
BULL. AUSTRAL. MATH. SOC. 47HO9, 54H25

VOL. 59 (1999) [111-117]

SOME RESULTS ON COINCIDENCE POINTS

ABDUL LATIF AND IAN TWEDDLE

In this paper we prove some coincidence point theorems for nonself single-valued
and multivalued maps satisfying a nonexpansive condition. These extend fixed point
theorems for multivalued maps of a number of authors.

1. INTRODUCTION

Let (X, d) be a complete metric space, M a nonempty subset of X, and for S = X or
5 = M let CB(S) (respectively K(S)) denote the family of all nonempty closed bounded
(respectively compact) subsets of 5 endowed with the Hausdorff metric H. A multivalued
map T of M into CB(X) is called a contraction if there exists a constant h € (0,1) such
that H\T(x), T{y)j ^ h d(x, y), for all x, y € M. If we have the Lipschitz constant h = 1,
then T is called a nonexpansive mapping. A point x in M is said to be a fixed point
of T if x 6 T(x). Nadler [15] and Markin [12] initiated such a geometric approach to
multivalued maps. In [15] Nadler proved a fixed point result for multivalued contraction
maps of a complete metric space, which is a generalisation of the Banach Contraction
Principle. Since then various well-known results for single-valued self contraction and
nonexpansive mappings have been extended to multivalued analogues. For example, see
[4, 5, 9, 11, 17].

On the other hand Kaneko [8] has introduced a notion of multivalued /-contraction
map as follows. Let / be a single-valued continuous map of M into X. Then a multivalued
map T of M into CB(X) is called an J-contraction if there exists a constant he (0,1)
such that #(T(z) ,T(y)) < / id( / (z) , / (y) ) for all x,y € M. If we have the Lipschitz
constant h = 1, then T is called a f-nonexpansive mapping. A point x in M is said to
be a coincidence point of / and T if f(x) S T(x). We denote by C(f DT) the set of
coincidence points of / and T. In [8] Kaneko has proved coincidence and common fixed
point results for self /-contraction maps, extending results of Jungck [7], Nadler [15] and
others. Recently Daffer and Kaneko [2] have studied multivalued /-nonexpansive maps
and extended results of Smithson [19] and Kaneko [8] for such maps of connected metric
spaces, using the concept of an /-orbit of the multifunction as a major tool.

Geometric fixed point theory in Functional Analysis for such multivalued maps has
been extensively developed. One of its developments has led to substantial weakenings
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in the assumption that the values of the mapping be subsets of its domain. For example,
see [1, 3 , 6, 13, 18, 20, 21 , 22].

In this note we continue the geometric approach and obtain coincidence point results
for nonself /-contraction and /-nonexpansive mappings without commutativity assump-
tions. In particular, we prove in Section 2 a coincidence point result (Theorem 2.1) for
/-contraction maps in a complete metrically convex space. At the same time we also ob-
tain a coincidence point result (Theorem 2.2) for such maps satisfying the weakly inward
condition in a Banach space, which contains results of Reich [18] and Martinez-Yanez
[14] as special cases. Applying these results for /-contraction maps in Section 3, we prove
some more general results on coincidence points for /-nonexpansive maps, which in turn
generalise results due to Assad and Kirk [1], Itoh and Takahashi [6], Yanagi [20], Zhang
[22], and many others.

First we recall the following definitions. A metric space X is said to be metrically
convex [1], if for each x,y S M with i / i / , there exists z£X,x^z^y, such that

d[x,z) + d(z,y) =d(x,y).

A Banach space X is said to be an Opial space [16] if for each sequence {xn} in X which
converges weakly to x and for all y ^ x we have

lim inf ||xn — ill < lim inf | | i n — yll •

Hilbert spaces and Banach spaces having weakly continuous duality mappings are Opial
spaces [16]. On the other hand it is well-known that V spaces (p ^ 2) are not Opial
spaces [9], [16]. A multivalued map T of M C X into 2X (the family of nonempty subsets
of X) is said to be: (i) demiclosed if for every sequence {xn} C M and any yn £ T(xn),
n = 1,2,..., such that xn -^4 a; and t/n -4 y, we have x € M and y € T(x). Here
and throughout the paper —¥ and -^» denote strong and weak convergence respectively;
(ii) weakly inward if T(x) C CIIM(X) for closed M and x £ M, where IM(X) = iz £ X :

z — x + X(y — x) for some y € M, A ^ 1J. The set /M(X) has been called the inward set
at x.
A subset M is said to be star-shaped with respect to q 6 M if | (1 — A)x + \q : 0 <

A < 1 j C M for each x G M. The point q is known as a star-centre of M. Clearly the
star-shaped subsets include the convex subsets as a proper subclass.

2. COINCIDENCE POINTS FOR /-CONTRACTION MAPS

We start with a coincidence point result for complete metrically convex spaces.

