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Homogeneity of the Pure State Space
of a Separable C∗-Algebra

Akitaka Kishimoto, Narutaka Ozawa, and Shôichirô Sakai

Abstract. We prove that the pure state space is homogeneous under the action of the automorphism

group (or the subgroup of asymptotically inner automorphisms) for all the separable simple C∗-

algebras. The first result of this kind was shown by Powers for the UHF algbras some 30 years ago.

1 Introduction

If A is a C∗-algebra, an automorphism α of A is asymptotically inner if there is a

continuous family (ut )t∈[0,∞) in the group U(A) of unitaries in A (or A + C1 if A

is non-unital) such that α = limt→∞ Ad ut ; we denote by AInn(A) the group of

asymptotically inner automorphisms of A, which is a normal subgroup of the group

of approximately inner automorphisms. Note that each α ∈ AInn(A) leaves each

(closed two-sided) ideal of A invariant. It is shown, in [11], [1], [3], for a large

class of separable C∗-algebras that if ω1 and ω2 are pure states of A such that the

GNS representations associated with ω1 and ω2 have the same kernel, then there is an

α ∈ AInn(A) such that ω1 = ω2α. We shall show in this paper that this is the case

for all the separable C∗-algebras; formally, denoting by πω the GNS representation

associated with a state ω, we state:

Theorem 1.1 Let A be a separable C∗-algebra. If ω1 and ω2 are pure states of A such

that kerπω1
= kerπω2

, then there is an α ∈ AInn(A) such that ω1α = ω2.

In particular the pure state space of a separable simple C∗-algebra A is homoge-

neous under the action of AInn(A). We need the separability for this statement to

be true even if we replace AInn(A) by the full automorphism group Aut(A) (see 2.3).

But if we instead assume that A is nuclear, the situation is unclear, i.e., we do not know

if the pure state space of a non-separable simple nuclear C∗-algebra is homogeneous

under the action of Aut(A) or not. See [2] for some problems on this.

We note here that AInn(A) can be considered as a core of Aut(A) whose inner

structure is beyond algebraic grasp; AInn(A) is characterized as the subgroup of

automorphisms which have the same KK class with the identity automorphism for

the class of purely infinite simple separable C∗-algebras classified by Kirchberg and

Phillips [7] (see [9] for a similar result for a class of AT algebras).

The proof of the above theorem comprises three observations taken from [3] and

[5]. By combining these, the theorem will follow immediately.
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The first observation from [3] is that the following property for a C∗-algebra A

will imply the above theorem.

Property 1.2 For any finite subset F of A, any pure state ω of A with πω(A) ∩
K(Hω) = (0), and ε > 0, there exist a finite subset G of A and δ > 0 satisfying: If ϕ
is a pure state of A such that πϕ is quasi-equivalent to πω , and

|ϕ(x) − ω(x)| < δ, x ∈ G,

then there is a continuous path (ut )t∈[0,1] in U(A) such that u0 = 1, ϕ = ω Ad u1,

and

‖Ad ut (x) − x‖ < ε, x ∈ F, t ∈ [0, 1].

In the above statement, K(Hω) is the C∗-algebra of compact operators on Hω , the

Hilbert space for πω .

Another observation from [3] is that the following property of A, a kind of weak

amenability, implies the above property:

Property 1.3 Let F be a finite subset of A, π an irreducible representation of A on a

Hilbert space H, E a finite-dimensional projection on H, and ε > 0. Then there exists

an x = (x1, x2, . . . , xn) ∈ M1n(A) for some n such that ‖xx∗‖ ≤ 1, π(xx∗)E = E,

and ‖ ad a Ad x‖ < ε for all a ∈ F, where Ad x and ad a denote the linear maps on A

defined by b 7→ xbx∗ =
∑

xibx∗i and b 7→ [a, b] respectively.

Here Mmn(A) denotes the m × n matrices over A.

The final observation, from Haagerup [5], is that this property holds for all C∗-

algebras, which is shown by repeating, almost verbatim, the proof of 3.1 of [5] em-

ployed for verifying the statement that all nuclear C∗-algebras are amenable.

