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UNIVERSAL COMPACT T;-SPACES

ADAM MYSIOR

ABSTRACT.  For every infinite cardinal k we construct a space Cy; universal for
all compact T -spaces of weight < k. It follows, in particular, that there are only 2*
topologically different compact T -spaces. We show that C,, is universal for all second
countable developable T -spaces. The existence of closely universal compact T -spaces
is discussed.

1. Introduction. A space K is said to be universal for a class X of topological
spaces if K € X and every space from X is homeomorphic to some subspace of K.

Let x be an arbitrary infinite cardinal number.

By the celebrated Tychonoff Theorem the cube [0, 1]* is universal for all compact
T,-spaces of weight < k. Denote by F the two-point space { 0,1} endowed with the
topology consisting of the empty set, the set { 0} and the whole space. The Alexandroff
cube F* is universal for all T-spaces of weight < & (cf. [4. Theorem 2.3.26]). As F* is
compact, it is universal also for all compact Ty-spaces of weight < k.

The above two theorems suggest the natural problem of whether the analogous result
is valid for the class of compact T-spaces. The aim of this paper is to show that the an-
swer is positive. We construct, for every k, a space C,, which is universal for all compact
T -spaces of weight < k.

The paper is organized as follows.

The construction and the proof of universality of C,; are given in Section 1. We show
that the spaces C,; are supercompact. Recall that a space X is called supercompact, pro-
vided that there exists an open subbase P for X such that every cover of X by members
of P has a two-element subcover. It follows from Alexander Subbase Theorem (cf. [4,
Problem 3.12.2]) that every supercompact space is compact.

In section 2 we determine the number of compact T-spaces of given weight. Since
all compact subspaces of a Hausdorff space are closed, the universality of [0, 1]* implies
that there exists only 2% topologically different compact T,-spaces of weight . On the
other hand, it is easy to construct, for every «, a family of 22" pairwise nonhomeomor-
phic compact Ty-spaces. This leads to the question about the largest possible number
of topologically different compact T)-spaces of weight k. The existence of C, implies
easily that there are only 2% such spaces.
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In section 3 we characterize those spaces which can be embedded into C. In par-
ticular, it turns out that the space C,, is universal for all second countable developable
T)-spaces. Various examples of such universal spaces have been constructed earlier in
[2], [3] and [5]. Although those spaces (in opposition to C,, ) are originally noncompact,
they do have second countable and developable (Wallman) compactifications. We be-
lieve, however, that our construction is simpler.

Section 4 is devoted to the problem of existence of closely universal compact 77-
spaces. A space K is called closely universal for a class K if K € X and every space
from X is homeomorphic to some closed subspace of K. We end the paper with an
example exhibiting that closely universal compact 7' -spaces cannot be supercompact.

All undefined notions can be found in [4]. We do not distinguish, however, between
compact and quasicompact spaces, i.e. no separation axioms are assumed in the definition
of a compact space. We write x both for an infinite cardinal number and a set of respective
cardinality. |A| stands for cardinality of a set A.

In the sequel we shall frequently use the following simple

LEMMA. If X is a Ty-space and ‘P is an open subbase for X, then every compact
subset C of X is an intersection of finite unions of elements of P.

For the proof it suffices to show that for every point x in X — C the set C has a finite
cover by elements of P which do not contain x. This is, however, a direct consequence
of compactness of C and of the fact that X is a T-space.

2. The space C,. For an infinite cardinal number x denote by Z(x) the set of all
finite sequences in &, i.e. (k) = {0} Uk U K2U - -U K" U ---.

For the sake of simplicity we shall denote by (o, s) the extension (si,...s,,s) of 0 =
(s1,...,8,) and by o the reduction (sq,...,s,) of 0 = (s1,...5,, Sp+1). Whenever we
write o7, it is tacitly assumed that o # §.

Our space C is a subspace of Alexandroff cube F¥*) consisting of all functions
x:%(k)— {0, 1} which satisfy, for each o € Z(k), the following condition:

(%) x(c) = Oifand only if x (o) = 1 or x(o,s) = 1 for some s € K.
THEOREM 1. The space Cy is supercompact and is universal for all compact T,-
spaces of weight < k.

PROOF. Forevery o € Z(k)let W, = {x € Cx : x(o) = 0}. The form of the
topology on F=*) implies that the family P, = {W, : ¢ € Z(k)} is an open subbase
for Cy.

We prove our theorem by showing the following four facts.

FacT 1. C, has weight <&.
This is obvious since |Z(k)| = k. Actually, it follows from Facts 1 and 4 (below) that
C,. has weight equal to .

