) = a + \int_0^r f(u(s))sK\left(\frac{s}{r}\right) ds \quad \text{in } \mathbb{R}_+,$$

where

$$K(t) = \begin{cases} -\log t & \text{for } n = 2, \\ \frac{1}{n-2}(1-t^{n-2}) & \text{for } n > 2 \end{cases}$$

is positive in (0, 1).

2. The main result

THEOREM. Assume that $f: \mathbf{R} \to \mathbf{R}$ is continuous and that

$$F(z) \coloneqq \int_0^z f(t) dt$$

is bounded above, say, $F(z) \leq C$ for $z \in \mathbb{R}$. Then, for any given $a \in \mathbb{R}$, there exists a spherically symmetric entire solution of (1) of class $C^2(\mathbb{R}^n)$.

PROOF. It is well known that there exist "local" solutions of (2) or (3) existing in some interval $0 \le r \le R$ (this may be proved by replacing f by a bounded function, using a cut-off procedure, and employing Schauder's fixed point theorem). Now consider the expression

$$E(r)=u^{\prime 2}-2F(u),$$

where u is a local solution. We have

$$E'(r) = 2u'u'' - 2u'f(u) = -\frac{2(n-1)}{r}u'^2 \leq 0.$$

Hence, E is decreasing, $E(r) \le E(0) = -2F(a)$, or

$$u'^{2}(r) \leq 2F(u(r)) - 2F(a) \leq 2(C + |F(a)|).$$

Wolfgang Walter

This inequality shows that u' remains bounded. By Peano's existence theorem the solution u can be continued to the right indefinitely.

COROLLARIES (a). If $F(z) \to -\infty$ as $|z| \to \infty$, then every solution of (2) is bounded.

(b) If f is locally Lipschitz continuous, then (2) has exactly one entire solution.

(c) The theorem applies in particular, if there exists a constant A such that $zf(z) \le 0$ for $|z| \ge A$.

PROOF. (a) follows easily from the boundedness of E(r). In the case (b) one may apply the contraction principle to the integral equation (3). Finally, (c) is evident.

References

W. Walter and H. Rhee (1979), 'Entire solutions of $\Delta^{p}u = f(r, u)$ ', Proc. Roy. Soc. Edinburgh Sect. A 82, 189-192.

Mathematisches Institut I der Universität Karlsruhe Englerstrasse 2 7500 Karlsruhe Deutschland

368