Although those observations are mostly immediate from the cited references if

once properly formulated as above, we shall outline the proofs for the reader’s con-

venience: 1.2 implies 1.1 in Section 2, 1.3 implies 1.2 in Section 3, and Property 1.3

is universal in Section 4.

The present method is further exploited in connection with one-parameter auto-

morphism groups [8] and for type III representations [4].

2 Homogeneity

We denote by AInn0(A) the set of α ∈ AInn(A) which has a continuous family

(ut )t∈[0,∞) in U(A) with u0 = 1 and α = limt→∞ Ad ut .

Theorem 2.1 Let A be a separable C∗-algebra satisfying Property 1.2. If ω1 and ω2

are pure states of A such that kerπω1
= kerπω2

, then there is an α ∈ AInn0(A) such

that ω1 = ω2α.

The following gives a slightly weaker version of Property 1.2.
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Lemma 2.2 Let A be a C∗-algebra with Property 1.2. Then for any finite subset F of

A, any pure state ω of A with πω(A) ∩ K(Hω) = (0), and ε > 0, there exist a finite

subset G of A and δ > 0 satisfying: If ϕ is a pure state of A such that kerπϕ = kerπω ,

and

|ϕ(x) − ω(x)| < δ, x ∈ G,

then for any finite subset F ′ of A and ε ′ > 0 there is a continuous path (ut )t∈[0,1] in

U(A) such that u0 = 1, and

|ϕ(x) − ω Ad u1(x)| < ε ′, x ∈ F ′,

‖Ad ut (x) − x‖ < ε, x ∈ F.

Proof Given (F, ω, ε), choose (G, δ) as in Property 1.2. Let ϕ be a pure state of A

such that kerπϕ = kerπω and

|ϕ(x) − ω(x)| < δ/2, x ∈ G.

Let F ′ be a finite subset of A and ε ′ > 0 with ε ′ < δ/2. We can mimic ϕ as a vector

state through πω ; by Kadison’s transitivity there is a v ∈ U(A) such that

|ϕ(x) − ω Ad v(x)| < ε ′, x ∈ F ′ ∪ G,

(see 2.3 of [3]). Since |ω Ad v(x) − ω(x)| < δ, x ∈ G, we have, by applying Prop-

erty 1.2 to the pair ω and ω Ad v, a continuous path (ut ) in U(A) such that u0 = 1,

and

ω Ad v = ω Ad u1,

‖Ad ut (x) − x‖ < ε, x ∈ F.

Since |ϕ(x) − ω Ad u1(x)| < ε ′, x ∈ F ′, this completes the proof.

We shall now turn to the proof of Theorem 2.1.

Once we have Lemma 2.2, we can prove this in the same way as 2.5 of [3]. We shall

only give an outline here.

Let ω1 and ω2 be pure states of A such that kerπω1
= kerπω2

.

If πω1
(A) ∩ K(Hω1

) 6= (0), then πω1
(A) ⊃ K(Hω1

) and πω1
is equivalent to πω2

.

Then by Kadison’s transitivity (see, e.g., 1.21.16 of [12]), there is a continuous path

(ut ) in U(A) such that u0 = 1 and ω1 = ω2 Ad u1.

Suppose that πω1
(A)∩K(Hω1

) = (0), which also implies that πω2
(A)∩K(Hω2

) =

(0).

Let (xn) be a dense sequence in A.

Let F1 = {x1} and ε > 0 (or ε = 1). Let (G1, δ1) be the (G, δ) for (F1, ω1, ε/2) as

in Lemma 2.2 such that G1 ⊃ F1. For this (G1, δ1) we choose a continuous path (u1t )

in U(A) such that u1,0 = 1 and

|ω1(x) − ω2 Ad u1,1(x)| < δ1, x ∈ G1.
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Let F2 = {xi ,Ad u∗

1,1(xi) | i = 1, 2} and let (G2, δ2) be the (G, δ) for (F2, ω2 Ad u1,1,
2−2ε) as in Lemma 2.2 such that G2 ⊃ G1 ∪ F2 and δ2 < δ1/2. By 2.2 there is a

continuous path (u2t ) in U(A) such that u2,0 = 1 and

‖Ad u2t (x) − x‖ < 2−1ε, x ∈ F1,

|ω2 Ad u1,1(x) − ω1 Ad u2,1(x)| < δ2, x ∈ G2.

