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Power and commutator

structure of groups

David Shield

The purpose of this paper is to prove a result about the power
and commutator structure of groups which generalises some results
of Philip Hall. The results presented here are the key to

determining the class of a nilpotent wreath product.

Introduction
0.1 SCOPE

If o and R are two elements of a group, their commutator is

defined to be

-1,-1
[0, B] = "B 0B .
An arbitrary group element may be regarded as a commutator
[a]l = o

with only one entry, namely, o ; if o and B are commutators, then
[a, B] is a commutator whose entries are elements of the disjoint union of

the sets of entries of o and B .

In Philip Hall's well-known "contribution to the theory of groups of

prime-power order" [4] it is established that in an arbitrary group there
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are relationships between the operations of commutation, powering, and
multiplication. 1In particular, his Theorem 3.2, as modified in 3.3 of the
present paper, states that for arbitrary elements o and B of a group,

prime p , and positive integer % ,

o h ok n(g)
(aB)P = of P TT{KZ; i g€ r}

where T 1is a finite ordered index set, and for each g in T ‘the

integer #(g) satisfies O = h(g) < h , and Kg is a commutator with at

h—h(g)}

least max{2, p entries from the set {a, B} .

This and similar relationships are studied in the present paper.
Essentially, the conclusion is that if a group element is expressed in
terms of a particular subset of the elements of the group by finitely many
applications of the operations of comutation, raising to the pth power,
and multiplication, then that element may also be expressed in terms of the
same subset by a finite sequence of operations in which all commutations
precede all pth powerings which in turn precede all multiplications -
that is, the element is expressible as a product of p-power powers of
commutators. Moreover, the final expression has weight at least as great,

measured by each of a family of weight functions, as has the given one.

The weight functions themselves are of some interest. They are used,
in 2.4, to define a family of descending central series of a group, which
includes as a special case the lower central series. These series and
weight functions, as well as main results already mentioned, are used in

[6] to determine the class of a nilpotent wreath product.

0.2 APPROACH

The use of the word "expression" in the preceding subsection reflects
one of the major difficulties in this undertaking. Suppose of = [B, v]
where o, B , and Yy are elements of a group; that is, the same group
element may be expressed in terms of a, B , and Y in two essentially

different ways. We wish to discuss the expressions rather than the element

itself, but how can they be named? The symbols "oP" and "[B, y]" denote

an element — the same element - of the group.

This difficulty is here resolved by the recognition (compare Ward,
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[7], p. 346) that the expressions are themselves elements of a free
universal algebra (see Cohn [2]) with operations corresponding to
commutation, pth powering, and multiplication in the group. There is a
homomorphism from this algebra to the group, under which each expression is
mapped to the group element which it represents. Although this paper aims
at results about group theory, its arguments are carried out mainly in
terms of universal algebras. A reader to whom these are unfamiliar should
keep in mind the idea that each element of the universal algebra is

essentially a way of obtaining a group element from a generating set.

It may appear surprising that the operation of inversion has been
omitted from the universal algebra. The need for it is avoided by the
choice of a set of generators for the group which includes the inverses of
all its- elements, and the observation that the inverse of a commutator

{B, a] in a group is simply the commutator [o, B] .

0.3 OUTLINE

In the first two sections, {I’ T, u}-algebras are introduced, with
some special types of elements (notably cpp-elements and scpp-elements)
and, in 1.3, several weight functions. Weight ideals, based on these

functions, correspond with important descending central series in groups.

When a group with the operations of commutation, raising to the pth
power, and multiplication is considered as a {1, ™, E}-algebra, several
laws, or identical relations (defined in 3.1) hold in it. Some of these
are used in 3.1 to define group-like varieties. The central theme of the
paper is a derivation, from these laws, of laws which express an arbitrary
element as a product of scpp-elements without loss of weight under any of

the functions defined in 1.3.

One step, in Section 4, is to derive laws linking an arbitrary element

with a product of cpp-elements, without loss of weight.

Section 5 interrupts consideration of laws to introduce subword arrays
for a cpp-word. In section 6, these are used to obtain further laws which

link a cpp-element with a product of scpp-elements.

0.4 NOTATION AND TERMINOLOGY

Elements of groups and algebras will be denoted by lower case Greek
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letters, such as o, B, ¢ , and Y ; mappings (and elements of operator
sets in universal algebras) by underlined Greek letters such as 4 Y and
T3 and integers and integer-valued functions by lower case Roman letters
such as a, b , and f . The symbols Z, N , and Al respectively denote
the sets of all integers, all non-negative integers, and all positive

+

integers. For I in Z , the underlined symbol I denotes the set
L={ieN:0=4<<1}.

Upper case Greek letters I', A , and @ are used to represent index sets;

it will save repetition later if the convention is laid down now that

unless otherwise stated, all sets denoted bj these symbols are finite and

ordered, so that, for example, such a product as I I {Gd : d € A} of

group elements is well-defined. Finally, upper case German script, here
represented by double underlining, for example V , is used to represent

varieties.

1. A {y, 7, u}-word algebra

1.1 WORDS AND SUBWORDS

Let £ be a countably infinite set, and et B be the {y, 7, E}'
word algebra on Z , where Y and up are binary operations and 7 a
unary operation (see, for example, Cohn [2], III.2, p. 117). The elements

of B are of precisely four possible types:
(i) elements of E ;

(ii) {y, 7, u}-rows of the form ofy where a and B are

words;
(iii) {y, w, u}-rows of the form am where o is a word; and

(iv) {y, w, u}-rows of the form aBy where o and B are

words.

Correspondingly, given a {I’ m, u}-word ¢ in B , define ¢ to be

a subword of § (written "p = ¢" ) if and only if either
(i) ¢ =y ; or
(ii) ¢ = aBy and either ¢ <a or ¢ =B ; or

(iii) ¢ =omn and ¢ =a ; or
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(iv) ¢ = ofy and either ¢ <a or ¢ <B .
If one of the conditions (ii), (iii), or (iv) holds, then ¢ is a proper

subword of ¢ (written "o < P" ).

If ¢ is a proper subword of Y , then there exists a finite sequence
lo; : © € n#l} of subwords of § such that

® =9y <@ < .en <9, =Y

which is maximal in the sense that for < in n , there is no subword ¢'
of ¢ satisfying
<o <. .
¢L ¢ ¢$+l

Corresponding to each word ¢ 1in B there exists a finite subset,

say {Ej : J € Qﬁ , of Z such that every element of Z which is equal
(as a word) to a subword of Y is contained in {Ej : J € gﬂ . To
emphasise this, the notation Y = w[go, cees gm—l) will sometimes be used.
There is no implication that every element of {Ej 1 J € m} should occur

as a subword of w[&o, cees m—l) .

If o is a homomorphism from B to a {I’ T, u}-algebra D such

that for ¢ in m , Eig =0 then $a is denoted

W(egs <o 0, 5) -
A subword of a word Y which belongs to EZ is called an initial
subword of ¥ .

Words in B which contain neither symbol ™ or u are called
c-words. Those which do not contain the symbol u are called cpp-words.

(The reference is to "commutator" and "commutator p-power".) Words of the

form an’ where & is a c-word and 7z = 0 will be called simple cpp-

words, abbreviated to scpp-words.

In order to simplify later notation, mappings y' and uy' from the
set of finite, non-empty ordered sets of elements in B to B are defined

inductively as follows:

Let A be a finite, non-empty, ordered set of elements in B . If
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jal =1, say A = {a} , then

Au' = o and AI' =qa .

If IAI >1 , then let A* %be the ordered set obtained by deleting the

"last element", o say, of A ; and define

Au' = A*E'ag and Ay' = Aty'ay .