THEOREM 2 . 1 . Let M be a nonempty subset of a complete metrically convex
space X. Let f : M —} X be any map with its range G closed and T : M —* CB{X) an
f-contraction map such that T(x) C G for all f(x) 6 dG. Then C{f D T) ± 0.

PROOF: Define J : G -> CB{X) by J(z) = Tf~l(z) for all z G G. Note that for
each z £ G and any x,y 6 f~1(z), the /-contractiveness of T implies

H(T(x),T(y))^hd(f(x)J(yj)=O
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and hence J(z) — T(p) for all p € f~1(z). Now we show that J is a contraction. For any
w,z£G, we have H{j(w), J{zj) = H(T(x),T(y)) for any x € f~l{w) and y € f~x(z).
But T is an /-contraction so there exists h 6 (0,1) such that

H(j(w),J(z)) < hd(f(x)J(y)) = hd(w,z),

which implies that J is a contraction map. Also note that J(z) C G for every z € dG.
Thus by [1, Theorem 1], there is a point z0 € G such that z0 € J(z0). Since J(z0) = T(x0)
for any x0 € f~l{z0), so f{x0) € T(x0). D

If we take M and iV to be subsets of a Banach space, then according to [1] the
boundary of a closed set N relative to M is defined by

dM(N) = [ae N :B{a,r)n(M\N)^ 0 for each r > o},

where B(a, r) = jx 6 X : \\x — a\\ < r\.

COROLLARY 2 . 1 . Let M be a nonempty closed convex subset of a Banach space,
N a subset of M. Let f : N -> M be any map with its range G closed and let T :
N -> CB(M) be an /-contraction map such that T(x) C G for all f(x) G dMG. Then

PROOF: Since in this case M is a complete metrically convex space, the result follows
if we replace M by N and X by M in the above theorem. D

For a more general boundary condition we have the following coincidence point result
for general Banach spaces.

THEOREM 2 . 2 . Let M be a nonempty subset of a Banach space X. Let f :
M -y X be any map with its range G closed and T : M -> K{X) an /-contraction map
such that T{x) C clIG(z) for allx€ f~\z). Then C{f n T } / 0 .

PROOF: AS in the proof of the above theorem, define

J{z)=Tf-\z) for all z e G.

Then J(z) = T{p) for all p G f~l{z) and J is a multivalued contraction map from G into
K(X). Also note that J(z) C cllc{z) for any z € G; that is, J is weakly inward. Thus
by [21, Theorem 2.1] there exists zQ € G such that z0 € J(z0) and hence there exists
xoe M such that f(x0) € T(x0). D

If / = / , the identity on M, and T is a single-valued map then we have the following
fixed point result of Martinez-Yanez [14].

COROLLARY 2 . 2 . Let M be a nonempty closed subset of a Banach space X.
Let T : M —» X be a weakly inward contraction map. Then T has a unique fixed point.

[10].

3. COINCIDENCE POINTS FOR /-NONEXPANSIVE MAPS

First, for the sake of completeness we give the proof of the following useful lemma
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LEMMA 3 . 1 . Let M be a nonempty weakly compact subset of an Opial space X.
Let f : M —>• X be a weakly continuous map and T : M -> K{X) be an f -nonexpansive
multivalued map. Then f — T is demiclosed.

P R O O F : Let {xn} C M and yn € (/ - T)xn be such that xn - ^ x and yn -> y. It
is obvious that x e M and f{xn) - ^ f(x). Since yn € f{xn) - T(xn), we get

(3.1.1) yn = f(xn) - un, for some un € T(xn).

Since T{x) is a compact set, there is a vn € T(x) such that

(3.1.2) IK - vn\\ ^ H(T(xn),T(x)) ^ \\f(xn) - f(x)\\.

From (3.1.1) and (3.1.2), passing to the limit with respect to n, we obtain

(3.1.3)

T(x) being compact, for a convenient subsequence still denoted by {vn}, we have vn —>
v € T(x). Then (3.1.3) yields

hm inf||/(xn) - / ( x ) | > l iminf|/(xn) - y - v\\.

Since X is an Opial space and f(xn) - ^ f(x), this yields f(x) = y + v. Thus y =
f(x) — v € f(x) — T(x), which proves that / — T is demiclosed. D

The following result contains Theorem 2 of Assad and Kirk [1], which in turn im-
proved a result of Lami Dozo [9].

THEOREM 3 . 1 . Let M be a nonempty closed convex subset of an Opial space X
and N a nonempty weakly compact subset ofM. Let f : N —¥ M be a weakly continuous
map with its range G star-shaped and letT:N—t K(M) be an f-nonexpansive map
such that T{x) c G for f{x) 6 dMG. Then C(fnT) / 0.

P R O O F : Let q be a star-centre of G; then for any z € G and any A (0 < A < 1),
(1 — X)z + Xq € G. Also note that G is closed and bounded. Now, for each n, define

Tn(x) = (l-hn)T{x)+hnq,

where x € TV and {hn} is any sequence with hn —> 0 (n —> oo) and 0 < hn < 1. Clearly,
for each n, Tn maps N into K{M). Now, if z € dM(G), then T{x) c G for any x € Z"1^)-
Since G is star-shaped with respect to q, so Tn(x) C G for any x € / "H 2 ) - Furthermore,
we have

H(Tn(x),Tn(y)) £ (1 - / i n) | / (z) - /( j , ) | ,

for each n and any x,y E. N. By Corollary 2.1 there exists xn £ N such that

/ ( !„ ) € Tn( i n ) = (1 - hn)T(xn) +

so there is some un G T(xn) such that

/ ( i n ) = (1 - hn)un + hnq.
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Thus,

\\f(xn) ~ un\\ = Y^hjfl ~ ' M l ^ 0 as n ̂  oo.

Since N is weakly compact, for a convenient subsequence still denoted by {xn}, we have
xn -^-> xo 6 N. Now as f(xn) — un € (/ — T)(xn) and by Lemma 3.1, f—T is demiclosed,
we conclude that 0 € (/ — T)(xo) and hence /(xo) € T(XQ). This completes the proof. D

Applying our Theorem 2.2, we have the following coincidence point results for general
Banach spaces.

THEOREM 3 . 2 . Let M be a nonempty subset of a Banacb space X and let f :
M -» X with its range G closed, bounded and star-shaped. Let T : M -» K(X) be an
f -nonexpansive map wbicb satisfies the following conditions:

(i) T(x) c clIG(z) for all xe f~l(z)
(ii) (/ - T)M is closed.

Then C{J D T) ^ 0.

PROOF: Let q be a star-centre of G; then IG{Z) is also star-shaped with respect to
q for each z€G [22]. For each n, define Tn : M -¥ i ^ X ) by

where x & M and {/in} is any sequence with /in —> 0 (n —> oo) and 0 < hn < 1. Then
it is easy to see that for each n, Tn is an /-contraction map and Tn(x) c cllc{z) for all
a; € /~x(2)- By Theorem 2.2, there exists xn € M such that f{xn) e Tn(xn) and hence,
as in the proof of Theorem 3.1, f(xn) — un —¥ 0 as n —¥ oo for some un € T(xn). Since
(/ - T)M is closed and f(xn) -une (f - T)M, we get 0 G (/ - T)M. Hence there is a
point x0 € M such that f{x0) € T(x0)- D

THEOREM 3 . 3 . Let M be a nonempty weaiiy compact subset of a Banacb space
X and f : M —> X a weakly continuous map with its range G star-shaped. Let T : M —>
K(X) be an f-nonexpansive map which satisfies the following conditions:

(i) T(x) C cllc(z) for all x € f~l{z)
(ii) f — T is demiclosed.

Then C(f n T) ^ 0.

PROOF: Note that G is weakly compact and hence it is a closed subset of X. Let
q be a star-centre of G; then IG{Z) is also star-shaped with respect to q. Now, following
the proof of the above theorem we get a sequence {xn} in M and un € T(xn) such that
f[xn) — un —> 0 as n —» oo. Since M is weakly compact, for a convenient subsequence
still denoted by {xn}, we have xn -^> x0 6 M. Hence by using demiclosedness of / - T,
we obtain 0 € (/ - T)(x0), that is, f(x0) € T(x0). D

By virtue of Lemma 3.1, we have the following result for Opial spaces.

COROLLARY 3 . 1 . Let M be a nonempty weakly compact subset of an Opial
space X and f : M -> X a weakly continuous map with its range G star-shaped. Let
T : M -t K{X) be an f-nonexpansive map such that T(x) C clIG(z) for all x e f~l{z).
Then C{f n T ) / 0 .
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If / = / , the identity on M, then Theorem 3.3 reduces to the following main fixed
point result of Zhang [22], which in turn generalised a result of Yanagi [20].

COROLLARY 3 . 2 . Let M be a nonempty weakly compact star-shaped subset of
a Banach space X. Let T : M —> K(X) be a weakly inward nonexpansive map such that
I — T is demiclosed. Then T has a fixed point.

The following result extends a Theorem of Itoh and Takahashi [6].

COROLLARY 3 . 3 . Let M be a nonempty weakly compact subset of an Opial
space X and f : M —¥ X a weakly continuous map with its range G star-shaped.
Let T : M —> K(X) be an f-nonexpansive map such that for each z € dG, T(x) c
G for all x € /'Hz). Then C(f n T) ^ 0.

PROOF: Since for all z € G, G C IG(Z) and IG{Z) = X if z is an interior point of G
[22], thus T{x) C cllc{z) for all x 6 f~l[z) and hence the result follows by Corollary
3.1. D
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