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On the Maximal Spectrum of Semiprimitive
Multiplication Modules

Karim Samei

Abstract. An R-module M is called a multiplication module if for each submodule N of M, N = IM

for some ideal I of R. As defined for a commutative ring R, an R-module M is said to be semiprimitive

if the intersection of maximal submodules of M is zero. The maximal spectra of a semiprimitive

multiplication module M are studied. The isolated points of Max(M) are characterized algebraically.

The relationships among the maximal spectra of M, Soc(M) and Ass(M) are studied. It is shown that

Soc(M) is exactly the set of all elements of M which belongs to every maximal submodule of M except

for a finite number. If Max(M) is infinite, Max(M) is a one-point compactification of a discrete space

if and only if M is Gelfand and for some maximal submodule K, Soc(M) is the intersection of all

prime submodules of M contained in K. When M is a semiprimitive Gelfand module, we prove that

every intersection of essential submodules of M is an essential submodule if and only if Max(M) is an

almost discrete space. The set of uniform submodules of M and the set of minimal submodules of M

coincide. Ann(Soc(M))M is a summand submodule of M if and only if Max(M) is the union of two

disjoint open subspaces A and N, where A is almost discrete and N is dense in itself. In particular,

Ann(Soc(M)) = Ann(M) if and only if Max(M) is almost discrete.

1 Introduction

Several authors have studied topological properties of the maximal spectrum (with

Zariski topology) of commutative rings [3, 5, 9]. Specifically, when the Jacobson rad-

ical and the nilradical of a ring R coincide, the compactness Max(R) is equivalent to

the normality of Spec(R). In this position, R is said to be a Gelfand ring. De Marco

and Orsatti also gave a algebraic characterization for a semiprimitive Gelfand ring R;

in fact, they showed that R is Gelfand if and only if each prime ideal is contained in

a unique maximal ideal [3]. The class of regular rings, local rings, zero-dimension

rings, rings of continuous function are all examples of Gelfand rings. On the other

hand, the socle of a semiprimitive ring which has algebraic properties, is character-

ized by the isolated points of Max(R) [9]. Therefore the socle of R can be a good

vehicle for studying the relationships among topological properties of Max(R) and

algebraic properties of ring R. One of the purposes of this paper is the generalization

of some of the above concepts and to study relationships among topological proper-

ties of Max(M) and the socle of M, when M is a multiplication module.

In this paper all rings are commutative with identity and all modules are unitary.

An R-module M is called a multiplication module if for each submodule N of M,

N = IM for some ideal I of R. Multiplication modules and ideals have been investi-

gated by [1, 4, 7, 8, 11, 12] and others. A proper submodule P of M is called prime if
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440 K. Samei

rx ∈ P, for r ∈ R and x ∈ M, implies r ∈ (P : M) or x ∈ P. In this case, p = (P : M)

is a prime ideal and we say P is a p-prime submodule of M. We use Spec(M) for

the spectrum of prime submodules of M. For any submodule N of an R-module

M, we define V(N) to be the set of all prime submodules of M containing N , and

rad N =
⋂

V(N). Of course, V(M) is just the empty set and V(0) is Spec(M). Note

that for any family of submodules Nλ (λ ∈ Λ) of M,
⋂

λ∈Λ
V(Nλ) = V(

∑
λ∈Λ

Nλ).
Thus if ζ(M) denotes the collection of all subsets V(N) of Spec(M), then ζ(M) con-

tains the empty set and Spec(M), and ζ(M) is closed under arbitrary intersection.

We shall say that M is a module with a Zariski topology, or a top module for short,

if ζ(M) is closed under finite unions, i.e., for any submodules N and N ′ of M, there

exists a submodule N ′′ of M such that V(N)∪V(N ′) = V(N ′ ′), for in this case ζ(M)

satisfies the axioms for the closed subsets of a topological space. It is well known that

every multiplication module is a top module, and the converse holds if the module is

finitely generated [8].

Throughout this paper, M is a non-zero finitely generated multiplication R-module.

We write Max(M) and Min(M) for the spectrum of maximal submodules and mini-

mal prime submodules of M, respectively. For any subset X of M, we define

VM(X) = V(X) ∩ Max(M) and V ′(X) = V(X) ∩ Min(M),

DM(X) = Max(M) \ VM(X) and D ′(X) = Min(M) \ V ′(X).

Therefore we consider Max(M) and Min(M) as subspaces of Spec(M). The operators

cl and int denote the closure and the interior in Max(M).

Let x be an element of R-module M. The set {r ∈ R : rx = 0} is an ideal of R,

which we write Ann(x). This ideal is called the annihilator of x. A prime ideal p of R

is called an associated prime ideal of M if p is the annihilator Ann(x) of some x ∈ M.

The set of associated primes of M is written Ass(M).

An R-module M is said to be semiprimitive (reduced) if the intersection of all max-

imal (prime) submodules of M is equal to zero. Reduced multiplication modules are

studied in [10]. By Lemma 2.1 and [4, Theorem 2.12], it is easy to see that M is

semiprimitive (reduced) if and only if Ann(M) is an intersection of maximal (prime)

ideals of R, and if and only if R/ Ann(M) is a semiprimitive (reduced) ring. For ex-

ample, every faithful multiplication module over a semiprimitive (reduced) ring is a

semiprimitive (reduced) module. In particular, every semiprimitive (reduced) ring

is a semiprimitive (reduced) module.

A non-zero submodule in a module M is said to be essential if it intersects every

non-zero submodule non-trivially. The intersection of all essential submodules, or

the sum of all minimal submodules, is called the socle, and is denoted by Soc(M). An

element e ∈ R is called an M-idempotent in R if e2 ≡ e (mod Ann(M)).

A space X is said to be almost discrete if the set of isolated points of X is dense in X.

For example, the one-point compactification and Stone–Cech compactification of a

discrete space are almost discrete spaces. We also say that X is dense in itself if it has

no isolated point [2]. We show that Ann(Soc(M))M is a summand submodule of M

if and only if Max(M) is the union of two disjoint open subspaces A and N , where A

is almost discrete and N is dense in itself. In particular, Ann(Soc(M)) = Ann(M) if

and only if Max(M) is almost discrete.
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2 Isolated Maximal Submodules

In this section we obtain some results about the isolated points of submodule spaces.

We denote by Spec0(M), Max0(M), and Min0(M) the sets of isolated points of the

spaces Spec(M), Max(M), and Min(M), respectively.

First we need the following lemmas.

Lemma 2.1 Let P be a proper submodule of M. The following statements are equiva-

lent:

(i) P is prime.

(ii) (P : M) is a prime ideal of R.

(iii) P = pM for some prime ideal p of R with Ann(M) ⊆ p.

Proof See [4, Corollary 2.11].

Lemma 2.2 Let I be an ideal of R and let N be a submodule of M. Then

V(N) ∪ V(IM) = V(IN) = V(N ∩ IM).

Proof See [8, Lemma 3.1].

Lemma 2.3 Let M be reduced, let N a submodule of M, and I = Ann(N).

(i) N ∩ IM = 0.
(ii) Ann(N + IM) = Ann(M).

Proof (i) By Lemma 2.2, V(N ∩ IM) = V(IN) = V(0) = Spec(M). Therefore

N ∩ IM = 0.

(ii) Suppose that r ∈ Ann(N + IM). Since rN = 0, then r ∈ I. Therefore

r2 ∈ rI ⊆ Ann(M), and this implies that r ∈ Ann(M), since M is reduced.

Lemma 2.4 Let M be reduced and let N be a summand submodule of M. Then there

exists an M-idempotent e ∈ R such that N = eM.

Proof Suppose M = N ⊕ N ′. So there are ideals I and I ′ such that N = IM and

N ′
= I ′M. Hence M = (I + I ′)M implies that (e + e ′ − 1)M = 0, for some e ∈ I and

e ′ ∈ I ′. Then (e2 − e)M = ee ′M ∈ N ∩ N ′
= 0, i.e., e2 ≡ e (mod Ann(M)). Now

for any x ∈ N we have x − ex = e ′x ∈ N ∩ N ′
= 0. This implies that N = eM.

Lemma 2.5 Let M be reduced. Then A is a clopen (closed and open) subset of Spec(M)

if and only if there exists an M-idempotent e ∈ R such that A = V(eM).

Proof Suppose that A is a clopen subset of Spec(M) and N =
⋂

A and N ′
=

⋂
Ac.

Then A = cl A = V(∩A) = V(N) and Ac
= V(N ′) and V(N) ∩ V(N ′) = ∅. Hence

M = N ⊕ N ′, and by Lemma 2.4, there exists an M-idempotent e ∈ R such that

N = eM. The converse is trivial.

Theorem 2.6 Let M be semiprimitive and let K be a maximal submodule of M. Then

K = eM, for some M-idempotent e ∈ R if and only if K ∈ Max0(M). Furthermore, in

this case, if K = eM 6= 0, then N = (1 − e)M is a non-zero minimal submodule of M.
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Proof Suppose that K = eM, where e ∈ R is an M-idempotent. Therefore

e2 − e ∈ Ann(M) implies that {K} = DM((1 − e)M). Conversely, suppose {K}
is an open set in Max(M). By Lemma 2.5, there exists an M-idempotent e ∈ R such

that {K} = VM(eM). Now by Lemma 2.2, we have

VM((1 − e)K) = VM(K) ∪ VM((1 − e)M) = VM(eM) ∪ VM((1 − e)M) = Max(M).

This shows that K = eM. For the second part, suppose x ∈ N is a non-zero arbitrary

element. Then Rx + eM = M. Thus R(1 − e)x = N , and this implies that N = Rx,

i.e., N is a minimal submodule of M.

Corollary 2.7 Let M be semiprimitive and let N be a submodule of M. Then N is

a non-zero minimal submodule of M if and only if N is contained in every maximal

submodule of M except one, i.e., |DM(N)| = 1.

Corollary 2.8 Let M be semiprimitive. Then Soc(M) is finitely generated if and only

if the number of isolated maximal submodules of M is finite. In particular, if M is

noetherian, Max0(M) is finite.

Proposition 2.9 Let M be semiprimitive. The following statements are equivalent.

(i) Every intersection of essential submodules of M is an essential submodule.

(ii) Max0(M) is dense in Max(M).

Proof (i) ⇒ (ii). By hypothesis, Soc(M) is essential, so Lemma 2.3 implies that

Ann(Soc(M))M = 0. Suppose x ∈
⋂

Max0(M). Then Rx = IM for some ideal I of

R. By Lemma 2.2 and Corollary 2.7, for any minimal submodule N of M,

VM(IN) = VM(N) ∪ VM(IM) = VM(N) ∪ VM(x) = Max(M).

Therefore, IN = 0, and this implies that I ⊆ Ann(Soc(M)). Consequently, Rx ⊆
Ann(Soc(M))M, i.e., x = 0.

(ii) ⇒ (i). By Corollary 2.7, Soc(M) =
⊕

e∈E eM, where E is a set of M-idempo-

tents in R. Thus we have

Ann(Soc(M)) =
⋂

e∈E

Ann(eM) =
⋂

e∈E

[R(1 − e) + Ann(M)].

So by [4, Corollary 1.7], Ann(Soc(M))M =
⋂

e∈E(1 − e)M =
⋂

Max0(M) = 0.
To contrast, suppose that Soc(M) is not essential. Then there exists a non-zero

submodule N = IM of M such that N ∩ Soc(M) = 0. Therefore by Lemma 2.2,

Max(M) = VM(N ∩ Soc(M)) = VM(I Soc(M)).

This means that I ⊆ Ann(Soc(M)) ⊆ Ann(M), hence N = 0, a contradiction. Thus

Soc(M) is essential.
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Theorem 2.10 Let M be reduced.

(i) Min0(M) = {pM : p ∈ Ass(M)}.

(ii) P ∈ Spec0(M) if and only if P ∈ Min0(M) and P is not semiprime.

In particular, if M is semiprimitive,

(iii) Spec0(M) = Max0(M).

Proof (i) Suppose P ∈ Min0(M). Then there exists x ∈
⋂

D′(P) \ P. Hence

Ann(x) = (P : M), and this implies that P = Ann(x)M. Conversely, suppose

p ∈ Ass(M). Then p = Ann(x), for some x ∈ M. Therefore there exists P ∈ Min(M)

such that x 6∈ P. But px = 0 implies that p ⊆ (P : M). Hence by Lemma 2.1,

P = pM. We note that D ′(x) = {P}, i.e., P ∈ Min0(M).

(ii) Suppose P ∈ Min0(M) and P 6=
⋂

V(P) = rad P. Hence there are x ∈⋂
D ′(P) \ P and y ∈ rad P \ P. Set I = (x : M) and J = (y : M). It is easy to see that

D(I JM) = {P}, i.e., P ∈ Spec0(R). The opposite inclusion is trivial.

(iii) follows from Theorem 2.6.

Definition 2.11 A multiplication R-module M is said to be Gelfand if Max(M) is a

Hausdorff space.

It is well known that a semiprimitive multiplication module M is Gelfand if and

only if every prime submodule of M is contained in a unique maximal submodule,

and if and only if Spec(M) is normal [12].

The following lemma is given in [10].

Lemma 2.12 For any subset X of M,

(i) Ann(X)M =
⋂

D(X);

(ii) int V(X) = D(Ann(X)M).

Proof (i) Suppose that P ∈ D(X). Then Ann(X) ⊆ (P : M). This implies that

Ann(X)M ⊆ P, i.e., Ann(X)M ⊆
⋂

D(X). Conversely, If y ∈
⋂

D(X), then Ry =

IM, for some ideal I of R, and Lemma 2.2 implies that

Spec(M) = V(Ry) ∪ V(X) = V(IM) ∪ V(〈X〉) = V(I〈X〉).

Hence I ⊆ Ann(X), i.e., y ∈ Ann(X)M.

(ii) This follows from (i)

int V(X) = Spec(M) − cl D(X) = D(∩D(X)) = D(Ann(X)M).

Definition 2.13 Let P be a p-prime submodule of M. We define

OP = {x ∈ M : Ann(x) 6⊆ p}.

Remark 2.14. It is easy to see that OP ⊆ P. By Lemma 2.12, D(Ann(x)M) = int V (x),

then we have OP = {x ∈ M : P ∈ int V (x)} =
⋂
{P ′ ∈ Spec(M) : P ′ ⊆ P}.
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Theorem 2.15 Let M be semiprimitive and Gelfand.

Spec0(M) = Max0(M) = Min0(M) = {pM : p ∈ Ass(M)}.

Proof By Theorem 2.10, it is sufficient to prove Min0(M) ⊆ Max0(M). Let P ∈
Min0(M). By hypothesis, P ⊆ K, for a unique maximal submodule K ∈ Max(M).

Therefore
⋂

K ′∈DM (K) OK ′ 6⊂ P. This means that there exists 0 6= x ∈
⋂

DM(K).

Observe that x 6∈ K, and this implies that K is an isolated point of Max(M).

Theorem 2.16 Let M be semiprimitive and Gelfand. Then

Ass(M) = {p ∈ Max(R) : p = Re + Ann(M), where e is an M-idempotent in R}.

In particular, every prime submodule of M is either an essential submodule or an isolated

maximal submodule.

Proof Let p ∈ Ass(M). Then by Theorem 2.15, pM ∈ Max0(M). Hence Theorem

2.6 implies that pM = eM, for some M-idempotent e ∈ R. Inasmuch as Ann(M) ⊆
p, then Re + Ann(M) ⊆ p. Also for any r ∈ p, r(1 − e)M = 0. Hence

r = re + r(1 − e) ∈ Re + Ann(M),

i.e., p = Re + Ann(M). Conversely, suppose p ∈ Max(R) and p = Re + Ann(M) for

some M-idempotent e ∈ R. Since (1 − e)M 6= 0, then there exists x ∈ M such that

(1 − e)x 6= 0. Evidently, p = Ann((1 − e)x) ∈ Ass(M).
For the second part, suppose P is a non-essential prime submodule. There exists a

minimal prime submodule P ′ contained in P. Since P ′ is non-essential, P ′ ∩ N = 0

for some non-zero submodule N of M. Therefore V ′(N) = Min(M) \ {P ′}, i.e.,

P ′ ∈ Min0(M). Now Theorem 2.15 implies that P = P ′ ∈ Max0(M).

The following result shows that in a semiprimitive Gelfand module, the set of

uniform submodules and the set of minimal submodules coincide.

Proposition 2.17 Let M be semiprimitive and Gelfand and let N be a submodule of

M. Then N is a uniform submodule if and only if N is a minimal submodule.

Proof Suppose N is a uniform submodule of M. By Corollary 2.7, it is sufficient to

show that |DM(N)| = 1. In contrast, let K ′, K ′ ′ be two distinct elements in DM(N).

Since Max(M) is Hausdorff, there are x ′, x ′ ′ ∈ M such that

K ′ ∈ DM(x ′) ⊆ DM(Rx ′ ∩ N), K ′ ′ ∈ DM(x ′ ′) ⊆ DM(Rx ′ ′ ∩ N),

and DM(x ′) ∩ DM(x ′ ′) = ∅. Thus Rx ′ ∩ N 6= 0 and Rx ′ ′ ∩ N 6= 0. Now we have

VM((Rx ′ ∩ N) ∩ (Rx ′ ′ ∩ N)) ⊇ VM(Rx ′ ∩ Rx ′ ′) = VM(x ′) ∪ VM(x ′ ′) = Max(M).

This shows that (Rx ′ ∩N)∩ (Rx ′ ′ ∩N) = 0. But N is uniform, a contradiction. The

converse is trivial.

https://doi.org/10.4153/CMB-2008-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-044-8


On the Maximal Spectrum of Semiprimitive Multiplication Modules 445

3 The Socle of M

In this section we obtain some results about the relationships among the algebraic

properties of Soc(M) and the topological properties of Max(M).

Theorem 3.1 Let M be semiprimitive. Then the socle Soc(M) is exactly the set of all

elements which belong to every maximal submodule of M except for a finite number. In

fact, Soc(M) = {x ∈ M : DM(x) is finite}.

Proof Suppose x ∈ Soc(M). Then x = x1 + x2 + · · · + xn, where each xi belongs to

some minimal submodule in M. Thus by Corollary 2.7, x1 + x2 + · · · + xn belongs

to every maximal submodule except for a finite number. This implies that DM(x)

is finite. Conversely, let DM(x) be a finite set. Then DM(x) = {K1, K2, . . . , Kn}.

Inasmuch as Max(M) is a T1-space, for each 1 ≤ i ≤ n, Ki is an isolated point of

Max(M). Now by Theorem 2.6, for each Ki , there exists a minimal submodule Ni

such that M = Ki ⊕ Ni and Ni = eiM, where ei is an M-idempotent element of R.

Set y = x − (e1x + e2x + · · · + enx). Inasmuch as for any i 6= j, eie j ∈ Ann(M), then

ei y = 0, for any 1 ≤ i ≤ n. Thus we have

Max(M) = VM(x) ∪ DM(x) = VM(x) ∪ {K1, K2, . . . , Kn} ⊆ VM(y).

This means that x = e1x + e2x + · · · + enx ∈ N1 + N2 · · · + Nn ⊆ Soc(M).

Lemma 3.2 Let M be semiprimitive and Gelfand. If A and B are disjoint closed subsets

of Max(M), then there exists a ∈ R such that

A ⊆ int VM(aM), B ⊆ int VM((a − 1)M).

Proof By our hypothesis, the space Max(M) is Hausdorff and compact. Therefore

by [5, Theorem 1.15], there are closed sets E and F in Max(M) such that

A ⊆ int E ⊆ E, B ⊆ int F ⊆ F, E ∩ F = ∅.

Hence there are the submodules N and N ′ such that E = VM(N) and F = VM(N ′).

There are the ideals I and I ′ such that N = IM and N ′
= I ′M. Inasmuch as M =

N + N ′, then M = (I + I ′)M, and this implies that (a + a ′− 1)M = 0, for some a ∈ I

and a ′ ∈ I ′. Thus we have

A ⊆ int VM(N) ⊆ int VM(aM) and B ⊆ int VM(N ′) ⊆ int VM((a − 1)M).

For any subset A of Spec(M), we define OA =
⋂

P∈A OP.

Theorem 3.3 Let M be semiprimitive and Gelfand and let A be a closed subset of

Max(M). Then OA ⊆ Soc(M) if and only if every open subset of Max(M) containing A

has a finite complement.
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Proof Suppose OA ⊆ Soc(M) and G is an open set of Max(M) containing A. If

K ∈ Max(M) \ G, then by Lemma 3.2, there is a ∈ R such that A ⊆ int VM(aM)

and K ∈ int VM((a − 1)M). Thus aM ⊆ OA ⊆ Soc(M). Inasmuch as aM is

finitely generated, Theorem 3.1 implies that DM(aM) is finite. Now if K is not an

isolated maximal submodule, then the open set DM(aM) which contains K must be

infinite, a contradiction. Therefore Max(M) \ G is a clopen subset of Max(M), so

by Lemma 2.5, there exists an M-idempotent e ∈ R such that G = VM(eM). Hence

eM ⊆ OA ⊆ Soc(M), and Theorem 3.1 implies that Max(M)\G = DM(eM) is finite.

Conversely, let every open subset of Max(M) containing A have a finite complement

and x ∈ OA. Then A ⊆ int VM(x), so Max(M) \ int VM(x) is finite by our hypothesis

and hence DM(x) is also finite. Consequently, Theorem 3.1 implies that x ∈ Soc(M),

i.e., OA ⊆ Soc(M).

Theorem 3.4 Let M be semiprimitive and let Max(M) be infinite. Then Max(M) is

the one-point compactification of a discrete space if and only if M is Gelfand and for some

maximal submodule K, Soc(M) is the intersection of all prime submodules contained in

K, (or equivalently, Soc(M) = OK).

Proof Suppose M is Gelfand and for some maximal submodule K, Soc(M) = OK .

Therefore Max(M) is a Hausdorff space and K cannot be an isolated point of

Max(M), for otherwise by Theorem 2.6, there is an M-idempotent e ∈ R such that

K = eM. Hence K ∈ int VM(eM), so eM ⊆ OK ⊆ Soc(M) and this implies that

Max(M) \ {K} = DM(eM) is finite, a contradiction. Now we will show that K is the

only non-isolated point of Max(M). Suppose that K ′ 6= K is another non-isolated

point of Max(M). By Lemma 3.2, there is a ∈ R such that K ∈ int VM(aM) and

K ′ ∈ int VM((a − 1)M). Thus aM ⊆ OK ⊆ Soc(M). Inasmuch as Max(M) is Haus-

dorff and DM(aM) is a neighborhood of the non-isolated point K ′, then DM(aM) is

an infinite set which implies that aM 6⊆ Soc(M), a contradiction. Now let G be an

open set which contains K. By Theorem 3.3, Max(M) \ G is compact (finite); this

means that Max(M) is the one-point compactification of the space Max0(M).

Conversely, let Max(M) = Y∪{K} be the one-point compactification of a discrete

space Y . Obviously, Max(M) is a Hausdorff space, i.e., M is Gelfand. Hence it is

sufficient to show that Soc(M) = OK . If x ∈ OK , then int VM(x) is an open set

containing K, so Max(M) \ int VM(x) ⊆ Y is compact. Hence DM(x) is finite, i.e.,

x ∈ Soc(M). If x ∈ Soc(M), then DM(x) is finite and hence K 6∈ DM(x), for K is

a non-isolated point of Max(M). Therefore K ∈ VM(x) = int VM(x) implies that

x ∈ OK .

Theorem 3.5 Let M be semiprimitive. Then Ann(Soc(M)) = Re + Ann(M), for

some M-idempotent e ∈ R if and only if Max(M) is the union of two disjoint open

subspaces A and N, where A is almost discrete and N is dense in itself. In particular,

Ann(Soc(M)) = Ann(M) if and only if Max(M) is almost discrete.

Proof First suppose Ann(Soc(M)) = Re + Ann(M), where e is an M-idempotent

element of R. We note that by Corollary 2.7, K ∈ Max0(M) if and only if there exists

a minimal submodule N of M such that DM(N) = {K}. Thus we have

cl Max0(M) = cl DM(Soc(M)) = VM(Ann(Soc(M))M) = VM(eM).

https://doi.org/10.4153/CMB-2008-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-044-8


On the Maximal Spectrum of Semiprimitive Multiplication Modules 447

Hence Lemma 2.5 shows that cl Max0(M) is a clopen subset of Max(M). Now we put

A = cl Max0(M) and N = Max(M) \ cl Max0(M) and we are through.

Conversely, let Max(M) = A∪N , where A and N are two disjoint open subspaces.

Then A is almost discrete and N is dense in itself. Inasmuch as A is a clopen subset

of Max(M), then there exists an M-idempotent e ∈ R such that A = VM(eM). We

show that Ann(Soc(M)) = Re + Ann(M). Clearly, e ∈ Ann(Soc(M)), for if x ∈
Soc(M), then DM(x) is a finite open set and hence its members are isolated points,

i.e., DM(x) ⊆ A = VM(eM). This implies that ex = 0. Therefore Re ⊆ Ann(Soc(M)).

Now if a ∈ Ann(Soc(M)), then by Corollary 2.7, VM(eM) = A ⊆ VM(aM). Thus

a(1 − e) ∈ Ann(M) and this implies that a ∈ Re + Ann(M), i.e., Ann(Soc(M)) ⊆
Re + Ann(M).
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