That is, the effect of u' or y' on an ordered set is that of successive

application of the operation u or <y respectively to the elements of the

set arranged with left-normed bracketing.

1.2 THE TREE OF A cpp-WORD

In the following pages, much attention will be given to cpp-words;
that is, words not containing the symbol Mo The structure of a cpp-word
may conveniently be visualised in terms of a graph which is in fact a
rooted tree, or arborescence, except that the directions of the arrows
constituting its arcs are here reversed (for example, see Berge [1],
Chapter 3, §3, p. 33). There is a one-one correspondence between vertices
of the tree and subwords of the word, the root corresponding to the word
itself. Every vertex is considered labelled with the corresponding
subword. To each symbol Y in the word corresponds a pair of arcs

directed toward the same vertex, and to each symbol Toa single arc.
A formal definition may be made inductively, as follows:

(i) The tree representing an element & of EZ consists of a single
vertex labelled £ . of

(i1) The tree representing a word oBy
is obtained from the disjoint union of the
trees representing o and B , drawn with that
representing o on the left, by adjoining a
new vertex labelled afy which becomes its
root, and an arc directed toward this new 8
vertex from each of the previous roots labelled oy

o and B . The new arcs are referred to as -

y-arcs, sometimes as left- and right-y-ares, respectively.
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(iii) The tree representing a word ar is obtained from
the tree representing o by adjoining a new vertex labelled
on which becomes its root, and an arc directed toward it from
the previous root labelled o . The new arc is called a s

T-arc.
- an

The introduction of a distinction between left- and right-y-arcs
directed toward a vertex makes it possible to establish a one-one
correspondence between such trees with labelled vertices and elements of

B .

As examples, if § and n are elements of Z , and o and B are

the words
@ = gmmynty and B = Enymm ,

then the trees representing a and £ are:

When distinct subwords of a given word are equal as words, then

different vertices of the tree of that given word have the same label.

In the tree corresponding to a word ¢ , a vertex which is not the
terminal point of an arc must correspond to an initial subword of ¢ .

Such a vertex is called an initial vertex of the tree.

Through the remainder of this paper, tree diagrams will be drawn only
occasionally. However, large numbers of them were used in the process of
formulating the various definitions, statements, and proofs; and the
reader will probably find it an advantage to draw his or her own diagrams

quite frequently, and to formulate definitions in terms of the diagrams.

1.3 INTEGERS ASSOCIATED WITH WORDS

The first two functions to be defined are from the set of ordered
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pairs {{¢, ¢) : y € B and ¢ =P} to the set N of non-negative
integers. ILet Y be a word in B and ¢ a subword of ¥ , and let

¢ =09y <9 < .S =Y

be the maximal sequence of subwords linking ¢ with Y described earlier.
Define k(¢, ¢) and Z(p, P) to be the number of subwords in the set

{(pi : 122 = n} which terminate in y and in 7 , respectively. [Note
that b =@ is not contained in the set. Subwords ending in u are

omitted from the counts.) When ¢ 1is a cpp-word, the directed path in the
tree representing Y from the vertex labelled ¢ to the root passes

through precisely k(¢, ¥) y-arcs and L(e, y) m-arcs.

+ ]
Several weight functions from B to Z will novw be introduced. The

most important of these, to be called c-weight and cpp-weight (again

referring to "commutator" and "commutator p-power" respectively) are in

fact special cases of more general functions which will be defined first.

Let p ©be a fixed prime, e an integer which may be either 1 or
p ,and a and b integers suchthat a=b 20 and a=1 (this use of

the symbols "e", "a" , and "b" will recur throughout this paper). The

function wz p: B+ 1" is definea inductively as follows:
bl

(i) if ¢ € £, then "’Z,b("’) =q;

.. . e _ .. e .
(ii) if ¢ = 0By , then wa,b(w) = wa,b(a) + wa,b(s) 3

amr , then

(iii) if o
(a) w;,b(w) =wi,b(a) +b and

a,b(a) ; and

(b) "’Z,b(‘p) = pif
(iv) 4if ¢ = oBu , then wj B = min{wz b(a), wfl b(B)} .

For example, if § and n are elements of Z , then

1 =
wa,b(En*_rm_r) =3,
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wg,b(énxnx) =3,

[

1
wa,b(EEnlnlgg) 3¢ +3b ,

Wb (Emnynyrn) = a(p>+2p?)

ard
Wb (Emnynymagn) = a .

The function wg b is independent of p ; in fact it is easy to see
3

that for all ¢y in B ,

The function wi b does depend on b . An easy way to compute its value
3
is to note that if a cpp-word ¢ contains 7 symbols y and m symbols

7 , then wi b(w) = a(l+1) +bm .

>

In the application to wreath products in [6] these weight functions
are used in a normal subgroup of finite p-power index in a group, and the
integers a and b depend on the quotient group. When the quotient group

is trivial, a =1 and b =0 . This special case is the important one

is the c-weight function and wp the cpp-

already referred to: wl 1.0
k]

1,0
weight function.

These simpler functions may be defined for a word, not only as a

23]

whole, but also with respect to each element of the generating set
That is, functions from B x

3]

to N are defined as follows: for all §
in = ,
(i) if ¢ € = , then
1 if =g ,
c-wt(y, £) = cpp-wt(yp, &) =
0 if yp#¢&

(ii) if y =aBy , then
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c-wt(P, &) = c-wt(a, &) + c-wt(B, &)
and
epp-wt(y, &) = cpp-wt(a, £) + epp-wt(B, £) ;
(iii) if ¢ = am , then
e-wt(y, &) = c-wt(a, £)
and
epp-wt(y, &) = p.cpp-wt(a, &) ;
and
(iv) if y = ofp , then
e-wt(y, &) = min{e-wt(a, &), c-wt(B, &)} ,
and
cpp-wt(y, &) = min{epp-wt(a, &), cpp-wt(B, £)} .

Note that for all words Y in B ,

4]
——

cwt(y) = w] ((¥) = T le-wt(y, £) : € ¢

and
cpp-wt(y) = wf (W) = ¥ {epp-wt(y, &) : € € E}

In the special case that ¢ is a cpp-word, simple interpretations of
these weights are available. For example, it is easy to see that
c-wt(¢, £) 1is equal to the number of occurrences of the symbol & in the
word ¥ . This in turn is equal to the number of vertices labelled & in

the tree representing Y . Correspondingly,

cpp-wt(y, &) =) {pz(p,w) :p<y and p=E} .

For words not containing the symbol = , the c-wt and cpp-wt take
equal values. In particular on a c-word, which corresponds to a commutator

in a group, both take values equal to the usual commutator weight.

The following lemma deals with the behaviour of the weight functions

on a cpp-word under operations that may be regarded either as endomorphisms
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of B or as "substitutions" into words.

1.4 LEMMA

Let ¢ = w(go, e gm] be a cpp-word, and for i in m let
a; = ui[go, cees El(i)-—l) also be cpp-words. (Without loss of gemerality,
it may be assumed that m = L(Z) for all i in m ; then set

o, = ai(go, cees gm) for all 1 1in g_.) Let o be an endomorphism of

B such that g0 = oy for all i in m . Then, for all h in m and

all integers a and b satisfying a=2b =20 and a=21,

(a) wcll ploa) =% {C-W‘t(cp, F,i)wi,b[aij : 1€ ﬂ} + wi,b((p) - wi‘l’o(cp) ,

3y

a

(b) wp,b(¢g) =y {cpp-wt(¢, gi]wg,b[ai] AN ] m} .