FAcT 2. Cy is a Ty-space.
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Let x and x’ be two arbitrary different elements of C,,. We may assume that x (¢) = 0
and x'(c) = 1 for some o € Z(x). Clearly the set W, separates x from x’. To separate
x' from x observe that x (o) = 1 or x(d,s0) = 1 for some 59 € x, while x'(o7) = 0 =
x'(o,s) for all s € k. It follows that either Wo, or W 5, separates x' from x.

FACT3. C, is supercompact.

To prove this we show that every cover U of C,; by elements of P, contains a two-
element subcover. Let U = {W,, : 0 € A} for some A C Z(k). It follows directly from
the condition (*) that C, = W, U W, 4 forevery o € Z(x) and each s € k. Therefore
it suffices to show that there must exist 0 € Z(k) and s € k such that both ¢ and (o, s)
belong to A.

Suppose, on the contrary, that (o, s) & A forall ¢ € A and s € k. We will show that
the family { W, : ¢ € A} cannot be a cover of C,. To this end we construct a function
X € Cy such that (o) = 1 forall o € A.

The values x (o) are defined inductively with respect to the length of sequences o.
Let x(@) = 0if @ € A, otherwise put x(#) = 1. For o # () we take

0, ifx(or)=1or(o,s) € Aforsomes €k,
1, otherwise.

Observe that if 0 € A then x(o) = 1 for all 0 € A. In fact, x(¢) = 1 means that
x(or) = 0and(o,s) ¢ A forall s € k. The former follows from the fact that (or,5)=0
for some s € k; the latter is given by our assumption on A. This and the definition of x
imply directly that  satisfies the condition (*) and therefore is in C.

FACT 4. Every compact T;-space X of weight < k can be embedded into Cj.

To construct a respective embedding consider an open subbase P for X such that
|P| <k, X€PandX—-U=n{VeP:UUV =X} forevery U € P. The existence
of such a subbase for X follows directly from the Lemma—it suffices to take any open
subbase which has cardinality < « and is closed for finite unions.

Arrange P as { U; : s € £} and then reindex P inductively by the elements of (k)
in the following way. Put Uy = X and for 0 = (oy,s) take U, = Uy provided that
Ug[ U Uy = X; otherwise put U, = X.

To every point x in X there corresponds a function x,: Z(k) — {0,1} such that
Xx(0) = 0 if and only if x € U,. It follows directly from the definition of the sets
U, that x, € C, for all x € X. The mapping h: X — C, given by h(x) = x, is the
required embedding. To see this it suffices to note that h=!(W,) = U, forall ¢ € (k).

The proof of Theorem 1 is complete.

REMARK 1. It can be proved (cf. [7]) that for any & there exists no space universal
for all T-spaces of weight < k.

REMARK 2. Some similar selection of a suitable subspace of F**) leads to a univer-
sal regular space of weight x (cf. [7]).
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3. The number of compact spaces. It follows directly from the Lemma that every
T)-space of weight x can have only 2% compact subspaces. This and Theorem 1 imply
immediately the following:

THEOREM 2. For every K there are at most 2" topologically distinct compact T)-
spaces.

REMARK 1. The above estimation is the best possible. In fact, as proved in [6], for
every k there exists a family of 2" pairwise nonhomeomorphic connected compact T5-
spaces. Moreover, if K > w, then the family in question can consist of connected com-
pact linearly ordered spaces (cf. [8]).

REMARK 2. For the class of compact Ty-spaces the estimation analogous to that of
Theorem 1 is not valid. Actually, for every s there exists a family consisting of 22"
pairwise nonhomeomorphic compact Ty-spaces of weight &.

To obtain such a family observe first that for every space X of density < x there are at
most 2" continuous mappings from X to the cube [0, 1]*. It follows that every subspace
of [0, 11" cannot be homeomorphic to more than 2" of the other subspaces and, therefore,
there exists a family X consisting of 22" pairwise nonhomeomorphic subspaces of [0, 1]*.

Choose a point x ¢ [0, 1]* and for every X € X consider the space XU { *} endowed
with the topology consisting of X U { *} and all open subsets of X. It is easy to see that
{XU {x}:Xe€ X} forms the required family.

4. What can be embedded into C.. Let us say that a topological space X is x-
perfect if every open set in X is a union of < & closed sets. The answer to the question
in the title is given by the following:

THEOREM 3. For a Ti-space X of weight < k the following conditions are equiva-
lent:

(a) X is homeomorphic to some subspace of Cy,

(b) X has a Ty-compactification of weight < K,

(¢) X has a closed network of cardinality < k,

(d) X is k-perfect.

