UNIVERSAL COMPACT T_1 -SPACES

ADAM MYSIOR

ABSTRACT. For every infinite cardinal κ we construct a space C_{κ} universal for all compact T_1 -spaces of weight $\leq \kappa$. It follows, in particular, that there are only 2^{κ} topologically different compact T_1 -spaces. We show that C_{ω} is universal for all second countable developable T_1 -spaces. The existence of closely universal compact T_1 -spaces is discussed.

1. **Introduction.** A space K is said to be *universal* for a class K of topological spaces if $K \in K$ and every space from K is homeomorphic to some subspace of K.

Let κ be an arbitrary infinite cardinal number.

By the celebrated Tychonoff Theorem the cube $[0,1]^{\kappa}$ is universal for all compact T_2 -spaces of weight $\leq \kappa$. Denote by F the two-point space $\{0,1\}$ endowed with the topology consisting of the empty set, the set $\{0\}$ and the whole space. The Alexandroff cube F^{κ} is universal for all T_0 -spaces of weight $\leq \kappa$ (cf. [4. Theorem 2.3.26]). As F^{κ} is compact, it is universal also for all compact T_0 -spaces of weight $\leq \kappa$.

The above two theorems suggest the natural problem of whether the analogous result is valid for the class of compact T_1 -spaces. The aim of this paper is to show that *the answer is positive*. We construct, for every κ , a space C_{κ} which is universal for all compact T_1 -spaces of weight $\leq \kappa$.

The paper is organized as follows.

The construction and the proof of universality of C_{κ} are given in Section 1. We show that the spaces C_{κ} are supercompact. Recall that a space X is called *supercompact*, provided that there exists an open subbase \mathcal{P} for X such that every cover of X by members of \mathcal{P} has a two-element subcover. It follows from Alexander Subbase Theorem (cf. [4, Problem 3.12.2]) that every supercompact space is compact.

In section 2 we determine the number of compact T_1 -spaces of given weight. Since all compact subspaces of a Hausdorff space are closed, the universality of $[0,1]^{\kappa}$ implies that there exists only 2^{κ} topologically different compact T_2 -spaces of weight κ . On the other hand, it is easy to construct, for every κ , a family of $2^{2^{\kappa}}$ pairwise nonhomeomorphic compact T_0 -spaces. This leads to the question about the largest possible number of topologically different compact T_1 -spaces of weight κ . The existence of C_{κ} implies easily that there are $only 2^{\kappa}$ such spaces.

Received by the editors February 5, 1991.

AMS subject classification: Primary 54C25; secondary 54D10, 54D30, 54B10.

Key words and phrases: Universal, closely universal, compact T_1 -space, supercompact, developable, κ -perfect

[©] Canadian Mathematical Society 1992.

262 A. MYSIOR

In section 3 we characterize those spaces which can be embedded into C_{κ} . In particular, it turns out that the space C_{ω} is universal for all second countable developable T_1 -spaces. Various examples of such universal spaces have been constructed earlier in [2], [3] and [5]. Although those spaces (in opposition to C_{ω}) are originally noncompact, they do have second countable and developable (Wallman) compactifications. We believe, however, that our construction is simpler.

Section 4 is devoted to the problem of existence of closely universal compact T_1 -spaces. A space K is called *closely universal* for a class K if $K \in K$ and every space from K is homeomorphic to some *closed* subspace of K. We end the paper with an example exhibiting that closely universal compact T_1 -spaces cannot be supercompact.

All undefined notions can be found in [4]. We do not distinguish, however, between compact and quasicompact spaces, i.e. no separation axioms are assumed in the definition of a compact space. We write κ both for an *infinite* cardinal number and a set of respective cardinality. |A| stands for cardinality of a set A.

In the sequel we shall frequently use the following simple

LEMMA. If X is a T_1 -space and \mathcal{P} is an open subbase for X, then every compact subset C of X is an intersection of finite unions of elements of \mathcal{P} .