() c—wt(pa, th =Y {c-wt(o, gi)c—wt[ai, gh) 4 €m} , and

(d) cpp—wt(wg, gh) = Z {cpp-wt(w, EiJch-Wt(ai’ Eh) 1 1 € m}

Proof. The proofs of (a), (b}, (¢}, and (d) are very similar in
outline, proceeding by induction on the number of symbols y or g in the

word ¢ , and treating separately
(i) the initial case, where without loss of generality
® =&y and ¢a =0,
(ii) the case in which ¢ ends in the symbol y , and

(iii) the case in which ¢ ends in the sumbol

[E]

The details are routine, and are omitted.

1.5 PRE-ORDERS ON B

A relation denoted =' 1is defined on B by the condition that
o =' B if and only if every weight function defined in 1.3 takes at o a
value less than or equal to its value at B . More formally, o s' B if
and only if for all integers @ and b such that a=2b» =20 and a=>1,
all e in {1, p} , and all & in E ,
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1A

v, pla) s Wl (8)

c—wtla, £) = e-wt(B, &) ,
and
cpp-wtla, £) < cpp-wt(B, &) .

The relation =<' is clearly transitive, and is therefore a pre-order.

It is reflexive, but is not antisymmetric, even on cpp-words.

For example, if

o = g(g)PYemny ana 8 = g(gy )P nEmy

~ E \\ E
o
B
then
wi,b(a) = ”i,b(B’ = a(p+l) + 2b ,
2
“’g,b(“) = “’5,1)(3) = a(p4p) ,
c-wt{a, £) = c-wt(B, §) =p + 1,
and

cpp—vwt{a, £) = cpp-wt(B, E) = P2 +tp.

Nevertheless the structures of the words o and B are quite different,
as can be seen by considering values of IZ(p, a) and Z(p, B) for various

initial subwords p .

A non-reflexive relation <" is now defined as follows: o <" B if

and only if o =<' 8 , and for all suitable integer triples (a, b, e) ,
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o pla) < (8) .

w
a,b a,

Note that <" 1is also a pre-order. The preceding example makes clear

that " o <" B " is a stronger statement than " ¢ <' 8 and a# 8 ".

The pre-orders are affected in the obvious ways by operations vy, n ,

and u 3 namely:

(a) a <" aBy ;
(®) a='an ;
(¢) By =’ a;
and "respect" the operations, in the sense that if oy <! B, and

0y <! 82 , then:
(a) o 05y <! 81821 H
(e) amm ='Bm;
'
(f) Q05 = 8132g .

Implications similar to (d), (e), and (f) with <" replacing =<' also

hold. Note also that
(g) a='B, and as'B, = as' BBy .

One special situation in which these relations will frequently be used
deserves comment. If T and A are finite (non-empty) ordered sets of
cpp-words, then the relation FE' <! AE' holds if and only if for each
weight function w defined earlier and each element B in A , there
exists o in T such that w(a) < w(B) . Since in general the choice of
o depends on w as well as on B , it does not necessarily follow that
for each B in A there exists o in T such that o =<' B . A useful

o=<'Rg

L 1" "

exception holds when |T| =1 ; the statements "o =' Au' " and

for all B8 in A " are equivalent.
1.6 LEMMA.
Let ¢ = ¢(£O, I l) be aword (in B ) and for i in m let

oa. and B. be words such that o. =<' B. . Then
1 T 7 i
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(p(ao, e am—l) <! q;(BO, ey Bm-l) .

If, further, for some i in m,

c—wt( , Ei) > 1 and o <" Bi s
then
(D[OLO, LR} am—l) < (P(Bo’ ey Bm—lJ .

Proof. (i) If ¢ contains no symbols y, n , or u , then without

loss of genera]:ity o = EO , and all conclusions of the lemma clearly hold.

For the remaining cases in which ¢ does contain at least one symbol
Y, ™ , Or u , suppose inductively that the result is already established
for all words with fewer such symbols. Let a and B be endomorphisms of

B defined by

for all 4 in

B

and

Ea =&, and E8 =g, for all £ in E\{g, : 7 €m} .

Hence q)(o.o, vy am—l) = ga and (p(eo, e, Bm—l) = g8 .

(ii) If ¢ = ¥ VoY » then by the inductive hypothesis ¢,a <! v.8
and Vo2 <! \p2§ . Hence, by property (d) in 1.5.
L] = (‘Pl‘Pgl)E s! (wlu’gl)g = (pﬁ 4
as required. If for some 7 in m , C—Wt(w, gi) > 1 and o, <" Bi s
then there is an element d in {1, 2} such that c-—wt(qjd, F’i] >1,
whence by induction wd‘l <M wdg ; and again the required conclusion

follows.

(iii) If ¢ =yn , then from either of the relations Yo <' Y8 or
Yo <" P8 , the corresponding relation between ¢a and ¢B follows

immediately, by property (e} in 1.5.
(iv) If ¢ = \pltpau , then the inductive hypothesis states that

Yoo <! ¥, 8 and 15 <! ¥,8 , whence by property (f) in 1.5, the required
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result follows. If for some < in m , c—wt@p, Ei) > 1 , then both

c-wt(wl, Ei) > 1 and c—wt(wQ, gi] > 1 . Thus, inductively, if o < Bi

then both wl% <" wlé and wéﬁ <M ¢2§ , and the required result follows as

before. 0

2. Other {y, n, ul}-algebras

2.1 DEFINITIONS

Every countable {1, T, E}—algebra is a homomorphic image of the word
algebra B described in 1.1. The homomorphic images of c-words, cpp-
words, and scpp-words are referred to as c-elements, cpp-elements, and
scpp~elements respectively. 1In a group, a c-element is more usually called
a commutator, and the homomorphic images of the initial subwords of the

corresponding c-word are called its entries.

There are difficulties in extending definitions of weight functionms,
or the pre-order relations =<' and <" +to general {y, w, u}-algebras.
For example, there may be many different words in B , with different

weights, mapped by a homomorphism to the same image.

For a given weight function w on B , a countable {y, m, p}-algebra
D , and a surjective homomorphism o« : B + D , it is possible to define a

+
function from D to Z u {»} by setting, for all § in D ,

max{w(p) : pu = §} if this exists
w(s, a) =

o if no such maximum exists.

+
Correspondingly, a weight function from D to Z u {x} which is
independent of a particular homomorphism may be defined by setting, for all

§ in D ,

max{w(8, o) : o & surjective homomorphism from B to D}
w(8) = if such a maximum exists

o if no such maximum exists.

This procedure involves the possibility that different weight functions
might, for a fixed element of D , take values related to quite
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differently-structured elements of B , so that the relationship between
values taken by different weight functions on a fixed element of D is
lost. Such an approach is implicit in the use of the weight ideals defined
in the next subsection.

Comparisons between elements of D may be made in terms of relations,
again denoted <' and <" , defined as follows:

for arbitrary p and ¢ in D, p =' ¢ if and only if for

every word ¢ in B and surjective homomorphism o#* from B

to D such that ¢u* = p , there exist an element § in B and

surjective homomorphism o from B to D such that ¢ <' ¢y ,

Ya =0 , and for all & in E which occur as subwords of ¢ ,

£a = Ea* . (The last condition implies that ga = go* =p )

Relation <" is defined similarly. Both relations defined in this

way are transitive; the proof is routine, and is omitted.

2.2 WEIGHT IDEALS OF {y, m, u}-ALGEBRAS

As before, let p be a fixed prime, and a and }p integers such
that @2 b >0 and = 1 . Suppose that the generating set = for B

is & = {gi : 7 € N} . Now, corresponding to sets of non-negative integers
{2(e) : e =1 or e =p},{w(Z) : £ €N} , and {v(Z) : © € N} ,

satisfying the conditions that ) {w(Z) : 2 € N} and } {v(Z) : © € N}

are finite, let I be the set of words o 1in B satisfying the

conditions:

(a) for all e € {1, p} » wj Hla) = 2(e)
(b) for all < €N , c-wt(a, Ei) > w(Z) , and
(¢) for all < ¢ N , cpp-wt(a, gi) = v(Z) .