Let F3 = {xi ,Ad u∗

2,1(xi) | i = 1, 2, 3} and let (G3, δ3) be the (G, δ) for (F3,
ω1 Ad u2,1, 2

−3ε) as in 2.2 such that G3 ⊃ G2 ∪ F3 and δ3 < δ2/2. By 2.2 there is

a continuous path (u3t ) in U(A) such that u3,0 = 1 and

‖Ad u3t (x) − x‖ < 2−2ε, x ∈ F2,

|ω1 Ad u2,1(x) − ω2 Ad(u1,1u3,1)(x)| < δ3, x ∈ G3.

We shall repeat this process.

Assume that we have constructed Fn, Gn, δn, and (un,t ) inductively. In particular

if n is even, Fn is given as

{xi ,Ad(u∗

n−1,1u∗

n−3,1 · · · u∗

1,1)(xi) | i = 1, 2, . . . , n}

and (Gn, δn) is the (G, δ) for
(
Fn, ω2 Ad(u1,1u3,1 · · · un−1,1), 2−nε

)
as in 2.2 such

that Gn ⊃ Gn−1 ∪ Fn and δn < δn−1/2. And (un,t ) is given by 2.2 for
(
Fn−1,

ω1 Ad(u2,1 · · · un−2,1), 2−n+1ε
)

and for F ′
= Gn and ε ′ = δn and it satisfies

‖Ad unt (x) − x‖ < 2−n+1ε, x ∈ Fn−1,

|ω1 Ad(u2,1u4,1 · · · un,1)(x) − ω2 Ad(u1,1u3,1 · · · un−1,1)(x)| < δn, x ∈ Gn.

We define continuous paths (vt ) and (wt ) in U(A) with t ∈ [0,∞) by: For t ∈
[n, n + 1]

vt = u1,1u3,1 · · · u2n−1,1u2n+1,t−n,

wt = u2,1u4,1 · · · u2n−2,1u2n+2,t−n.

Then, since ‖Ad unt (x) − x‖ < 2−n+1ε, x ∈ Fn−1 and δn → 0, we can show that

Ad vt (resp. Ad wt) converges to an automorphism α (resp. β) as t → ∞ and that

ω1β = ω2α. Since α, β ∈ AInn0(A) and AInn0(A) is a group, this will complete the

proof. See the proofs of 2.5 and 2.8 of [3] for details.

Remark 2.3 Let A be a factor of type II1 or type III with separable predual A∗,

which is a unital simple non-separable non-nuclear C∗-algebra. Then the pure state

space of A is not homogeneous under the action of the automorphism group Aut(A)

of A.

This is shown as follows. Since A contains a C∗-subalgebra isomorphic to Cb(N) ≡
C(βN) and βN has cardinality 2c, the pure state space of A has cardinality (at least)

2c, where c denotes the cardinality of the continuum. (We owe this argument to

J. Anderson.) On the other hand any α ∈ Aut(A) corresponds to an isometry on the

predual A∗, a separable Banach space. Thus, since the set of bounded operators on a

separable Banach space has cardinality c, Aut(A) has cardinality (at most) c. Hence

the pure state space of A cannot be homogeneous under the action of Aut(A).
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3 1.3 implies 1.2

Theorem 3.1 Any C∗-algebra with Property 1.3 has Property 1.2.

Proof Let F be a finite subset of A, ω a pure state of A with πω(A) ∩ K(Hω) = (0),

and ε > 0. For π = πω and the projection E onto the subspace CΩω , we choose

an x ∈ M1n(A) for some n as in Property 1.3, i.e., ‖x‖ ≤ 1, π(xx∗)Ωω = Ωω with

Ω = Ωω , and ‖ ad a Ad x‖ < ε for all a ∈ F.