For the proof it suffices to show that for every point x in X - C the set C has a finite cover by elements of \mathcal{P} which do not contain x. This is, however, a direct consequence of compactness of C and of the fact that X is a T_1 -space.

2. **The space** C_{κ} . For an infinite cardinal number κ denote by $\Sigma(\kappa)$ the set of all finite sequences in κ , i.e. $\Sigma(\kappa) = \{\emptyset\} \cup \kappa \cup \kappa^2 \cup \cdots \cup \kappa^n \cup \cdots$.

For the sake of simplicity we shall denote by (σ, s) the extension (s_1, \ldots, s_n, s) of $\sigma = (s_1, \ldots, s_n)$ and by σ_{\lceil} the reduction (s_1, \ldots, s_n) of $\sigma = (s_1, \ldots, s_n, s_{n+1})$. Whenever we write σ_{\lceil} , it is tacitly assumed that $\sigma \neq \emptyset$.

Our space C_{κ} is a subspace of Alexandroff cube $F^{\Sigma(\kappa)}$ consisting of all functions $\chi: \Sigma(\kappa) \to \{0,1\}$ which satisfy, for each $\sigma \in \Sigma(\kappa)$, the following condition:

(*)
$$\chi(\sigma) = 0$$
 if and only if $\chi(\sigma_{\lceil}) = 1$ or $\chi(\sigma, s) = 1$ for some $s \in \kappa$.

THEOREM 1. The space C_{κ} is supercompact and is universal for all compact T_1 -spaces of weight $\leq \kappa$.

PROOF. For every $\sigma \in \Sigma(\kappa)$ let $W_{\sigma} = \{ \chi \in C_{\kappa} : \chi(\sigma) = 0 \}$. The form of the topology on $F^{\Sigma(\kappa)}$ implies that the family $\mathcal{P}_{\kappa} = \{ W_{\sigma} : \sigma \in \Sigma(\kappa) \}$ is an open subbase for C_{κ} .

We prove our theorem by showing the following four facts.

FACT 1. C_{κ} has weight $\leq \kappa$.

This is obvious since $|\Sigma(\kappa)| = \kappa$. Actually, it follows from Facts 1 and 4 (below) that C_{κ} has weight equal to κ .

FACT 2. C_{κ} is a T_1 -space.

Let χ and χ' be two arbitrary different elements of C_{κ} . We may assume that $\chi(\sigma)=0$ and $\chi'(\sigma)=1$ for some $\sigma\in\Sigma(\kappa)$. Clearly the set W_{σ} separates χ from χ' . To separate χ' from χ observe that $\chi(\sigma_{\lceil})=1$ or $\chi(\sigma,s_0)=1$ for some $s_0\in\kappa$, while $\chi'(\sigma_{\lceil})=0=\chi'(\sigma,s)$ for all $s\in\kappa$. It follows that either $W_{\sigma_{\lceil}}$ or $W_{(\sigma,s_0)}$ separates χ' from χ .

FACT 3. C_{κ} is supercompact.

To prove this we show that every cover \mathcal{U} of C_{κ} by elements of \mathcal{P}_{κ} contains a twoelement subcover. Let $\mathcal{U} = \{ W_{\sigma} : \sigma \in \Lambda \}$ for some $\Lambda \subseteq \Sigma(\kappa)$. It follows directly from the condition (*) that $C_{\kappa} = W_{\sigma} \cup W_{(\sigma,s)}$ for every $\sigma \in \Sigma(\kappa)$ and each $s \in \kappa$. Therefore it suffices to show that there must exist $\sigma \in \Sigma(\kappa)$ and $s \in \kappa$ such that both σ and (σ,s) belong to Λ .

Suppose, on the contrary, that $(\sigma, s) \notin \Lambda$ for all $\sigma \in \Lambda$ and $s \in \kappa$. We will show that the family $\{W_{\sigma} : \sigma \in \Lambda\}$ cannot be a cover of C_{κ} . To this end we construct a function $\chi \in C_{\kappa}$ such that $\chi(\sigma) = 1$ for all $\sigma \in \Lambda$.