The set J dis closed under the operations Ys T o and T In fact, if

o €I and B € B, then ofy €I and Boy € I . 1If the operation u is
regarded as playing the role normally played in an algebra by addition, the
set I may be called an ideal of B .
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If D is an arbitrary {y, =, u}-algebra and o is a surjective
homomorphism from B to D , then the image in D of an ideal in B is

again an ideal, in the same sense.

Conditions (b) and (c) may be made trivial by setting w, =V, = 0

for a1l Z in N . The ideals defined in this way by condition (a) only
are easily seen to be fully invariant, mapped into themselves by every
endomorphism of B . Such ideals of B , and their images in other

{I’ T, E}—algebras, will be called weight ideals. Lemma 2.3 shows that a
weight ideal in an arbitrary {y, =, ul-algebra is independent of the

surjective homomorphism from B to the algebra used in its definition.
2.3 LEMMA

If I 4s a weight ideal of the {y, m, u}-word algebra B , and if «
and B are surjective homomorphisms from B to a {y, m, nl-word algebra
D, then Ia = IB .

Proof. From the symmetry of the situation, it is sufficient to show
that Jo c I8 . let p € Jao . Then there exists a word, say
¢ = ¢(go, ceny gz l) in I such that oo =p . Since E is a

surjection, for each 7 in 2z there exists a word Xi in B such that
Xi§ = Eig 3 then w(xo, . Xz—l)§ =¢a =p . However, by Lemma 1.4 the

word ¢(X0, ey Xz l) has at least as great a value under each weight

function wz used in the definition of I as has ¢ = ¢(£0, vees &

,b z_l) 5

and hence Q(XO, cees Xz—l) €I . Thus p € I8 , as required. o
2.4 DESCENDING CENTRAL SERIES
Let w; b be one of the weight functions defined in 1.3, and o« a
, =

surjective homomorphism from B to a {1, T, g}-algebra D . Define

ash,e _ .8 -
Y, (B) = {¢> €B : wa’b(w) > v}

and

¥2P>4(p) = {(pg o € Yﬁ’b’e(s>} :

The series
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ibe(D)Dyabe(D)g Dy :b,e

(D) > .
obtained in this way from each of the weight fuuctions is strongly central

.. +
in the sense that for all Z, j in Z ,

v&P>2(p) asbsep)

s Y EYs a,b.e(

1+] D)

¢ € only if oYy €y

It is not hard to see that the series based on the weight function wi 0
k]

is the most rapidly descending of these series. In fact, a routine

inductive proof shows that it descends more rapidly than any other central

series - which, when D 1is a group, identifies it as the lower central

series.

For each weight function other than wl , it is also true that

1,0
a,b,e . ab,e
¢ €y, (D) only if om €y 1, (D)
In a group, this means that the factor YZ’b’e(D)/y3+€’e(D) is not only

central, but elementary. A similar inductive proof shows that the series

based on the function wi 1 is the most rapidly descending elementary
3

central series.

A series which appears particularly important in the study of

extensions by p-groups is that defined by the function wg 0" This is
bl

the most rapidly descending central series such that

a’b’e(D) only if om € Ya b’e(D)

® €Y, o :

and is here called the cpp-series.

When D is a group G , set

v;(@) = v£ (@)
ei(G) = l 1, l(G) s

and

ni(G) = Yi’o’p(G)
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Note, however, that the lower elementary central series and the cpp-series

are well-defined only after the prime p has been chosen.

3. Group-like varieties of {y, m, ul-algebras

In this section, the idea of a law is introduced. When a group is
considered as a {:{_, m, E}-algebra, with commutation, raising to the pth
power, and multiplication as the three operations, many laws hold. Some
obvious ones are not considered in this section, but those that are chosen
for the definition of a grouplike variety, and checked to hold in all

groups, are sufficient for the calculations in later sections.
3.1 DEFINITIONS AND NOTATION

Following Cohn [2], IV.1, p. 162, define a law in a {y, 7, E}—algebra
to be a pair of words in B x B . The law (6, ¢) is said to hold in a
{y, m, pl-algebra D if under every homomorphism o : B >D , the words 0

and ¢ have the same image, that is, 68a = g¢a .

The variety defined by a set of laws is the class of algebras in which
all laws of the set hold. The statement that a law (8, ¢) holds in a

variety ¥V will be denoted 6 < ¢ .
et &, n, T, Ei for ¢ in N , and n; for 7 in N be elements
of Z . A group-like variety of {y, m, ul-algebras is defined to be a

variety V with laws of the form:

(i) gnugu A Enzupy  (that is, the operation u is associative);

<

(ii) nép
multiplication, then this law identifies y as the

Enun&yu (if u is identified as group

operation of commutation);

(1ii) E(Ep)p_l A gn  (again, if u is identified as group
miltiplication, then this law identifies T as the

operation of raising to the pth power);

(iv) for arbitrary finite sub-ordered-sets T and A of N,

{gg :g € F}H'{nd 1 d € A}E’Il {ggndx : (g, d) €T x A}U'{Ct : t € Ol}g'u
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where for ¢ in Ol ’ Ct is a c-word and there exists a
triple (g(t), d(t), h(t)) either belonging to T x A x T
such that g(¢) # h(¢) and
1]
Eg(e)a()Bn(2)L =7 By

or belonging to I x A x A such that d(¢) # #(¢) and

Eg(eMd(e) ()L = Bt
(If the product indexed by Ol were deleted from the right-hand side, this
law would say that the operation y distributed over the operation y .)
(v) For arbitrary finite sub-ordered-set A of N , and m

. +
in 7 ,

v
{Ed td € A}E'ﬂm = {Ctﬂz(t) : t € 02}3'
where for all ¢ in 02 » Ct is a c-word and

{c—wt(;t, gd] :d e A}l = pm—l(t).

Further, there is a subset @5 of 62 such that

{;tzz(t) &€ 65} = {Edzm :d € A} s

and for each ¢ in 02\9* , there are at least two

distinet elements d in A such that c-wt(g s & d) = 1.

(If the terms indexed by elements of @2\05 were deleted from the

right-hand side, this law would say that the operation = distributed over

the operation u .)
. . . +
(vi) For arbitrary m in Z ,

(a) Eﬁmni I Enzzm{Ct[Z(t) tto€ 93}g'g , and

i<t

(b) Enr'y {Ctzl(t) :t € Oh}g'Enﬂmt_l ;

where for each ¢ in 63 s Ct is a c-word such that
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Z(t)}

c-wt (Z, , £) = max{2, P and c—wt(ct, n) 21, and

for each ¢t in Oh . is a c-word such that

Cte

C_Wt(ct’ E) > 1 and C—Wt(ct, n) > max{z’ pm"l(t>}

[If all terms indexed by ©, and Oh were deleted from the right-

3
hand sides, and if the language were stretched a little to refer in this
way to a binary and a unary operation, then this law would say that the

operations y and 7 commuted.)
It should be noted that because elements of the sets {Ct : t € Oi}

for 1 <4< <4 are not fully specified, (iv), (v), and (vi) are not,

strictly speaking, laws; but are conditions which laws must satisfy.

Note that in each of the six types of law, the expression on the
right-hand side is a y-product of scpp-words. Also, if the left-hand side
is o and the right-hand side is B , it can be checked that a =<' B .

Note also that when [ 1is a cpp-word, the statement " c-wt(g, &) = n"
is equivalent to the statement "the word [ has at least »n distinct
subwords, all equael as words to & ". The latter interpretation will be

used in some applications of these laws, particularly in Section 6.

Simplified notation and terminology is now introduced, in the light of
the application of this theory of {y, w, pl-algebras to groups. The
operation 1 will be referred to as multiplication and denoted simply by
Juxtaposition; that is, aBu will be written as aB . The familiar
symbol I before an ordered set of elements of a {y, w, u}—algebra will
replace E' after the set, and o and B will be called factors of the
product oBf . Similarly, the expressions 0By, {ai : 1 € gﬂy' , and
)n

a(By will be written [o, B], Exo, U oeees am_l] , and [a, nB] ,

respectively. However the expression oan 1is retained, because the
ex i p ()Pt
pression o now means oloy .

The laws, in this notation, are:

(1) (en)z L £(ng) 5
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(ii) ng < enln, €1 ;
(iii) g Lgp
(iv) U’T{&d dea}, Tl In :ger}:l
—T—{[ﬁd,n] (dyg) eaxTy TT{z, : teo};

(v) [T—T {Ed : d € A})zm y T_T {Ct : t € 02} 5

{(vi) (a) [g'r_rm, n] T e, ”]Em TT {;t t b€ 03} ,

i

(b) [£, na"] =TT {z, : t €}, nld”

where the symbols and sets are as described earlier.

The first consequence of these laws to be worked out deals with the
type of substitution considered in Lemmas 1.4 and 1.6, in the special case
where ¢ 1is a cpp-word, only one initial subword of ¢ is mapped non-

identically, and that subword is mapped to a product of cpp-words.

3.2 LEMMA
Let ¢ = cp[go, cees £ 1o Em) be a cpp-word in B such that
c-wt (o, &jm) =1 . Let B be an arbitrary cpp-word in B , and

o, : T €n} a set of cpp-words such that B =<' a =TT {a, : 2 €n} .

Then every group-like variety V has a law of the form

0(Egs ++vs Epys @) TT T {08 -os Epps o) + L €nh TT {6, :d €a},

where for each d in A, § d is a cpp-word such that

(p(t:o, s Ep s g) =’ Sd R
for h in m,

c—w‘t(dd, EhJ 2 C—W't((D, Eh) + 2 C-W(Ba Eh) >
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c-wt[Gd, gm) > 2 c-we (B, &m)

Proof. Proceed by induction on the number of symbols y or = in

the word o

Case (1). If ¢ has no symbols y or = , then ¢ = gm and

¢(§O, cees £ 0 o) =a=] {az : 1 €n} . The statement of the lemma
clearly holds true, with A = ¢

For the remaining cases, in which the word ¢ terminates in either vy
or m , assume inductively that the result is already established for all

words with fewer symbols equal to y or = than has ¢

Case (ii). If ¢ =Yy = [‘”1’ lpe] » then either c-wt(y,, gm) =1
and C~Wt(¢2s Em] = 0 or the roles of wl and wz are reversed. Assume

the former; the proof is essentially the same in either case. By the

inductive hypothesis,

Uy (Egs <ovs &y ge @)

<

ey

<
'_l

~

['aal
o

2

e & 1 aZ] c2ent 7T {cd : d ¢ Al}’
wvhere for each d in A, ,
v (Egs --os &0 B) 5" Ty

for all 2 in m ,

C-Vt(?;d, th = C-Wt(\l)l, gh) + 2 C—W’t(B, Eh) ]

C—Wt(Cd, &m) > 2 c-wt(B, EmJ
Now

(EO’ LR ] gm—l’ (1)
= Wy (5gr -oen gy @) Wp(E00 om0 By s ]

1 Ej— W (8gs <o By o) 2 €nk TT {gy :denl, w;‘

Application of law (iv) to the last expression above gives
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’X—ﬁ {E”l(go’ tees E‘m—l’ aZ)’ wz] : 1€ 71} T_' {[Cd’ l])a] :d € Al}
TT 1z, + desyl,

where for d in 8, 5 there exist elements oo and S5 in the set
{wl(io, cees B9 OLZ] : 1€ 1_1} u {;d :d € Al} such that
15 ¥y 0,] = Ly -
For each I in pn ,
WyEgs +-v5 Epons @) W) =0(Eps -+s € 15 o))

For each 4 in A Lemma 1.6 shows that

1°?
‘p(goa sey m_l) 8) = [‘pl(EOQ cety m_l, B)s po] =! [Cda IPQ]

and Lemma 1.4 that for % in m ,

e=wt([z s Wpls §)) = c-wt(Uys £) + 2 c-wt(B, £) + c-wt (v, &)
c-wtfp, £,) + 2 cwt(8, £,)

v

and that
c—wt([gd, 1})2] ’ Em] > 2 c-wt(B, gm)

Thus each word of the form [gd, w2] for 4 in A is of the required

1

form. If, for 4 in A2 , one of the corresponding words 61 or 02

from the set L, :d €A , then g fortiori T satisfies the same
d 1 d

is

conditions. For all other d in A2 ’ Cd = [Sl, wg, 02] where both 01
and 9, are in the set {q)l(go, s B 1o az) 11 €n} ; and agein it is
routine to check that the appropriate conditions are satisfied.

Case (iii). If ¢ =yr , then c-wt(y, gm] =1 . If for some non-

negative integer n , ¢ = Emgn , then the required result follows

immediately from law (v). Otherwise, by the inductive hypothesis,

W(Egs +vs By 1o @) -—!|_['{1p(go, cees g s 0p) 1 €n} T_T{c,d : d 6A3} ,
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where for each d in A3 ,

V(Egs vvvs Epqn B) <M Eg
for all h €m ,
e-wt (g4 &) 2wt (v, £) + 2 et (B, &)
aud
c-w-t(gd, gm) > 2 c-wt (B, gm)

Application of law (v) with m =1 gives
V- 1{d)
(P(goa ey Em_l, 0.) = I I {Cd'll : d € Ah} ’

vwhere for d in 8y, » Ty is a cpp-word; the set {CdEZ(d) : d ¢ Ah}
contains {w(go, ceey gm_l, az] : 1 € g} and {CdE : d € A3} as subsets;
1(d)

and for those d in Ah such that EdE is not in one of the sets
already mentioned, either I(d) =1 and g has at least two distinect

subwords equal to words from the set
{‘J)(EO, veny Em—l’ GZ) : 1 ¢ Ll} V] {Cd :d ¢ A3} N
or 1(d) =0 and t; has at least p distinct subwords equal to words

from the same set. In each of these cases it is easily checked that

i(d)
ﬂ

Cd satisfies the required conditions. 0

Lemma 3.4 will show that the variety of all groups is a group-like
variety of {y, m, u}l-algebras. This proof involves the adaptation of some

well-known results, gathered here for convenience as Lemma 3.3.

3.3 LEMMA

Let a, B, and Yy be elements of a group G , and h be a positive
integer. Then

(a) (see, for example, Huppert [5], Kapitel III, Hilfsatz 1.2,
p. 253),
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(o8, v] = [, v18I8, v

lo, 8Y] = [a, y]la, 8]

(b) (ef. Hall [4], Theorem 3.2}.

onPea TT {ngh(g) g€ Pl}

where for g in Ty, O0=<nlg) =h and Ky is a

(oB)n”

commutator in G with at least ph-h(g )

set {a, B} ;

entries from the

(e) (ef. Hall [4], Theorem b.1h, where the same argument is used
in a more specialised context. Haebich gives a more

detailed result in terms of basic commutators in [3], Lemma

3.4.6)
[Onlh, 8] = la, 5]1_1_h ﬁ{KgEh(g) P g € I‘2} ’
fos 8" = TT {9+ g e rbta, 1

where for g in T,, O0=hlg)=h and Ky is a

cormutator with at least ph—h(g) entries from the set
{a, la, BI} , and hence may also be expressed as a

h-h(g)}

commutator with at least max{2, p entries equal to

o and at least one equal to B ; and for g in Tg,

0= hig) =h and «_ may be expressed as a commtator

h—h(g)}

with at least max{2, p entries equal to B and at

least one equal to o .

