ENTIRE SOLUTIONS OF THE DIFFERENTIAL EQUATION
 $\Delta u=f(u)$

WOLFGANG WALTER

(Received 25 April 1980)

Communicated by R. Vyborny

Abstract

The existence of spherically symmetric solutions of the equation $\Delta u=f(u)$ is proved for a large class of functions $f(z)$. Among others, functions satisfying an inequality $z f(z)<0$ for $|z|>A$, and in particular the function $f(z)=-\sinh z$, belong to this class.

1980 Mathematics subject classification (Amer. Math. Soc.): 35 J 15, 35 J 60.

0. Introduction

I learned from Dr. Norbert Steinmetz that the following problem was posed at the Oberwolfach conference on complex variables (17-23 February 1980): Are there solutions of $\Delta u+\sinh u=0$ existing in the whole plane (other than functions of one variable $\left.u(x, y)=v(x), v^{\prime \prime}+\sinh v=0\right)$? The question has bearings on the minimal surface equation. It is of a quite different nature than the corresponding question regarding equations such as $\Delta u=e^{u}$, which have been investigated by many authors; see Walter and Rhee (1979) and the literature quoted there. The answer is yes. In fact, we will show that for a large class of functions $f(z)$, which includes all functions for which $z f(z)<0$, there exist spherically symmetric entire solutions of the equation $\Delta u=f(u)$.

1. Some preliminary remarks

Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n},|x|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$ and $\mathbf{R}_{+}=[0, \infty) . \mathbf{A}$ spherically symmetric function $u(|x|)$ is in $C^{2}\left(\mathbf{R}^{n}\right)$ if and only if $u(r)$ is in $C^{2}\left(\mathbf{R}_{+}\right)$

[^0]and $u^{\prime}(0)=0$. The problem of finding a spherically symmetric solution of
\[

$$
\begin{equation*}
\Delta u=f(u) \quad \text { in } \mathbf{R}^{n}, u(0)=a \tag{1}
\end{equation*}
$$

\]

of class $C^{\mathbf{2}}\left(\mathbf{R}^{n}\right)$ is therefore equivalent to the problem of finding a solution $u \in C^{2}\left(\mathbf{R}_{+}\right)$of

$$
\begin{equation*}
u^{\prime \prime}+\frac{n-1}{r} u^{\prime}=f(u) \quad \text { for } 0<r<\infty, u(0)=a, \quad u^{\prime}(0)=0 . \tag{2}
\end{equation*}
$$

Another equivalent formulation is given by the integral equation

$$
\begin{equation*}
u(r)=a+\int_{0}^{r} f(u(s)) s K\left(\frac{s}{r}\right) d s \quad \text { in } \mathbf{R}_{+} \tag{3}
\end{equation*}
$$

where

$$
K(t)= \begin{cases}-\log t & \text { for } n=2 \\ \frac{1}{n-2}\left(1-t^{n-2}\right) & \text { for } n>2\end{cases}
$$

is positive in $(0,1)$.

2. The main result

Theorem. Assume that $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous and that

$$
F(z):=\int_{0}^{z} f(t) d t
$$

is bounded above, say, $F(z) \leqslant C$ for $z \in \mathbf{R}$. Then, for any given $a \in \mathbf{R}$, there exists a spherically symmetric entire solution of (1) of class $C^{2}\left(\mathbf{R}^{n}\right)$.

Proof. It is well known that there exist "local" solutions of (2) or (3) existing in some interval $0 \leqslant r \leqslant R$ (this may be proved by replacing f by a bounded function, using a cut-off procedure, and employing Schauder's fixed point theorem). Now consider the expression

$$
E(r)=u^{2}-2 F(u)
$$

where u is a local solution. We have

$$
E^{\prime}(r)=2 u^{\prime} u^{\prime \prime}-2 u^{\prime} f(u)=-\frac{2(n-1)}{r} u^{\prime 2}<0
$$

Hence, E is decreasing, $E(r) \leqslant E(0)=-2 F(a)$, or

$$
u^{\prime 2}(r) \leqslant 2 F(u(r))-2 F(a)<2(C+|F(a)|) .
$$

This inequality shows that u^{\prime} remains bounded. By Peano's existence theorem the solution u can be continued to the right indefinitely.

Corollaries (a). If $F(z) \rightarrow-\infty$ as $|z| \rightarrow \infty$, then every solution of (2) is bounded.
(b) If f is locally Lipschitz continuous, then (2) has exactly one entire solution.
(c) The theorem applies in particular, if there exists a constant A such that $z f(z) \leqslant 0$ for $|z| \geqslant A$.

Proof. (a) follows easily from the boundedness of $E(r)$. In the case (b) one may apply the contraction principle to the integral equation (3). Finally, (c) is evident.

References

W. Walter and H. Rhee (1979), 'Entire solutions of $\Delta^{P} u=f(r, u)^{\prime}$, Proc. Roy. Soc. Edinburgh Sect. A 82, 189-192.

Mathematisches Institut I
der Universität Karlsruhe
Englerstrasse 2
7500 Karlsruhe
Deutschland

[^0]: ©Copyright Australian Mathematical Society 1981