The values $\chi(\sigma)$ are defined inductively with respect to the length of sequences σ . Let $\chi(\emptyset) = 0$ if $\emptyset \notin \Lambda$, otherwise put $\chi(\emptyset) = 1$. For $\sigma \neq \emptyset$ we take

$$\chi(\sigma) = \begin{cases} 0, & \text{if } \chi(\sigma_{\lceil}) = 1 \text{ or } (\sigma, s) \in \Lambda \text{ for some } s \in \kappa, \\ 1, & \text{otherwise.} \end{cases}$$

Observe that if $\sigma \in \Lambda$ then $\chi(\sigma) = 1$ for all $\sigma \in \Lambda$. In fact, $\chi(\sigma) = 1$ means that $\chi(\sigma_{\lceil}) = 0$ and $(\sigma, s) \notin \Lambda$ for all $s \in \kappa$. The former follows from the fact that $(\sigma_{\lceil}, s) = \sigma$ for some $s \in \kappa$; the latter is given by our assumption on Λ . This and the definition of χ imply directly that χ satisfies the condition (*) and therefore is in C_{κ} .

FACT 4. Every compact T_1 -space X of weight $\leq \kappa$ can be embedded into C_{κ} .

To construct a respective embedding consider an open subbase \mathcal{P} for X such that $|\mathcal{P}| \leq \kappa, X \in \mathcal{P}$ and $X - U = \bigcap \{ V \in \mathcal{P} : U \cup V = X \}$ for every $U \in \mathcal{P}$. The existence of such a subbase for X follows directly from the Lemma—it suffices to take any open subbase which has cardinality $\leq \kappa$ and is closed for finite unions.

Arrange \mathcal{P} as $\{U_s : s \in \kappa\}$ and then reindex \mathcal{P} inductively by the elements of $\Sigma(\kappa)$ in the following way. Put $U_\emptyset = X$ and for $\sigma = (\sigma_{\lceil}, s)$ take $U_\sigma = U_s$ provided that $U_{\sigma_{\lceil}} \cup U_s = X$; otherwise put $U_\sigma = X$.

To every point x in X there corresponds a function $\chi_x \colon \Sigma(\kappa) \to \{0,1\}$ such that $\chi_x(\sigma) = 0$ if and only if $x \in U_\sigma$. It follows directly from the definition of the sets U_σ that $\chi_x \in C_\kappa$ for all $x \in X$. The mapping $h: X \to C_\kappa$ given by $h(x) = \chi_x$ is the required embedding. To see this it suffices to note that $h^{-1}(W_\sigma) = U_\sigma$ for all $\sigma \in \Sigma(\kappa)$.

The proof of Theorem 1 is complete.

REMARK 1. It can be proved (cf. [7]) that for any κ there exists no space universal for all T_1 -spaces of weight $\leq \kappa$.

REMARK 2. Some similar selection of a suitable subspace of $F^{\Sigma(\kappa)}$ leads to a universal regular space of weight κ (cf. [7]).

264 A. MYSIOR

- 3. The number of compact spaces. It follows directly from the Lemma that every T_1 -space of weight κ can have only 2^{κ} compact subspaces. This and Theorem 1 imply immediately the following:
- THEOREM 2. For every κ there are at most 2^{κ} topologically distinct compact T_1 -spaces.
- REMARK 1. The above estimation is the best possible. In fact, as proved in [6], for every κ there exists a family of 2^{κ} pairwise nonhomeomorphic connected compact T_2 -spaces. Moreover, if $\kappa > \omega$, then the family in question can consist of connected compact linearly ordered spaces (cf. [8]).
- REMARK 2. For the class of compact T_0 -spaces the estimation analogous to that of Theorem 1 is not valid. Actually, for every κ there exists a family consisting of $2^{2^{\kappa}}$ pairwise nonhomeomorphic compact T_0 -spaces of weight κ .