Let

G = {xix
∗

j | i, j = 1, 2, . . . , n},

which will be the subset G required in Property 1.2. We will choose δ > 0 sufficiently

small later. Suppose that we are given a unit vector η ∈ Hω satisfying

|〈π(x∗i )η, π(x∗j )η〉 − 〈π(x∗i )Ω, π(x∗j )Ω〉| < δ

for any i, j = 1, 2, . . . , n, where Ω = Ωω . Note that

n∑

j=1

‖π(x∗j )Ω‖2
= 〈π(xx∗)Ω,Ω〉 = 1,

which implies, in particular, that |〈π(xx∗)η, η〉 − 1| < nδ. Thus the two finite sets

of vectors SΩ = {π(x∗i )Ω | i = 1, . . . , n} and Sη = {π(x∗i )η | i = 1, . . . , n}
have similar geometric properties in Hω if δ is sufficiently small. Hence we are in a

situation where we can apply 3.3 of [3].

Let us describe how we proceed from here in a simplified case. Suppose that the

linear span LΩ of SΩ is orthogonal to the linear span Lη of Sη and that the map

π(x∗i )Ω 7→ π(x∗i )η and π(x∗i )η 7→ π(x∗i )Ω extends to a unitary U on LΩ + Lη ; in

particular we have assumed that 〈π(x∗i )η, π(x∗j )η〉 = 〈π(x∗i )Ω, π(x∗j )Ω〉 for all i, j.

Since U is a self-adjoint unitary, F ≡ (1 − U )/2 is a projection and satisfies that

eiπF
= U on the finite-dimensional subspace LΩ + Lη . By Kadison’s transitivity we

choose an h ∈ A such that 0 ≤ h ≤ 1 and π(h)|LΩ + Lη = F. We set h = Ad x(h),

which entails that ‖[a, h]‖ < ε, a ∈ F. Then we have that

π(h)(Ω − η) = π(xhx∗)(Ω − η)

=

∑
π(xi)Fπ(x∗i )(Ω − η),

=

∑
π(xi)π(x∗i )(Ω − η)

= Ω − η

and that π(h)(Ω + η) = 0. Hence it follows that

π(eiπh)Ω = π(eiπh)(Ω − η)/2 + π(eiπh)(Ω + η)/2 = −(Ω − η)/2 + (Ω + η)/2 = η.

Thus the path (eitπh)t∈[0,1] is what is desired.
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Whenever LΩ is orthogonal to Lη , this argument can be made rigorous if δ > 0 is

sufficiently small. See [3] for details.

If Lη is not orthogonal to LΩ, we still find a unit vector ζ ∈ Hω such that

|〈π(x∗i )ζ, π(x∗j )ζ〉 − 〈π(x∗i )Ω, π(x∗j )Ω〉| < δ

and such that Lζ is orthogonal to both LΩ and Lη . Here we use the assumption that

πω(A) ∩ K(Hω) = (0). Then we combine the path of unitaries sending η to ζ and

then the path sending ζ to Ω to obtain the desired path.

4 Property 1.3 is Universal

Let Bil(A) denote the bounded bilinear forms on a C∗-algebra A. We have a canonical

isometric identification of Bil(A) with (A ⊗̂ A)∗, which is given by

〈V, a ⊗ b〉 = V (a, b).

Here A ⊗̂ A is the completion of the algebraic tensor product A ⊗ A equipped with

the projective tensor norm:

‖S‖∧ = inf
{ n∑

i=1

‖xi‖ ‖yi‖
}
,

where the infimum is taken all over the possible representations S =
∑n

i=1 xi ⊗ yi .

For a ∈ A the bounded linear maps La and Ra on A ⊗̂ A are defined by

La(x ⊗ y) = ax ⊗ y and Ra(x ⊗ y) = x ⊗ ya

and the bounded linear map p : A ⊗̂ A → A is defined by

p(x ⊗ y) = xy.

If M is a von Neumann algebra, Bilσ(M) denotes the subspace of Bil(M) consist-

ing of separately σ-weakly continuous forms on M. For a ∈ M, the dual maps (La)∗

and (Ra)∗ leave Bilσ(M) invariant. We define a contraction ϕ : Bil(M) → `∞(M1)

by ϕ(V )(a) = V (a∗, a), where M1 is the unit ball of M.

We rely on the following result [5]:

Theorem 4.1 (Haagerup) Let M be an injective von Neumann algebra. Then there

exists a mean m on the (discrete) semigroup I(M) of isometries in M which is invariant

in the sense that

m
(
ϕ(L∗

aV )|I(M)
)

= m
(
ϕ(R∗

aV )|I(M)
)

for all V ∈ Bilσ(M) and all a ∈ M.