Proof. Statement (q) is so familiar as to require no proof. It is

easily verified by expanding both sides.

Theorem 3.2 of [4] is stated as holding modulo a term of the lower

dentral series. However, if statement (p) holds modulo the phth term,

Y h(G) , then it is true as stated, since an arbitrary element of vy h((;')
p p
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is, by definition, equal to a product of commutators of weight at least

h
r .

(In terms of Hall's proof, the condition of nilpotency is required to
ensure that his "commutator collecting process" terminates after finitely

many steps. If this process is continued until all commutators of weight

less than or equal to ph - 1 are collected (a finite process) then the
expression remaining, though not in "collected form", satisfies the

requirements of the present lemma.)
Another point to be noted is that the terms of the final product are

hig)
claimed to be of the form Kggh(g) = Kp where Hal |l gives only K;(g)

g

where ph(g?|e(g) . This change may be achieved simply by rewriting K;(g)

hig)

as a product of factors each equal to Kgn or its inverse.

To prove the first part of statement (e}, note that

Eugh, 8] =a® (of )8

U
Q

3
2
Q
™
3

and then use part (b) to show that

h h h
(ale, 8P = o [a, 8T° T‘T{Kggh(g) FEEA
which gives an expression of the required form.
The second part of statement (¢) follows from the first by the
observation that for all & and n in ¢, [, n] = [n, E]—l . 0
3.4 LEMMA

The variety of all groups is a group-like variety of {y, , E}'

algebras.

Proof. Laws (i), (ii), and (iii) clearly hold. What remains to be

proved is that laws (iv), (v), and (vi) hold in an arbitrary group G .
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To show that law (iv) holds in G , let {ai : 1€ g} and
{Bj : J € g} be non-~empty sets of elements of G , and proceed by

induction on m + n to show that
[TTHe; s ¢ emd. TTH8; + €l
=|—T{[°‘7;’Bj] : (2, ) me7_z_}-|-_|{6d:d€lll},

where for each d in A, there exists a triple (<, j, k) either in

1
mxnxn with j# k such that hygfsdsl%,orm mxnxm
with < # k such that Eli’ Bj’ ak] <! Gd , where of course the relation

<' is that described in 2.1.

When m + n = 2 , the least possible value, the result is trivially
true. When m+#n > 2 , either m=> 2 or »n = 2 ; suppose the former.

From Lemma 3.3 (g) and then by the inductive hypothesis,

[[Tie; +éemb, TTHs, + 5 €]

L}

[T tog = € emah TTH5; 5 €] ™ [opar TT 5y ¢ 9 €]

Gl

[T‘H[ai, B,] : (4, 5) emlxnp TT{s, : g erl})
TT il 80 g ent TTHs, s g €ryl
where for each g in T, or T, , Gg satisfies the conditions required

1 2

of elements of the set {Gd td €A Since

aa’”
g

-1
=69®g,%hﬂ
-1
[o;5 8,1 = [o; 8,0[0;. B0 0 4] s

and since all new commutators introduced by rearranging the order of the
factors in the product above also satisfy the conditions required of

elements of the set {Gd : d ¢ Al} , it is readily seen that the expression
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above is equal to

TT{[%, BJ] 2 (4, F) e.ﬂxll} -’—r{ad : dEAl} ’
as required.

To show that law (v) holds in @G , let {“i : 1 € m} be an arbitrary

non-empty set of elements of G . Consider the proposition P{w) : Let

{éd :d € g} be a set of commutators, each with at least w entries from
the set {ai : 1 € mj , and let %k ©be the least non-negative integer such

h~k
p

w = 3 then
Yk o_ h(g)
[ﬁ{Gd.dGL}JTL—II{KgE tg €T5p,
where for g in F3 » 0=h(g) =k =h , the commutator Ky has at least
ph_h(g) entries from the set {ai : 1 € @} , there is a subset F; of F3
such that

k. = hig) | *}
{6d1 :d € g} {ng g € F3 ,

and for g in F3\F* , the commutator Kg has at least two entries from
the set {ai 17 €m} .
The proposition P(1) 1is the required result, that law (v) holds in

G . The proposition P(ph] is clearly true, since in that proposition

each Kg may be taken to be one of the 6d , and each k(g) to be zero.

For arbitrary w less than ph , suppose that P(v) is true for v > w .

Now proceed by a second induction, on I . When I =1 , the result
is trivial. Suppose I > 1 , and the result established for expressions

with fewer than [ factors. Lemma 3.3 (b) shows that
f k
U [{s; :4d ¢ z-l}.al_l]g
Yk k k
= [| {Gd : d € Z-l}JE . 62_13 . {591 (g) : g € Fh}’

k—k(g)}

where for g in I‘h » Gg is a commutator with at least min{2, pr
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entries equal either to the product | | {5d : d € Z-l} or to the element

8

7-1 ° By law (iv) applied as often as required, each such 69 for g in

Ph may be expressed as a product of commutators, each with at least

pk-k(d)}

min{2, entries from the set {6 : d € 1-1} , and hence as a

d
h-k (d)}

product of commutators each with at least min{au, p entries from

the set {ai : 1 € m} .  The inductive hypothesis on w shows that each of

these may be expressed in the required form. From the inductive hypothesis
. . k

on . , the expression | I {Sd :d € L1} |n may be expressed as the

product of a set of powers of commutators of the required form which

contains the subset {Gd[k 1 d € Z-l} . This, together with the factor

6 gives the distinguished subset required in the total product; and

k
z-1%
so the truth of P(w) is proved.

By induction the truth of P(l) follows, and law (v) holds in @ .

That law {vi) holds in ¢ 1is already shown in the proof of Lemma
3.3 (e). O

4. Laws connecting a word with a product of cpp-words

The laws referred to in the heading of this section are the first step
toward the aim of finding laws in a group-like variety which link an
arbitrary given word with the product of a set of scpp-words which have
appropriately heavy weights. Lemma 4.2 (q) is the central result; the

others are technical lemmas useful in Section 6.

4.1 COMPLEXITY
A proper subword B8 of a word o in B 1is called a g'-subword if
and only if
(i) the last symbol in B is y , and

(ii) the last symbol in the subword which immediately follows B8
in the maximal sequence of subwords linking B8 with o ,

is either y or =« .
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The complexity of a word o 1is now defined by
comp(a) =Y {k(p, a)+l{p, o) : p is a p'-subword of a} ,

where k and ! are as described in 1.3.

A word has complexity zero if and only if it is a (possibly trivial)

product of cpp-words.
4.2 LEMMA
Let ¥ be a group-like variety. Then:

(a) corresponding to an arbitrary word o in B , there exists

an ordered set A of cpp-words in B such that o =<' JIA
and o ¥ A

(b) corresponding to a word o <in B whose last symbol is vy ,
there exists an ordered set A of epp-words in B , all

ending in vy , such that o ='IIA and o v A 3 and

(e) corresponding to a word o in B which does not contain the

symbol w , there exists an ordered set A of c-words in B
such that a<' TA and o LTA .

Proof. Proceed by induction on comp(a) . If comp(a) = O , then in
each part of the lemma it is clear that the given word o already is in
the required form. Otherwise, o has a subword B satisfying the

conditions: either

(i) B =B8,Byum , or
(i1) B = B BBy or B = BB Bouy 3

where in either case R, and 82 , and in case (ii), B8 have complexity

1 3°
zero.

(That a subword B of one of the forms (i) or (ii) exists follows
from the fact that comp(a) # O ; that the subwords Bi of B have

complexity zero can be arranged inductively, because if one of the Bi had

non-zero complexity, it would itself have a subword B of strictly smaller

complexity, of one of the forms (i) or (ii).)
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Since B, and 82 are themselves products of cpp-words, there

1
exists, by law (i), an ordered set @ of cpp-words such that 8182u <!' 710

and  B.B,u A 6 . By law (v) in case (i) and law (iv) in case (ii), it now
follows that there exists an ordered set T of cpp-words such that

g =<' Il' and B J I’ . In the situation of part (e¢) of the lemma, no word
in T contains a symbol = ; and if the word £ ends in the symbol «y
{that is, in case (ii)) then each word in T also ends in the symbol 7y .

Suppose that o = a(&o, cees z—l) . Since B 1is a subword of o ,

there exists a word a' = a’(go, ey gz—l’ Ez) such that

0 =a'(Es +oes £y _1s B) T (Egs s £, 1, TT)

and from Lemma 1.6, o =<' a'(&o, e HP) . If the word o ends in

2-1"

the symbol vy , then either o' also ends in y or a' = gz and

o =B =1I . In the latter case, the proof of part (b) is complete. In the
former case for part (b), and in all cases for parts (a) and (e¢), the

expression a'(go, HF) satisfies all the conditions required of

s By qs
o in the statement of the lemma and has strictly lower complexity. From
the inductive hypothesis then, there exists a set A of cpp-words

satisfying the condition of the appropriate part of the lemma such that

as'a'(gy, ..., €, y» IT) =' TA

and

[t

aLa(Ey, s £, s ) L.

As both relations =<' and Y are transitive, this completes the proof. O

4.3 LEMMA

Corresponding to a group-like variety YV and an arbitrary word

a = a(EO, cees &g l) in B , there exists an ordered set A of c-words in
B such that for all & in A and all i in z,

c-wt (8§, Ei) > c-wt(a, Ei)
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and o A A .

Proof. Proceed by induction on the number of symbols =w in the word
a . If there are none, then the result follows immediately from Lemma 4.2
(¢). Otherwise, o must have a subword BE where B does not contain

the symbol = . Law (iii) shows that
Br < g(gu)P = P

and although the weight functions w°

ith ei = >
2.b wi either e =p or b=1

take greater values at BE than at Bp , it remains true that, for all ¢§

in E ,

C‘Wt(829 E) = C—Wt(Bpa g) .

Let o a'[EO, cees £, 10 gz) be the word in B with

1 such that

c-wt[a', EZ)

I<

a = a’(goa cecs E"z-l’ BE) a’lgo’ e gz-l’ Bp .

The last word above has fewer symbols = then has o , but has the same
c-weight in every element of Z . Hence the required result follows by

induection. O

5. Subword arrays

In this section, laws are no longer the subject of direct attention,
though the form of laws (v) and (vi) influences some definitions.
Attention is focussed again on cpp-words in the {Z’ T, E}—word algebra
B ; and corresponding to each, various subword arrays are defined, with
weights and a '"power integer" attached to each. The definition of a
subword array reflects the idea that, in the operation of laws (v) and
(vi), a symbol T may either remain, on the right hand side, at least as
effective as it was on the left or disappear; but in the latter case the
c-weight of a subword on which it acted on the left is increased at least
p-fold on the right.
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5.1 DEFINITIONS AND EXAMPLES

A subword array of a cpp-word ¢ is a family (constructed as
described below) of subwords of ¢ whose symbols w are labelled in a

suitable way.

A rn-labelled cpp-word is a cpp-word, ¢ say,

to which has been attached, at each symbol T, a 3
+

symbol from the set {*} u Z  in accordance with
the rule that for some fixed non-negative integer
n , the final symbol T in each subword of the
form pm has attached to it either the integer 2
I(p, p) +n or the symbol « . A basic
nm-labelling of ¢ is one in which n = 0 . For
exauple, Einyfeityd and ghnyleilyt ere
nw-labelled cpp-words {the former being basic), but
Emyfeifyf ena cinyfedfyE are not.

Let ¢ be a E-labelled cpp-word, and k a positive integer.
Partition the set of symbols T in ¢ labelled with the integer %k into

two (possibly empty) subsets, 5, and 5, . A k-propagation of ¢

corresponding to this partition is a family of m-labelled words, whose

elements are:

(i) +he labelled word obtained from ¢ by replacing, for all

7 in Sl , the symbol k attached to 7 by a symbol =*

(it 5, is empty, then the labelled word ¢ is included

without alteration); and

(ii) p - 1 distinctly-identified copies of each labelled
subword p of ¢ on vhich a symbol 7 in 52 acts.
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For example, let ¢ = E%%nlﬁc%icﬁr% 5

and k = 2 . Consider first the partition
such that Sl contains all symbols # in

¢ , and S2 is empty.

A corresponding 2-propagation of ¢

is simply: > -
{ertytchyehyd) -
Consider another partition of ¢ in which
Sl contains the second symbol % , and 32
contains the first and the third. A
1

corresponding 2-propagation of ¢ is

{&ﬁnv_?c’ﬁzcﬁﬁ(l)} U {E?%n_y_(i) :2<i=plulgld) :pal =i = p-1}

\

(1) (2) (p) {p+1) ... (2p-1}]

A subword array of a cpp-word ¢ 1is a family of m-labelled cpp-

words, constructed as follows. Let h = max{l(p, ¢) : pm = ¢} . Let E,

be a family whose only member is ¢ with a basic labelling not including
any stars (that is, to each symbol 7 in ¢ 1is attached the integer
Z(p, ) where p 1is the subword on which the symbol 7 acts). For

arbitrary k in A , suppose that Ek has been constructed, and choose a

(k+1)-propagation of each copy in Ek of a labelled word. Call the
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disjoint union of these families F

X4l Finally, E =F

n
As an example, suppose p =5 and ¢ = Enmy . Then
21
By = {gxmy (1)}
Now, for k =1 , choose 5, = ¢ and Sy to contain the only symbol %

in the copy of ¢ in EO .  Then

E

L= Efn (W} v {EB(0) 12 sisp)

( 3

b FPEEH

(1) (2) (3) (¥) (5)) .

[

\

Suppose that in each of the words (1), (3), and (5) the sole symbol g is
allocated to 55 > and that in words (2) and (4) it is allocated to S

Then
E, = {Ehiny(1), £5(2), £1(3), €5(4), £5(5)} v {E(e) : 6= ¢ =13} ,

(o

: 1
Iaoeoeoe:oafrogzoaoeje
{ 1 2 * 2 *
r

(1) (2) (6) (1) (8) (9) (3) (&) (10) (11) (12) (13) (5)) . 0

If ¢ is a subword of ¢ , and E 1is a subword array for ¢ , then
E must contain at least one labelled word with a subword equal to Y .
Each such labelled word tnduces a subword array for ¢ , in the natural

sense that during the construction of the array for 1 , each symbol Ll

occurring is treated in the same way (in allocation to an Sl or S2

subset) as was the corresponding symbol in the selected labelled word in
E . Other generated subwords, and symbols = contained in them, remain in

one-one correspondence throughout the construction.
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Suppose E = {p(Z) : © € m} 1is a subword array for a cpp-word. For

each £ in Z , define
c-wt(E, £) =Y {c-wt(p(i), E) 11 €m}

and

4]
-

e-wt(E) =Y {c-wt(p(2)) : 2 €m} =Y {c-wt(E, &) : & €

Define n(E) to be the total number of starred symbols 7 in labelled
words p(Z) for £ in m .