To obtain such a family observe first that for every space X of density $\leq \kappa$ there are at most 2^{κ} continuous mappings from X to the cube $[0, 1]^{\kappa}$. It follows that every subspace of $[0, 1]^{\kappa}$ cannot be homeomorphic to more than 2^{κ} of the other subspaces and, therefore, there exists a family X consisting of $2^{2^{\kappa}}$ pairwise nonhomeomorphic subspaces of $[0, 1]^{\kappa}$.

Choose a point $* \notin [0, 1]^{\kappa}$ and for every $X \in X$ consider the space $X \cup \{*\}$ endowed with the topology consisting of $X \cup \{*\}$ and all open subsets of X. It is easy to see that $\{X \cup \{*\} : X \in X\}$ forms the required family.

4. What can be embedded into C_{κ} . Let us say that a topological space X is κ -perfect if every open set in X is a union of $\leq \kappa$ closed sets. The answer to the question in the title is given by the following:

THEOREM 3. For a T_1 -space X of weight $\leq \kappa$ the following conditions are equivalent:

- (a) X is homeomorphic to some subspace of C_{κ} ,
- (b) X has a T_1 -compactification of weight $\leq \kappa$,
- (c) X has a closed network of cardinality $\leq \kappa$,
- (d) X is κ -perfect.

PROOF. Implications (a) \Rightarrow (b) and (c) \Rightarrow (d) are obvious.

To prove (b) \Rightarrow (c) let cX be a T_1 -compactification of X with weight $\leq \kappa$ and let \mathcal{B} be an open base for cX such that $|\mathcal{B}| \leq \kappa$ and $cX - U = \cap \{V \in \mathcal{B} : U \cup V = cX\}$ for every $U \in \mathcal{B}$ (see the Lemma again). The family $\{X - U : U \in \mathcal{B}\}$ is easily seen to be a required closed network for X.

To prove (d) \Rightarrow (a) assume that X is a κ -perfect space. It is not a difficult task to find a (sub)base \mathcal{P} for X such that $|\mathcal{P}| \leq \kappa$, $X \in \mathcal{P}$ and $X - U = \bigcap \{ V \in \mathcal{P} : U \cup V = X \}$ for every $U \in \mathcal{P}$. Yet, such a subbase for X is all we need to construct an embedding of X into C_{κ} (compare the proof of Theorem 1).

The equivalence of (a) and (d) can be reformulated as follows.

COROLLARY 1. The space C_{κ} is universal for all κ -perfect T_1 -spaces of weight $\leq \kappa$.

Since a second countable T_1 -space is developable if and only if it is perfect (= ω -perfect), we have the following:

- COROLLARY 2. The space C_{ω} is universal for all second coutable developable T_1 -spaces.
- REMARK 1. It can be shown that there exists no universal space for second countable developable Hausdorff spaces. Note, however, that $[0,1]^{\omega}$ is universal for all second countable developable regular spaces.
 - REMARK 2. The equivalence (b) \Leftrightarrow (c) of Theorem 3 has been obtained earlier in [1].
- 5. On closely universal compact spaces. Since compact subspaces of the Tychonoff cube $[0,1]^{\kappa}$ are closed, it is closely universal for all compact T_2 -spaces of weight $\leq \kappa$. In the class of compact T_0 -spaces closely universal spaces do not exist. In order to see this compare Remark 2 of Section 2 and notice that a space of weight κ can have at most 2^{κ} closed subspaces.

The above two observations lead directly to the following

PROBLEM. Is there, for every (or some) κ , a closely universal space for all compact T_1 -spaces of weight $\leq \kappa$?

The problem remains open. As it follows from the example given at the end of the paper, the universal spaces C_{κ} cannot serve as closely universal. Meanwhile, they enable us to give the following:

- THEOREM 4. For every κ there exists a T_1 -space S_{κ} of weight κ such that every compact T_1 -space of weight $\leq \kappa$ is homeomorphic to some closed subspace of S_{κ} .
- PROOF. The family C of all compact subspaces of C_{κ} has only 2^{κ} elements. Arrange C as $\{C_x : x \in [0,1]^{\kappa}\}$ and let S_{κ} be a subspace of $[0,1]^{\kappa} \times C_{\kappa}$ consisting of those pairs (x,y) in which $y \in C_x$. Clearly S_{κ} has weight κ .
- Let X be an arbitrary compact T_1 -space of weight $\leq \kappa$. In view of Theorem 1 there exists $x \in [0,1]^{\kappa}$ such that the spaces X and C_x are homeomorphic. The space X is therefore homeomorphic to the closed subspace $\{x\} \times C_x$ of S_{κ} .
- REMARK. Observe that the spaces S_{κ} are not compact and therefore do not provide a solution to our Problem. On the other hand, the answer would be positive if one could succeed in finding a T_1 -compactification of weight κ of S_{κ} in which all the subspaces $\{x\} \times C_x$ remain closed.

The following example shows that closely universal compact T_1 -spaces (if any) cannot be supercompact.

EXAMPLE. There is a second countable compact T_1 -space Y which is not homeomorphic to any closed subspace of any supercompact space.

266 A. MYSIOR

Denote by N the set of natural numbers with co-finite topology. Our space Y is the space $N \times N$ with the diagonal $\Delta = \{(n,n) : n \in N\}$ as an additional closed set. It is easy to check that Y is a second countable compact T_1 -space. We show that Y cannot be homeomorphic to a closed subspace of any supercompact space.

Let us start with the following observation.

If X_0 is a closed subspace of a space X and every two nonempty open subsets of X_0 have nonempty intersection, then

- (a) for every open subbase \mathcal{P} for X the complement $X X_0$ can be expressed as a union of members of \mathcal{P} ,
 - (b) if X is supercompact then so is X_0 .

For the proof of (a) observe that, since every finite family of nonempty open subsets of X_0 has nonempty intersection, there must exist, for every $x \in X - X_0$, a member U of \mathcal{P} with $x \in U$ and $U \cap X_0 = \emptyset$.

For the proof of (b) consider a binary open subbase \mathcal{P} for X. Binary means here that every nontrivial open cover of X by members of \mathcal{P} contains a two-element subcover. With the use of (a), it is easy to verify that the family $\{U \cap X_0 : U \in \mathcal{P}\}$ forms a binary open subbase for X_0 .

Now return to our space Y. Since every two nonempty open subsets of Y have nonempty intersection, it suffices to show that Y is not supercompact, i.e. no open subbase for Y is binary.

Let \mathcal{P} be an arbitrary open subbase for Y. By virtue of (a) there exists $\mathcal{U} \subseteq \mathcal{P}$ such that $Y - \Delta = \bigcup \mathcal{U}$. Similarly, there exist $\mathcal{V} \subseteq \mathcal{P}$ and $\mathcal{W} \subseteq \mathcal{P}$ such that $Y - (\{1\} \times N) = \bigcup \mathcal{V}$ and $Y - (N \times \{2\}) = \bigcup \mathcal{W}$. It is easy to see that the open cover $\mathcal{U} \cup \mathcal{V} \cup \mathcal{W} \subseteq \mathcal{P}$ of Y contains no two-element subcover.

REFERENCES

- **1.** A. Arhangiel'skiĭ, *On embeddings of T*₁-spaces in bicompact T₁-spaces of the same weight, Bull. Acad. Pol. Sci. Ser. Math. **14**(1966), 361–366.
- 2. H. Brandenburg, An extension theorem of D-normal spaces, Topology and its Appl. 15(1983), 223–229.
- **3.** J. Chaber, A universal metacompact developable T_1 -space of weight m, Fund. Math. 121(1983), 81–88.
- **4.** R. Engelking, *General Topology*, revised and completed edition, Heldermann Verlag, Berlin, 1989.
- **5.** N. Heldermann, *The category of D-completely regular spaces is simple*, Trans. Amer. Math. Soc. **262**(1980), 437–446.
- 6. F. Lozier and R. Marty, The numer of continua, Proc. Amer. Math. Soc. 40(1973), 271–273.
- 7. A. Mysior, A universal regular space, to appear.
- **8.** _____, Universal LOTS's do not exist, to appear.

Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland