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NUMBERS DIFFERING FROM CONSECUTIVE SQUARES BY 
SQUARES 

BY 

E. J. BARBEAU 

Dedicated to the memory of R. A. Smith 

ABSTRACT. It is shown that there are infinitely many natural numbers 
which differ from the next four greater perfect squares by a perfect square. 
This follows from the determination of certain families of solutions to the 
diophantine equation 2(b2 + 1) = a2 + c1. However, it is essentially 
known that any natural number with this property cannot be 1 less than a 
perfect square. The question whether there exists a number differing from 
the next five greater squares by squares is open. 

1. Introduction. The numbers 720 and 5040 have the interesting property that each 
differs from the next three greater perfect squares by a perfect square. Thus, 

720 = 272 - 32 = 282 - 82 = 292 - l l 2 

5040 = 712 - l2 = 722 - 122 = 732 - 172. 

We will show that, not only do such numbers occur frequently, there are infinitely 
many which differ from each of the next four greater perfect squares by a perfect 
square. Any number N which differs from the next four greater squares by a square must 
satisfy, for suitable z, a, b, c: 

(z - l)2 ^ N = z2 - a2 = (z + l)2 - b2 

= (z + 2)2 - c2 = (z + 3)2 - d2. 

This reduces to determining non-consecutive integers a, b, c, d to satisfy 

(1) 2(b2 + 1) = a2 + c2 

(2) 2(c2 + 1) = b2 + d2 

(3) b2 2* 2{a2 + 1). 

Inequality (3) arises from 2z - 1 ̂  a2 and 2z + 1 = b2 - a2. Since both a and c must 
be of opposite parity to both b and d> any solution of (1), (2), (3) will yield the requisite 
integers z and N. 

Numerical evidence reveals one class of solutions for (1) and (2) with 
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a = 2*3 - 5* = 2(k + \f - 3(Jfc + \f - \(k + \) + ? 

fc = 2*3 + 2>t2 - k + 1 = 2(Jfc + | )3 - (* + \f - | (* + 5) + ? 

c = 2*3 + 4*2 + * - 2 = 2(* + | )3 + (k + | )2 - | (* + 5) - J 

d = 2k3 + 6k2 + k- 3 = 2(k + l
2f + 3(* + Î)2 - |(Jfc + Î) - ?. 

The reader will note that d(k) = a(k + 1), and also that a(k) = -d(-l - k) and 
b(k) = — c(— 1 — k), so that the solutions for negative integers k are the negatives of 
the solutions for k ^ 2. For fc = 0 ,1 , the absolute values of a, b, c, d are consecutive. 
Since the limit of b/a as /:—» +o° is 1, (3) will be satisfied only for a finite number 
of k. However, there are some solutions of (1) and (2) other than these, such as (16, 
87, 122, 149), so there is still hope for (1), (2), (3) to have infinitely many solutions. 

2. A different class of solutions. The first step is to produce solutions to (1), some 
of which may lead to solutions of (2) as well. The form of (1) reminds us of the Euler 
identity 

(4) (p2 + q2)(r2 + s2) = (pr + qs)2 + (ps - qrf 

= (ps + qr)2 + (pr — qs)2. 

The substitution/? = q = r = l, s = b yields solutions to (1) with a, b, c consecutive. 
For non-consecutive integer solutions, we express the left side of (1) in a different way 
as a product of two-square sums. To do this, find an integer which is the sum of two 
squares and divides b2 + I. For example, if b2 + 1 is divisible by 13 = 22 + 32, write 
b = 13k + 5 and note that 

2(fc2 + 1) = 26(13fc2 + 10* + 2) 

= (52 + 12)((2A: + l)2 + (3* + l)2) 

= (17* + 6)2 + (Ik + 4)2. 

This gives us the solution (a, b, c) = (Ik + 4,13* + 5, 17* + 6), which, for each * 
satisfies (3) as well. Equation (2) leads to d2 = 409*2 + 278* + 49, which can be 
transformed into a Pell equation. 

To put this into a general framework, we present a generalization of Theorem 5.9 of 
([4], p. 149). 

THEOREM. Let nbe a positive integer exceeding 1, and let t be a positive integer for 
which 1 ^ t ^ n and t2 = — 1 (mod n). Then there exist positive integers x, y, u and 
a nonnegative integer v such that 

(a) x2 + y2 = n\ 
(b) ty = x (mod n)\ 
(c) t2 + 1 = n(u2 + v2); 
(d) xu + yv = t; 
(e) xv — yu = — 1. 
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PROOF. For the special case t2 4- 1 = n, we can take x = t, y = u = 1, v = 0. This 
covers the case n = 2 and we can use induction. Suppose n ^ 3 and the result holds 
for all integers up to n - 1 and relevant t. 

Let t2 4- 1 = mn. Since \ ^ t ^ n - \, mn ^ (n - \)2 + I = n2 - 2n + 2 < 
n2. Hence m < n. The case m = 1 is already covered, so we may suppose m^ 2. 

Choose /i and w so that t = mh 4- w and 1 ̂  w < m. Then w2 = - 1 (mod ra), and 
we can find positive integers w, v, q and a nonnegative integer/? with 

(i) u2 4- v2 = m; 
(ii) fw = WW = v (mod m); 
(iii) w2 + 1 = m(p2 4- q2)\ 
(iv) pu + qv = w; 
(v) pv - qu = -I. 

With x = uh + p and y = v/z + #, it is straightforward to check (a), (d), (e) and 
ty — x = vm/i2 4- (2v(v<7 + /?w) + u(qu - pv - \))h + p(qu - pv - 1) + 
v(/?2 + q2) = vn = 0 (mod n). From (b) and (e), neither x nor v can vanish, so JC, V 
and « are positive, as required. Also, v can vanish only if y = w = 1, whereupon 
JC = r and n = t2 + 1. D 

To apply this result to the equation 2{b2 4- 1) = a2 + c2, let n and f satisfy the 
conditions of the theorem and choose JC, y, w, v accordingly. Let b = nk + t. Then 

2(fc2 4- 1) = 2n((xk + uf + (yk + v)2). 

If 2n = i2 + j 2 , then (1) is satisfied with 

a = i(yk 4- v) - j(xk 4- M) = (/y - jx)/: 4- (iv - ; w ) 

/? = nk 4- r 

c = /(JC/: 4- M) +7(y/ : 4- v) = (/JC 4-yy)& + (/« 4- jv). 

For each n and r, there are at least four possibilities for (i,j), namely (JC 4- y, y - JC), 
(JC — y, JC 4- y), ( y - JC, JC + y ), (JC + y, JC - y ). The first leads to consecutive a, b, 
c, and the second to essentially the same solution. The third yields a = (y2 - x2 -
2xy)k + ( y - JC)V - (JC 4- y )u and c = ( y2 - JC2 4- 2jcy )k 4- ( y - x)u 4- (JC 4- y )v. 
The fourth essentially gives this solution with a and c interchanged and one change 
of sign. 

Having found a family of solutions for (1), it remains to choose k to secure (2) and 
(3). For (3), we see that b2 - 2{a2 4- 1) is a quadratic in k whose leading coefficient 
is n2 — 2(/y - y'jc)2 = \{(ix 4- jy)2 - 3(/y - 7'jc)2). If this can be made positive, then 
a sufficiently high value of the parameter k will ensure (3). Turn now to (2). We need 

d2 = 2(c2 + 1) - b2 = Ak2 4- 2Bk + C 

where A = 2(/JC + jy)2 - n2,B = 2{ix 4- jy)(iu +jv) - nt and C = 2{iu 4- jvf 
+ 2 - t2. This leads to the problem of solving the Diophantine equation 

(5) D = w2 - Ad2 
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for (w, d) where w = Ak 4 B andD - B2 - AC = 2({t(ix+ jy) - n(iu 4 jv ) ) 2 4 
(n2 - 2(ix 4 jy)2)) = 2((jx - i y )2 - A). If, as is possible, C turns out to be a perfect 
square, then there is an obvious solution w = B and d2 = C. However, w must also 
be such as to make k itself an integer. Let us look at some examples. 

EXAMPLE 1. Let t be arbitrary and n = t2 4 1. Then the theorem is satisfied with 
x — t, y — 1, w = 1 and v = 0. We can take i = t 4 1 and j = t — 1 /row which 

a = (1 4 It - t2)k 4 (1 - 0 

& = (r2 4 \)k 4 t 

c = (t2 + 2t - \)k 4 (t 4 1) 

A = r4 + 8r3 4- 2t2 - 8r 4 1 

B = t3 + 6t2 + r - 2 

C = (f + 2)2 

D = -24(r - \)t(t + 1) (a multiple of 144). 

The equation D = w2 - Ad2 has the obvious solution (w,d) = (t3 + 6t2 + / - 2, 
r 4- 2). This leads to /: = 0 and (a,b,c,d) = (1 — r, /, t + 1, r 4- 2), an essentially 
consecutive quartuple. However, if A happens to be square free, then we can generate 
an infinite family of solutions to (5) from the solutions of 1 = w2 — Ad2 and the 
particular solution of (5). 

Condition (3) imposes another restriction on the possible values of t. Since b2 — 
2(a2 4 1) = (-t4 4 8r3 - 2t2 - 8f - \)k2 4 (-2t3 4 12r2 - I t - 4)k 4 4(t - 1), 
we must have 1 ^ t ^ 7. Let us examine these cases in turn, t = 1 makes a, b, c 
consecutive, so we reject this, t — 2 leads to A — 73, a prime; the equation 1 = w2 — 
73d2 has infinitely many solutions (w'r, d'r) given by 

w'r 4 d'r V73 = (2 281 249 4 267 000 V73) r . 

The values of B and D are 32 and —144 respectively, and the solutions of —144 = 
w2 - 13d2 derived from the obvious solution are (w, d) = (32w'r 4 292d'r, Aw'r 4 32d;) 
(r = 0 , l , 2 , . . . ) - Not all these solutions are suitable, since w = 13k 4 32 and k must 
be an integer. Thus, we should have w = 32 (mod 73), which can be arranged by 
w'r = 1 (mod 73). Since 2 281 249 = — 1, it is straightforward to show that any even 
r will do. (As it happens, —144 = w2 — 13d2 is also satisfied by (w, d) — (—41, 5) 
which yields another set of solutions to the system.) Thus, (1), (2), (3) has infinitely 
many solutions. 

t = 3 leads to A = 292 = 4-73, B - 82 and D = -576. The equation -576 = 
w2 - 292J2 is satisfied by (w, d) = (82w'r 4 730</;, 5w'r 4 4ld'r) with w'r, d'r as above. 
If r is even, the k determined by w = 292k 4 82 is an integer. 

t = 4 and t = 6 lead to A = 769 and A = 3049, respectively, both of which are 
primes, and we can solve (1), (2), (3) as in the earlier cases, t = 5 and t = 1 lead to 
A = 1636 = 4-409 and A = 5188 = 4-1297, respectively, and we can proceed as in 
the case t = 3. 
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EXAMPLE 2. Let n = 13. One choice oft is 8. With x - 3, y = 2, u = 2, v = 1, 
i = 5,7 = 1, we/MM? (Û, 6, c) = (7* + 3, 13*+ 8, 17*+ 11), A = 409,5 - 270, 

C = 180 and D — —720. We /lave to so/ve —720 = w2 — 409 J2 m a way f to makes 
* an integer for which w = 409* + 270. The Pell equation 1 = w2 — 409d2 can 
certainly be solved with w = \ (mod 409), but, with C not a perfect square, it is not 
easy to see what a solution of -720 = w2 - 409d2 might be. 

However, we can shed light on this by looking at a related situation. With n = 13, 
let t = 5, x = 2, y = 3, u = 1, v = 1, / = 1,7* = 5 to make (a,b,c) = (~lk — 4, 
13* + 5, 17* + 6), A = 409, B = 139, C = 49 and D = -720. This time we have 
to solve -720 = w2 - 409d2 with w = 409* + 139. But now we can start with the 
solution (139, 7) for (w, d) and obtain an infinite family. As a bonus, we can handle 
the t = 8 case by starting with (w,d) = (-139, 7), since -139 = 270 (mod 409). 

To generalize, let (n,t,x,yyu,v,i,j,AyB,C,D) be a system which satisfies the 
theorem. Then we can form another system (n,tf,x',y', w', v' , / ' ,7' ,A',B f ,C" ,D') 
with tf = n — t, x' = y, y' = x, i' = j , j ' = /, u' = y - v, v' = x - w, which also 
satisfies the theorem. It is straightforward to check that A' = A, B' = A — B, C = 
A + C — 2B and D' = D. It might be hoped that either C or C is a perfect square, 
as in the n = 13 case, since both systems lead to the same equation —D = w2 - Ad2, 
but this is not true in general. 