By using the above result and the proof of 3.1 of [5] we prove:
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Lemma 4.2 Let π : A → B(H) be a non-degenerate representation of a C∗-algebra A.

If π(A) ′ ′ is injective, then there exists a net {Tλ}λ in A ⊗ A such that

1. the net {Tλ} is in the convex hull of {x ⊗ x∗ | x ∈ A, ‖x‖ ≤ 1},

2. limλ ‖LaTλ − RaTλ‖∧ = 0 for any a ∈ A,

3. π
(

p(Tλ)
)
→ 1 σ-weakly in B(H).

Proof What is shown as Theorem 3.1 in [5] is the above statement (or more precisely

the statement on ω below) for a nuclear C∗-algebra A and its universal representation

π. But the proof there depends only on the fact that M = π(A) ′ ′ is injective. We shall

just give an outline of the proof here.

Let e denote the central projection in A∗∗ corresponding to π; we shall identify M

with A∗∗e.

By using the fact that V ∈ Bil(A) uniquely extends to Ṽ ∈ Bilσ(A∗∗) [10], we

define an ω ∈ (A ⊗̂ A)∗∗ ∼= Bil(A)∗ by

ω(V ) = m
(
ϕ(Ṽ )|I(M)

)
,

where m is an invariant mean on I(M) as in the above theorem. We then assert that

1. ω is in the weak∗-closed convex hull of {x ⊗ x∗ | x ∈ A, ‖x‖ ≤ 1},

2. L∗∗

a ω = R∗∗

a ω for any a ∈ A,

3. p∗∗(ω) = e in A∗∗.

Property 1 follows by the Hahn-Banach separation argument using the crucial fact

that Ṽ is jointly σ-strong∗ continuous [6]. Property 2 reflects the invariance of

m in the above theorem: (L∗∗

a ω)(V ) = ω(L∗

aV ) = m
(
ϕ(L∗

aṼ )|I(M)
)

=

m
(
ϕ
(

L∗

ae(Ṽ |M)|I(M)
))

= m
(
ϕ
(

R∗

ae(Ṽ |M)|I(M)
))

, which is equal to (R∗∗

a ω)(V ),

for all V ∈ Bil(A) and a ∈ A, where Ṽ |M ∈ Bilσ(M) is the restriction of Ṽ . Since

(p∗ f )˜ = p∗ f and ϕ(p∗ f )(a) = f (a∗a) for f ∈ A∗, Property 3 follows from:

p∗∗(ω)( f ) = ω(p∗ f ) = f (e).

Now, we may find a net {Tλ} in the convex hull of {x⊗ x∗ | x ∈ A, ‖x‖ ≤ 1} such

that Tλ weak∗-converges to ω in (A ⊗̂ A)∗∗. It follows that p(Tλ) weak∗-converges

to e in A∗∗. Since for any a ∈ A, LaTλ − RaTλ converges weakly to 0 in A ⊗̂ A, we

may assume

lim
λ

‖LaTλ − RaTλ‖∧ = 0

by convexity.

By applying the above lemma to an irreducible representation π on H, a finite-

dimensional projection E on H, and ε > 0, we obtain a sequence (x1, x2, . . . , xn) in

A such that
∑n

i=1 ‖xi‖
2 ≤ 1, and

∥∥∥
∑

i

axi ⊗ x∗i −
∑

i

xi ⊗ x∗i a
∥∥∥
∧

< ε, a ∈ F,

∥∥∥π
(∑

i

xix
∗

i

)
E − E

∥∥∥ < ε.
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By using Kadison’s transitivity, we find a b ∈ A (or A + C1) such that b ≈ 1, ‖yy∗‖ ≤
1, and π(yy∗)E = E, where y = (bx1, bx2, . . . , bxn) ∈ M1n(A). Since there is a

contraction ψ of A ⊗̂ A into B(A), which is defined by ψ(a ⊗ b)(x) = axb, we

obtain:

Theorem 4.3 Any C∗-algebra has Property 1.3.
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