PROOF. Implications (a)=>(b) and (c)=>(d) are obvious.

To prove (b)=>(c) let cX be a T;-compactification of X with weight < x and let ‘B be
an open base for c¢X such that |B| < kandcX —U =N{V € B: UU V = cX} for
every U € ‘B (see the Lemma again). The family { X — U : U € B} is easily seen to be
a required closed network for X.

To prove (d)=>(a) assume that X is a s -perfect space. It is not a difficult task to find a
(sub)base P for X such that |P| <k, X € PandX—-U={VeP:UUV =X}
for every U € P. Yet, such a subbase for X is all we need to construct an embedding of
X into C,; (compare the proof of Theorem 1).

The equivalence of (a) and (d) can be reformulated as follows.
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COROLLARY 1.  The space Cy, is universal for all k-perfect Ty-spaces of weight < k.

Since a second countable T)-space is developable if and only if it is perfect (= w-
perfect), we have the following:

COROLLARY 2. The space C,, is universal for all second coutable developable T, -
spaces.

REMARK 1. It can be shown that there exists no universal space for second countable
developable Hausdorff spaces. Note, however, that [0, 1]¥ is universal for all second
countable developable regular spaces.

REMARK 2. The equivalence (b)<>(c) of Theorem 3 has been obtained earlier in [1].

5. On closely universal compact spaces. Since compact subspaces of the
Tychonoff cube [0, 1]* are closed, it is closely universal for all compact T>-spaces of
weight < k. In the class of compact Ty-spaces closely universal spaces do not exist. In
order to see this compare Remark 2 of Section 2 and notice that a space of weight x can
have at most 2% closed subspaces.

The above two observations lead directly to the following

PROBLEM. s there, for every (or some) &, a closely universal space for all compact
T -spaces of weight < k?

The problem remains open. As it follows from the example given at the end of the
paper, the universal spaces C,; cannot serve as closely universal. Meanwhile, they enable
us to give the following:

THEOREM 4. For every k there exists a T\-space Sy of weight k such that every
compact T\-space of weight < k is homeomorphic to some closed subspace of S.

PROOF. The family C of all compact subspaces of C,; has only 2" elements. Arrange
Cas{C,:x€[0,1]*} and let S, be a subspace of [0, 1]* x C,; consisting of those pairs
(x,y) in which y € C,. Clearly Sy has weight «.

Let X be an arbitrary compact T;-space of weight < k. In view of Theorem 1 there
exists x € [0, 1]" such that the spaces X and C, are homeomorphic. The space X is
therefore homeomorphic to the closed subspace { x} x Cy of Sj.

REMARK. Observe that the spaces S, are not compact and therefore do not provide
a solution to our Problem. On the other hand, the answer would be positive if one could
succeed in finding a Tj-compactification of weight £ of S in which all the subspaces
{x} X C, remain closed.

The following example shows that closely universal compact T;-spaces (if any) can-
not be supercompact.

EXAMPLE. There is a second countable compact T;-space Y which is not homeo-
morphic to any closed subspace of any supercompact space.
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Denote by N the set of natural numbers with co-finite topology. Our space Y is the
space N X N with the diagonal A = {(n,n) : n € N} as an additional closed set. It is
easy to check that Y is a second countable compact T;-space. We show that Y cannot be
homeomorphic to a closed subspace of any supercompact space.

Let us start with the following observation.

If X, is a closed subspace of a space X and every two nonempty open subsets of X,
have nonempty intersection, then

(a) for every open subbase P for X the complement X — X, can be expressed as a
union of members of P,

(b) if X is supercompact then so is Xp.

For the proof of (a) observe that, since every finite family of nonempty open subsets
of X, has nonempty intersection, there must exist, for every x € X — X;, a member U of
Pwithx € Uand UN X, = .

For the proof of (b) consider a binary open subbase P for X. Binary means here that
every nontrivial open cover of X by members of P contains a two-element subcover.
With the use of (a), it is easy to verify that the family { UN X, : U € P} forms a binary
open subbase for Xj.

Now return to our space Y. Since every two nonempty open subsets of ¥ have non-
empty intersection, it suffices to show that Y is not supercompact, i.e. no open subbase
for Y is binary.

Let P be an arbitrary open subbase for Y. By virtue of (a) there exists U C ‘P such that
Y—A = U U. Similarly, there exist 1/ C Pand W C Psuchthat Y —({1} xN) = UV
and Y — (N x {2}) = U W. It is easy to see that the open cover UU VU W C P of
Y contains no two-element subcover.
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