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The Local Möbius Equation and
Decomposition Theorems in Riemannian
Geometry

Manuel Fernández-López, Eduardo Garcı́a-Rı́o and Demir N. Kupeli

Abstract. A partial differential equation, the local Möbius equation, is introduced in Riemannian ge-

ometry which completely characterizes the local twisted product structure of a Riemannian manifold.

Also the characterizations of warped product and product structures of Riemannian manifolds are

made by the local Möbius equation and an additional partial differential equation.

1 Introduction

It is clear that local structure of a Riemannian manifold cannot determine its global
structure. Yet it may be expected that global properties of a Riemannian manifold
may determine its local structure. One important local structure of a Riemannian

manifold is its local decomposition to certain product structures such as, most im-
portantly, twisted product, warped product or product structures. In this paper, we
give some results showing global analytic structure of a Riemannian manifold can de-
termine its local structure as a decomposition to certain product structures as in the

above. Here we introduce a (global) partial differential equation on a Riemannian
manifold, called the local Möbius equation, and in the case of a solution to this equa-
tion, manifold locally decomposes to certain products of Riemannian manifolds. In
fact, local Möbius equation completely characterizes the twisted product and prod-

uct Riemannian manifolds, and in particular, with an additional partial differential
equation, it completely characterizes the locally warped product Riemannian mani-
folds. In this paper we give these results in the setting of Riemannian geometry. Yet
it may be easily seen that the results remain valid in the setting of semi-Riemannian

geometry as well, under certain regularity assumptions reducing the cases similar to
Riemannian case by ruling out degenerate spaces occurring because of an indefinite
metric tensor.

In Section 2, we give preliminaries and motivation to local Möbius equation. In

Section 3, we state main decomposition results of this paper.
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2 Preliminaries and Motivation

Let (M, g) be an n-dimensional Riemannian manifold with Levi-Civita connection
∇. We also denote the gradient of a function on (M, g) by ∇. As a notation, we

define the Hessian tensor, Hessian form and Laplacian of a function f : (M, g) → R

by h f (X) = ∇X∇ f , H f (X,Y ) = g
(

h f (X),Y
)

and∆ f = div∇ f , respectively, where
X,Y ∈ ΓTM. In [2], a function f : (M, g)→ R is said to satisfy the Möbius equation

if

H f − d f ⊗ d f −
1

n
[∆ f − g(∇ f ,∇ f )]g = 0

on (M, g). It is also shown in [2] that, if f : (M, g)→ R satisfies the Möbius equation
then the function t = e− f satisfies the equation, which we call the localized Möbius

equation,

Ht =
∆t

n
g

on (M, g). We call the latter equation localized Möbius equation since if the localized
Möbius equation has a solution t then the Möbius equation has a local solution given
by f = − log t , provided that t > 0. The localized Möbius equation is studied in Rie-
mannian geometry in connection to its relation to warped product decompositions

in [2], and as well, in a similar way in semi-Riemannian geometry in [1].
Now we modify and extend local Möbius equation in a way that to characterize

twisted products in Riemannian geometry. Let (M1, g1) and (M2, g2) be Riemannian

manifolds of dimensions n1 and n2 with Levi-Civita connections
1

∇ and
2

∇, respec-
tively. The second fundamental form of a map f : (M1, g1)→ (M2, g2) is defined by

(∇ f∗)(X,Y ) =
2

∇X f∗Y − f∗(
1

∇XY ),

where X,Y ∈ ΓTM1 and
2

∇ also denotes the pullback of
2

∇ along f . Also the tension

field of f is defined by

τ ( f ) = trace∇ f∗

with respect to g1.

Here we could call a map f : (M1, g1)→ (M2, g2) satisfy local Möbius equation if

∇ f∗ =
τ ( f )

n1
g1.

However in order to make it characterize twisted products we adopt the following
definition.

Definition 1 Let f : (M1, g1) → (M2, g2) be a submersion between Riemannian

manifolds (M1, g1) and (M2, g2) with dimensions n1 > n2 ≥ 1. Then f is said to
satisfy the local Möbius equation if

(∇ f∗)(X,Y ) =
τ ( f )

n1 − n2
g1(X,Y )
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and
(∇ f∗)(X,U ) = 0

where X,Y ∈ Γ ker f∗ and U ∈ Γ(ker f∗)
⊥.