EXAMPLE 3. Other individual solutions are not hard to find. When n = 5, t = 2, the 
system (a,b,c) is equal to (* — 1,5*+ 2, Ik + 3), so that d2 = 13k2 + 64* + 
16 = (3 k)2 + (4(2* + l))2. The right side is square for k—\l and 1767, yielding the 
respective solutions (a,b,c,d) = (16,87,122, 149) and (1766, 8837, 12372, 15101) 
to (1), (2), (3). When n = 5, t = 3, f/ze ^ / e m (fl,fe,c) = (* + 2, 5* + 3, 7* + 4) 
leads to d2 = 13k2 + 82* + 25, a square for k — 4, 175 and 6754. "TAw y/e/ds 
(A, b, c, d) = (6,23,32,39), (177, 878,1229,1500) and (6756,33773,47282,57711). 

3. Conclusion. It is clear from the last section that the system (1), (2), (3) is amply 
supplied with solutions. But are there any for which the number N is less by only 1 than 
a perfect square? In this case, we ask that a = 1 and, since b must be even, b — 2k. 
Then c2 = 8*2 + 1 and d2 = 12*2 + 4 = 4(3*2 + 1). (At this point, we oberve that 
trivially, a nonzero TV less by 1 than a perfect square cannot differ from the next five 
perfect squares by a perfect square, since the fifth difference would be 16*2 + 9, which 
is square only when * = 0 or * = 1.) Thus, it must be investigated when 8*2 + 1 and 
3*2 + 1 can be made squares simultaneously. There is a variety of ways of showing 
that there are at most finitely many * making both expressions square, all of which use 
deep results on diophantine approximation. For example, 8*2 + 1 is a perfect square 
only when * is a member of the recursion sequence {un} where u0 = 0, ux = 1, un = 
6un-\ - un-2; 3*2 + 1 is square only when * is a member of the recursion sequence 
{vn} where v0 = 0, Vj = 1, vn = 4 v„_, - v„_2. M. Mignotte [2], using a result of Baker, 
showed that the two recurrences have at most finitely many numbers in common. 
Another approach begins with the factorizations 8*2 = ( c - l ) ( c + 1) and 3*2 = 
(e — \)(e + 1), where d = le, uses the fact that the two factors on the right have 
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greatest common divisor 1 or 2, and ultimately reduces the problem to solving the 
diophantine equation 3y4 - 2z4 = s, where s is either - 2 or 1. A theorem of Ljunggren 
([3], p. 274) can be applied to establish that there are at most finitely many possibilities. 
However, remarkably, the problem is essentially solved for us in a paper of A. Baker 
and H. Davenport in 1969 [1]. They were seeking values of * for which 3*2 - 2 and 
8k2 — 7 are simultaneously square. In both our and their situations, for some integers 
m and n, * must have the form 

c,(2 + V3)m + c2(2 - V3)m = c3(3 + VS)n + c4(3 - Vsy 

for suitable nonrational constants c,. With a few modifications, their analysis can be 
carried over to show that 3*2 + 1 and 8*2 + 1 are square only for k = 0 and k = 1. 
It would be nice to have a more elementary proof of this fact. 

It is natural to ask whether there are numbers which differ from the next five greater 
squares by a square. In the notation of the introduction, we ask for numbers N, z, a, 
b, c, d, h which satisfy all the relations there along with TV = (z + 4)2 — h2, so that 
2{d2 + 1) = c2 + h2. So far, no such N has been found, and attempts to build on 
solutions already found for (1), (2), (3) have all failed. For example, if (a,b,c) = 
(k — 1, 5k + 2, Ik + 3), then d and h must satisfy 

d2 = 13k2 + 64k + 16 = (3k)2 + (4(2* + l))2 

h2 = 97k2 + 86£ + 25 = (3(3* + l))2 + (4(k + l))2. 

Since (3*, 4(2* + 1), d) and (3(3* + 1), 4(* + 1), h) are pythagorean triples, there are 
integers /?, q, r, s for which 

(6) 2(2* + 1) = pq 3k = p2 - q2 

(7) 2(k + 1) = rs 3(3* + 1) = r2 - s2, whence 

(8) 3(p2 - q2 + 1) = r2 - *2. 

By (6), p and # have opposite parity. Since r2 - s2 is never congruent to 2 modulo 4, 
/? must be even and q odd, from (8). Also from (8), r and s have the same parity, and 
so, by (7), are both even. From * = 1 (mod 4) follows rs = 4 (mod 8), and so r = 
5 = 2 (mod 4). By (6), p = 2 (mod 4), so the left side of (8) is congruent to 4 modulo 
8 while the right side is congruent to 0. This contradiction demonstrates that the 
required d and h cannot be found. 
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