Remark 1 Note that if (M1, g1) = (M, g) and (M2, g2) = (R, dx ⊗ dx) then the
local Möbius equation defined above becomes

H f (X,Y ) =
∆ f

n− 1
g(X,Y )

and

H f (X,U ) = 0,

or equivalently,

h f (X) =
∆ f

n− 1
X,

where X,Y ∈ Γ ker f∗ and U ∈ Γ(ker f∗)
⊥. Note here that, in this case, local Möbius

equation is essentially different than what we called localized Möbius equation.

3 Decomposition Theorems

In this section, first we show that the local Möbius equation completely character-

izes the locally twisted product Riemannian manifolds. Recall that, if (M1, g1) and
(M2, g2) are Riemannian manifolds and ϕ : M1 × M2 → (0,∞) is a function then
the product manifold (M1 ×M2, g1 ⊕ ϕg2) is called the twisted product of (M1, g1)
and (M2, g2) with twisting function ϕ.

Theorem 1 Let a submersion f : (M1, g1) → (M2, g2) between Riemannian mani-

folds (M1, g1) and (M2, g2) satisfy the local Möbius equation. Then (M1, g1) is locally

a twisted product (M1
1 ×M2

1 , g
1
1 ⊕ ϕg2

1), where (M1
1 , g

1
1 ) and (M2

1 , g
2
1 ) are Riemannian

manifolds, and f : M1
1 ×M2

1 → M1
1 is the projection map.

Proof Note that ker f∗ and (ker f∗)⊥ are orthogonal distributions on (M1, g1) with
ker f∗ is integrable. First we show that (ker f∗)⊥ is integrable with totally geodesic

integral manifolds. For this, it suffices to show that
1

∇UV ∈ Γ(ker f∗)
⊥ for every

U ,V ∈ Γ(ker f∗)⊥. Now let U ,V ∈ Γ(ker f∗)⊥ and X ∈ Γ ker f∗. Then since

g1(
1

∇UV,X) = −g1(V,
1

∇U X) = −g1

(

V, (
1

∇U X)⊥
)

,

where (
1

∇U X)⊥ is the component of
1

∇U X in (ker f∗)⊥, it follows that

g1(
1

∇UV,X) = 0 iff (
1

∇U X)⊥ = 0 iff f∗(
1

∇U X) = 0

for every X ∈ Γ ker f∗. On the other hand, since

0 = (∇ f∗)(U ,X) =
2

∇U f∗X − f∗(
1

∇U X) = − f∗(
1

∇U X)
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for every X ∈ Γ ker f∗, it follows that
1

∇UV ∈ Γ(ker f∗)
⊥ and hence (ker f∗)⊥ is

integrable with totally geodesic integral manifolds.

Next we show that integral manifolds of ker f∗ are totally umbilic. Let I f be the

second fundamental form tensor of ker f∗. Then, for X,Y ∈ Γ ker f∗,

f∗I f (X,Y ) = f∗(
1

∇XY )⊥ = f∗(
1

∇XY )

= −(∇ f∗)(X,Y ) +
2

∇X f∗Y

= −(∇ f∗)(X,Y )

= −
τ ( f )

n1 − n2
g1(X,Y ).

Thus, if τ̃( f ) is the lift of τ ( f ) to (ker f∗)⊥ defined by f∗
(

τ̃ ( f )
)

= τ ( f ) f (p1),

I f (X,Y ) = −
τ̃ ( f )

n1 − n2
g1(X,Y ).

That is, integral manifolds of ker f∗ are totally umbilic with the mean curvature vec-

tor field N = − τ̃ ( f )
n1−n2

. Hence by [3, Prop. 3-b], (M1, g1) is locally a twisted product.

Now we complete showing that the local Möbius equation completely character-

izes the local twisted product decomposition. First we need the following lemma.

Let (M1, g1) = (M1
1 ×M2

1 , g
1
1 ⊕ ϕg2

1 ) be the twisted product of Riemannian man-

ifolds (M1
1 , g

1
1 ) and (M2

1 , g
2
1 ) with twisting function ϕ, and let

1

∇,
1

∇1 and
1

∇2 be the
Levi-Civita connections of (M1, g1), (M1

1 , g
1
1 ) and (M2

1 , g
2
1 ), respectively. Given vector

fields X1, Y1, Z1 on M1
1 and X2, Y2, Z2 on M2

1 , we can lift them to M1
1×M2

1 and obtain

vector fields X = (X1, 0) + (0,X2) = (X1,X2), Y = (Y1, 0) + (0,Y2) = (Y1,Y2) and
Z = (Z1, 0) + (0,Z2) = (Z1,Z2) on (M1

1 ×M2
1).

Lemma 1 Let (M1, g1) = (M1
1×M2

1 , g
1
1⊕ϕg2

1 ) be the twisted product of Riemannian

manifolds (M1
1 , g

1
1 ) and (M2

1 , g
2
1 ) with twisting function ϕ. Then for vector fields X, Y ,

Z on M1
1 ×M2

1 as in the above, we have

g1(
1

∇XY,Z) = g1

(

(
1

∇1
X1

Y1,
1

∇2
X2

Y2), (Z1,Z2)
)

+
1

2
[X(λ)g2

1 (Y2,Z2) + Y (λ)g2
1 (X2,Z2)− Z(λ)g2

1 (X2,Y2)],

where λ = logϕ.

Proof The proof can be obtained from Koszul formula by a straightforward compu-
tation.
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Theorem 2 Let (M1, g1) = (M1
1×M2

1 , g
1
1⊕ϕg2

1 ) be the twisted product of Riemannian

manifolds (M1
1 , g

1
1 ) and (M2

1 , g
2
1) with twisting function ϕ. Then the projection map

π1 : M1
1 ×M2

1 → M1
1 satisfies the local Möbius equation.

Proof Since ∇π1∗ is tensorial, it suffices to show that π1 satisfies the local Möbius
equation for the vector fields as in the above of Lemma 1. First note that, for X =

(0,X2), Y = (0,Y2) and U = (U1, 0) on M1
1 ×M2

1 , by Lemma 1,

g1(
1

∇XY,U ) = −
1

2
U (λ)g2

1 (X2,Y2) = −
1

2
g1(

1

∇λ,U )g2
1 (X2,Y2).

Thus

(
1

∇XY )⊥ = −
1

2
g2

1 (X2,Y2)(
1

∇λ)⊥,

where (
1

∇XY )⊥ and (
1

∇λ)⊥ are the components of
1

∇XY and
1

∇λ tangent to the copies
of M1

1 in M1
1 × M2

1 , respectively. Next note that, for U = (U1, 0) and V = (V1, 0)

on M1
1 × M2

1 , by Lemma 1,
1

∇UV = (
1

∇1
U1

V1, 0). Hence, if {V 1
1 , . . . ,V

n1
1

1 } and

{X1
2 , . . . ,X

n2
1

2 } are orthonormal basis frames on (M1
1 , g

1
1 ) and (M2

1 , g
2
1 ), respectively,

then {V 1
= (V 1

1 , 0), . . . ,V n1
1 = (V

n1
1

1 , 0), X1

ϕ1/2 = (0,
X1

2

ϕ1/2 ), . . . , Xn2
1

ϕ1/2 = (0,
X

n2
1

2

ϕ1/2 )} is an

orthonormal basis frame on (M1, g1) and, since

(∇π1∗)

(

Xi

ϕ1/2
,

Xi

ϕ1/2

)

=

1

∇1
Xi

ϕ1/2

π1∗
Xi

ϕ1/2
− π1∗

(

1

∇ Xi

ϕ1/2

Xi

ϕ1/2

)

= −
1

ϕ1/2
π1∗

(

1

∇Xi

Xi

ϕ1/2

)⊥

= −
1

ϕ
π1∗(

1

∇Xi Xi)⊥

=
1

2ϕ
g2

1 (Xi
2,X

i
2)π1∗(

1

∇λ)⊥

=
1

2ϕ2
π1∗(

1

∇ϕ)⊥

and

(∇π1∗)(V i ,V i) =
1

∇1
V iπ1∗V

i − π1∗(
1

∇V iV i)

=

1

∇1
V i (V i

1 ◦ π1)− (
1

∇1
V i

1
V i

1) ◦ π1

= (
1

∇1
V i

1
V i

1) ◦ π1 − (
1

∇1
V i

1
V i

1) ◦ π1 = 0,

it follows that

τ (π1) = trace∇π1∗ =
n2

1

2ϕ2
π1∗(

1

∇ϕ)⊥.
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On the other hand, for X = (0,X2) and Y = (0,Y2), since

(∇π1∗)(X,Y ) =
1

∇1
Xπ1∗Y − π1∗(

1

∇XY )

= −π1∗(
1

∇XY )⊥

=
1

2
g2

1 (X2,Y2)π1∗(
1

∇λ)⊥

=
1

2ϕ2
g1(X,Y )π1∗(

1

∇ϕ)⊥

it follows that

(∇π1∗)(X,Y ) =
τ (π1)

n2
1

g1(X,Y )

for vector fields X, Y tangent to the copies of M2
1 in M1

1 ×M2
1 .

To show the second equation in the local Möbius equation is also satisfied by π1,
let U = (U1, 0) and X = (0,X2) on M1

1 ×M2
1 . Then for Z = (Z1, 0) on M1

1 ×M2
1 , by

Lemma 1, g1(
1

∇U X,Z) = 0. Hence (
1

∇U X)⊥ = 0, where (
1

∇U X)⊥ is the component

of
1

∇U X tangent to the copies of M1
1 in M1

1 ×M2
1 . Thus

(∇π1∗)(U ,X) =
1

∇1
Uπ1∗X − π1∗(

1

∇U X)

= −π1∗(
1

∇U X)⊥ = 0.

That is, π1 satisfies the local Möbius equation.

Remark 2 Note in the proof of the above theorem that if a Riemannian submersion

f : (M1, g1) → (M2, g2) between Riemannian manifolds (M1, g1) and (M2, g2) satis-
fies the local Möbius equation then (∇ f∗)(U ,V ) = 0 for every U ,V ∈ Γ(ker f∗)⊥

since f is the projection map onto the first factor of local twisted product decompo-
sition of (M1, g1).

Recall that a map f : (M1, g1)→ (M2, g2) between Riemannian manifolds (M1, g1)
and (M2, g2) is called harmonic if τ ( f ) = 0. Here also observe that, by Remark 2, a
Riemannian submersion between Riemannian manifolds is a totally geodesic map if

and only if it is harmonic and satisfies the local Möbius equation.

Corollary 1 If a harmonic submersion f : (M1, g1)→ (M2, g2) between Riemannian

manifolds (M1, g1) and (M2, g2) satisfies the local Möbius equation then (M1, g1) is

locally a product (M1
1 × M2

1 , g
1
1 ⊕ g2

1 ), where (M1
1 , g

1
1 ) and (M2

1 , g
2
1) are Riemannian

manifolds and f : M1
1 × M2

1 → M1
1 is the projection map. Conversely, if (M1, g1) =

(M1
1 ×M2

1 , g
1
1 ⊕ g2

1 ) is a product of Riemannian manifolds (M1
1 , g

1
1 ) and (M2

1 , g
2
1 ) then

the projection map π1 : M1
1 × M2

1 → M1
1 is harmonic and satisfies the local Möbius

equation.
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Proof By Theorem 1, (M1, g1) is locally a twisted product with totally umbilic inte-

gral manifolds of ker f∗ whose mean curvature vector field is given by N = − τ̃ ( f )
n1−n2

,

where τ̃ ( f ) is the lift of τ ( f ) to (ker f∗)⊥. Hence, since τ ( f ) = 0, τ̃ ( f ) = 0 and it fol-
lows that N = 0, that is, integral manifolds of ker f∗ are totally geodesic. Then from
[3, Prop. 3-d], (M1, g1) is locally a product (M1

1 ×M2
1 , g

1
1 ⊕ g2

1 ). Conversely, by The-
orem 2, π1 satisfies the local Möbius equation. Also by the proof of Theorem 2, since

(M1, g1) = (M1
1 × M2

1 , g
1
1 ⊕ g2

1 ) is a twisted product with twisting function ϕ = 1,

it follows that τ (π1) = trace∇π1∗ =
n2

1

2ϕ2π1∗(∇ϕ)⊥ = 0. Thus π1 is harmonic. (In
fact, π1 is totally geodesic by the local Möbius equation).

Remark 3 In Vilms [4] the following theorem is proven:

Theorem 3 ([4]) Let (M1, g1) and (M2, g2) be Riemannian manifolds with dimen-

sions n1 > n2 ≥ 1, where (M1, g1) is complete, connected and simply connected. If there

is a surjective, totally geodesic Riemannian submersion f : (M1, g1) → (M2, g2) then

(M1, g1) is a product (M2 ×M3, g2 ⊕ g3), where (M3, g3) is a Riemannian manifold.

Here recall that a totally geodesic submersion satisfies the local Möbius equation

and is harmonic. Hence, in the view of Corollary 1, it can be easily seen that the
assumption of totally geodesic Riemannian submersion in the above theorem can be
weakened to totally geodesic submersion and still obtain a local product decomposi-
tion on M1.

Now we show that the local Möbius equation with an additional assumption com-
pletely characterizes the locally warped product Riemannian manifolds. Recall that a
twisted product (M1

1 ×M2
1 , g

1
1 ⊕ ϕg2

1) is called a warped product if ϕ is a function on

M1
1 only.

Theorem 4 Let a submersion f : (M1, g1) → (M2, g2) between Riemannian mani-

folds (M1, g1) and (M2, g2) satisfy the local Möbius equation. If, in addition,

∇∇ f∗(X,Y,Z) = 0 for every X,Y,Z ∈ Γ ker f∗, then (M1, g1) is locally a warped

product (M1
1 ×M2

1 , g
1
1 ⊕ϕg2

1 ), where (M1
1 , g

1
1 ) and (M2

1 , g
2
1) are Riemannian manifolds

and f : M1
1 ×M2

1 → M1
1 is the projection map.

Proof First note that, by Theorem 1, (M1, g1) is locally a twisted product with totally
umbilic integral manifolds of ker f∗ whose mean curvature vector field is given by

N = − τ̃ ( f )
n1−n2

, where τ̃( f ) is the lift of τ ( f ) to (ker f∗)⊥. Hence to show that (M1, g1)
is locally a warped product, it suffices to show that N is normal parallel along the

integral manifolds of ker f∗. For, first note that if X ∈ Γ ker f∗,

0 = (∇ f∗)
(

X, τ̃( f )
)

=
2

∇X f∗τ̃( f )− f∗
( 1

∇X τ̃( f )
)

=
2

∇Xτ ( f )− f∗
( 1

∇X τ̃( f )
)

.

Thus
2

∇Xτ ( f ) = f∗
( 1

∇X τ̃( f )
)

= f∗

(

( 1

∇X τ̃ ( f )
)⊥
)
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and hence, to show that N is normal parallel along the integral manifolds of ker f∗,

it suffices to show that
2

∇Xτ ( f ) = 0 for every X ∈ Γ ker f∗. For this, note that, for

X,Y,Z ∈ Γ ker f∗,

0 = (∇∇ f∗)(X,Y,Z) =
2

∇X

(

(∇ f∗)(Y,Z)
)

− (∇ f∗)(
1

∇XY,Z)

− (∇ f∗)(Y,
1

∇XZ)

=
2

∇X

(

(∇ f∗)(Y,Z)
)

− (∇ f∗)
(

(
1

∇XY )T ,Z
)

− (∇ f∗)
(

Y, (
1

∇XZ)T
)

=
2

∇X

(

τ ( f )

n1 − n2
g1(Y,Z)

)

−
τ ( f )

n1 − n2
g1(

1

∇XY,Z)

−
τ ( f )

n1 − n2
g1(Y,

1

∇XZ)

=
1

n1 − n2

( 2

∇Xτ ( f )
)

g1(Y,Z),

where (
1

∇XY )T and (
1

∇XZ)T are the components of
1

∇XY and
1

∇XZ in ker f∗, respec-

tively. Thus,
2

∇Xτ ( f ) = 0 for every X ∈ Γ ker f∗ and it follows from [3, Prop. 3-c]
that (M1, g1) is locally a warped product.

Conversely, we have the following.

Theorem 5 Let (M1, g1) = (M1
1×M2

1 , g
1
1⊕ϕg2

1 ) be a warped product of Riemannian

manifolds (M1
1 , g

1
1) and (M2

1 , g
2
1 ) with warping function ϕ. Then the projection map

π1 : M1
1 ×M2

1 → M1
1 satisfies the local Möbius equation with (∇∇π1∗)(X,Y,Z) = 0

for every X, Y , Z tangent to the copies of M2
1 in M1

1 ×M2
1 .

Proof Note that, by Theorem 2, π1 satisfies the local Möbius equation and

(∇π1∗)(Y,Z) =
1

2ϕ2
g1(Y,Z)π1∗(

1

∇ϕ)⊥,

where Y = (0,Y2), Z = (0,Z2) and (
1

∇ϕ)⊥ is the component of
1

∇ϕ tangent to the

copies of M1
1 in M1

1×M2
1 . Thus, sinceϕ is a function on M1

1 only, (
1

∇ϕ)⊥ = (
1

∇1ϕ, 0),
and it follows from

τ (π1) =
n2

1

2ϕ2
π1∗(

1

∇ϕ)⊥ =
n2

1

2ϕ2
(

1

∇1ϕ) ◦ π1
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(see the proof of Theorem 2) that
1

∇1
Xτ (π1) = 0 for every X = (0,X2). Then as in

the proof of Theorem 4,

(∇∇π1∗)(X,Y,Z) =
1

n2
1

( 1

∇Xτ (π1)
)

g1(Y,Z) = 0

for every X = (0,X2), Y = (0,Y2) and Z = (0,Z2). Hence since∇∇π1∗ is tensorial,
(∇∇π1∗)(X,Y,Z) = 0 for every X, Y , Z tangent to the copies of M2

1 in M1
1 × M2

1 .

In the statement of Theorem 4, the assumption on ∇∇ f∗ can be replaced by an
assumption on the Ricci tensor for the following special case.

Let (M1, g1) = (M, g) and (M2, g2) = (R
m, 〈 , 〉), where 〈 , 〉 =

∑m
i=1 dxi ⊗ dxi

is the Euclidean metric tensor on R
m. Then note that, if f = ( f1, . . . , fm) : (M, g)→

(R
m, 〈 , 〉) is a map then

∇ f∗ =

m
∑

i=1

H f
∂

∂xi
◦ f and τ ( f ) =

m
∑

i=1

(∆ fi)
∂

∂xi
◦ f .

Corollary 2 Let a submersion f = ( f1, . . . , fm) : (M, g) → (R
m, 〈 , 〉) satisfy the

local Möbius equation with Ric(U ,X) = 0 for every U ∈ Γ(ker f∗)⊥ and X ∈ Γ ker f∗,

where Ric is the Ricci tensor of (M, g). Then (M, g) is locally a warped product (M1 ×
M2, g1 ⊕ ϕg2), where (M1, g1) and (M2, g2) are Riemannian manifolds and f : M1 ×
M2 → M1 is the projection map.

Proof By Theorem 4, it suffices to show that (∇∇ f∗)(X,Y,Z) = 0 for every
X,Y,Z ∈ Γ ker f∗. Also note that, by the proof of Theorem 4, since

(∇∇ f∗)(X,Y,Z) =
1

n−m

(

DXτ ( f )
)

g(Y,Z),

where D is the Levi-Civita connection of (R
m, 〈 , 〉), for this, it suffices to show that

DXτ ( f ) = 0 for every X ∈ Γ ker f∗. Thus, for X ∈ Γ ker f∗, since

DXτ ( f ) =

m
∑

i=1

X(∆ fi)
∂

∂xi
◦ f ,

we need to show that X(∆ fi) = 0 for every X ∈ Γ ker f∗. Now first note that, since

(∇ f∗) = H fi

∂
∂xi ◦ f , as in Remark 1, h fi

(X) = ∆ fi

n−m
X for every X ∈ Γ ker f∗. Hence

for X,Y ∈ Γ ker f∗,

R(X,Y )∇ fi = ∇X∇Y∇ fi −∇Y∇X∇ fi −∇[X,Y ]∇ fi

= ∇X

(

∆ fi

n−m
Y

)

−∇Y

(

∆ fi

n−m
X

)

−
∆ fi

n−m
[X,Y ]

=
1

n−m

(

X(∆ fi)Y − Y (∆ fi)X
)

,
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where R is the curvature tensor of (M, g).
Also for Y ∈ Γ ker f∗ and U ∈ Γ(ker f∗)⊥, since (ker f∗)⊥ is totally geodesic,

g
(

R(U ,Y )∇ fi ,U
)

= g
(

R(∇ fi ,U )U ,Y
)

= 0.

Thus, if {X1, . . . ,Xn−m−1,Xn−m = Y} is a local orthonormal frame in ker f∗, we

have

0 = Ric(Y,∇ fi) =
1

n−m

n−m
∑

i=1

g
(

Xi(∆ fi)Y − Y (∆ fi)Xi ,Xi

)

= −Y (∆ fi).

That is, X(∆ fi) = 0 for every X ∈ Γ ker f∗ and hence (∇∇ f∗)(X,Y,Z) = 0 for every

X,Y,Z ∈ Γ ker f∗.

Remark 4 We finalize this paper with a note on the question of “when a local dif-
feomorphism between two Riemannian manifolds is a local isometry?”. That is, “is

there a global analytic condition on a local diffeomorphism between two Riemannian
manifolds, such as a partial differential equation satisfied by it, so that it becomes a
local isometry?”. In this paper we investigated a partial answer to this question in
terms of a submersion between two Riemannian manifolds satisfying a local Möbius

equation.
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