Corresponding to a given cpp-word ¢ , let E'm be the subword array
for ¢ in which every symbol m which occurs is starred; thus E’m
contains only one 11_-labelled word, a 11_—labelling of ¢ itself. Let E‘M
be the subword array for ¢ such that no symbol ™ in a word in E’M is
starred. Corresponding to each initial subword p of ¢ there are

Low) distinct copies of words in ¥ each containing a

precisely p M

subword corresponding to p , and equal as a word to o . Hence, for all
E in Z ,

C'Wt(Em, E) = C‘Wt(‘Pa E)

and

c-wt(EM, g} = cpp-wtlo, £) .

It is easy to see from the construction process that if E is an

arbitrary subword array of ¢ , then there exists a subfamily of E'M in

one-one correspondence with E such that corresponding elements are
n-labellings of the same word. In the other direction, F contains a
labelling of the word ¢ . Hence, for an arbitrary subword array E of ¢

and for all & in E

c—wt[E’m, E) < c-wt(E, £) =< c-wt(E'M, E_',) .

The arrays E’m and E’M are called respectively the minimal and maximal

arrays for ¢ .
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5.2 LEMMA
Let ¢ be a cpp-word and Em the minimal subword array for ¢ . If
E 1is an arbitrary subword array for ¢ , then

c-wt(E) = c-wt(E ) + (p-1)(n(z )-n(E)) .

Proof. If n(E’m) =< n(E) , then the conclusion is obvious. Otherwise,
in the construction of E , at least n(Em) - n(E) symbols 7 in the

basically-labelled copy of ¢ are left unstarred; and correspondingly at
least (p—l)(n(Em]-n(E)) copies of words, each of c-weight at least one,

are included in F in addition to the basically-labelled copy of ¢ . 0O

Given a subword array other than the maximal one for a word, it is
possible to construct for the same word another array with fewer stars and

higher, but boundedly higher, c-weight.
5.3 LEMMA

Given a subword array E for a cpp-word ¢ , and an integer 1 such
that 0 < 1 <n(E) , there exists a subword array E' for ¢ such that

n(E'") n(E) -1,

c-wt(E) + L(p-1) = c=wt(E') < ple—wt(E) ,

and for all & € =,

cowt(E, E) < cwt(E', £) = p'lc—wt £, E) .

Proof. The case I = 0 1is trivial. The form of the statement is
such that it follows immediately by induction from its special case
1=1.

Suppose then that 7 = 1 and that the array E for ¢ contains at
least one labelled word with a starred symbol = . Consequently, that
labelled word has a subword of the form pE where the array for op

induced by F is the maximal one, FM say, not containing a star. Note
that for all & in = ,

0= c-wt[FM, g) = c-wt(E, &) ;
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and for at least one & in Z |

c—wt(E, &)

1A

1= c-wt(FM, £)

Adding these inequalities gives

1= c—wt([h) < e-wt(E) .

Now a subword array E' for ¢ is constructed in the same way as
E , except that the final sumbol 7 of the copy of pm under

consideration is allocated to the 32 instead of the S subset, and

1

consequently E' contains p - 1 coples of in addition to a complete

Ty

copy of E lacking one star. Thus

and for all § € E ,

c=wt(E', £) = c-wt(E, &) + (p—l)c—wt(FM, £)

The inequalities for c—wt[FM, E] and c—wt(Ekﬂ written earlier now give

the required result. 0

The final result in this section links comparison of subword arrays
with the earlier comparison of words, when the heavier word is an scpp-

word.
5.4 LEMMA

Let E be a subword array for a cpp-word ¢ , and let x be a c-word
and h a non-negative integer, such that for all E € % ,

C—Wt(E, E) = C"Wt(K’ E)

and
n(E) =h.
Then
¢ =<' Knh .
Proof. The required inequality in c-weights is immediate: for all
£ €,
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c-wt(p, &) < c-wt(E, E) < c-wt(mlh, ‘g’)

To deal with cpp-weights, set E’M

and apply Lemma 5.3 with 7 =n(E) : for all & € = ,

to be the maximal subword array for ¢ ,

n(E)

cpp-wt(p, £) = c-wt(E,, £) =p = ‘c-wt(E, £)

< phc-wt(K, £) = cpp-wt(mrh

» )

From this it follows automatically that for g =5 = 0 ,

A “’Z,b(’cih)

Finally, let Em be the minimal array for ¢
If n(E'm) =n{E) , then for a=zdb 21,

1
Ya ,b(‘p)

a c-wt (Emj + bn(E‘m]

1A

a c=wt(E) + bn(E)

a c=wt(K) + bk = wi b('(ﬂh)

1A

If n(E’m] > n(E) , then Lemma 5.2 is used:

wa,b(w) =a c-wt(Eﬁ) +bn(E )
= a c-wt(E) - (a(p-1)-b) (n(E'm)—n(E')] + bn(E)
< a c=wt(E) + n(E) ,
as before. a

6. Laws linking a cpp-word with a product of scpp-words

In Lemma 4.2 (q) it was shown that the laws of a group-like variety
link an arbitrary word with a product of cpp-words of greater or equal
weight. Corollary 6.5 in turn links a cpp-word with a product of scpp-
words of greater or equal weight; and the two results combine in Theorem

6.6 to complete the programme outlined at the beginning of Section 4.

The earlier lemmas in Section 6 lead up to Lemma 6.3, which is really
the central result of the section. It gives more detailed information than

its Corollary 6.5, and Subsection 6.4 illustrates the way in which this can
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be used. Finally, lemma 6.7 applies Theorem 6.6 to the series described in

Subsection 2.4; it in turn has applications in [6].
6.1 LEMMA

For arbitrary cpp-words 8 and p ,
(i) lom, 81 L [p, 81x TT {8, : g €r},

(i) [0, en] LT T {5, : g € Tp}le, oln ,

g

where for g 1in Fl or T 8 1is a epp-word with at least two sub-

2° g

words equal to p , and where, if E 1s a subword array for one of the
factors on the right-hand side of one of the equations, then there exists a
subword array F for the word on the left-hand-side such that for all

E €8,

C—W't(F, E) = C-Wt(EQ g)

n(F) < n(E) .

Proof. Apply law (vi) (a) to the left~hand side of equation (%) to
obtain the right-hand side. Let E be a subword array for either p, 6]3
or a word Gg ending in the symbol L If the final symbol = was

allocated to Sl [respectively 52 ] in the construction of E , then

there are at least two (respectively p ) subwords equal to p and at
least one equal to 8 in £ . In the construction of F , the final

symbol ul of pm is also allocated to Sl (respectively 32 ), and the

subwords 6 and p (respectively 6 and p distinct copies of p ) are
placed in one-one correspondence with equal distinct subwords in F . The
construction of F 1is continued in accordance with the corresponding
induced arrays for 0 and p , and clearly satisfies the required

inequalities.

If E 1is a subword arrsy for a word sg not ending in the symbol

m , then Gg contains at least p subwords equal to p , and in the
construction of F the final symbol =z of pun is allocated to 52 , and

a correspondence is set up and the construction of F continued as before.
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The proof of (i7) is exactly similar. 0
6.2 LEMMA
Let n = n(go, cees gm—-l’ Em) be a c-word with c-wt(n, gm) =1, let

0, eo, IR em—l and 8, be cpp-words, and set

V= n(eo, cees B, 0 [om, em]) . Then:

. )
() w=n(65, ---s 8, ;5 Loy 811) TT{n (6, ---s 0, ,.0,0) :ger}
where for g in T , ng = ng[go, cees Emﬂ) is a cpp-word such

that c-wt(n and corresponding to a subword array E

g’ m+l) 225
for an arbitrary factor on the right-hand side of equation (i), there
exists a subword array F for ¢ such that for all E € % ,

c=wt(F, &) < c-wt(E, &)
and
n(F) = n(E) ;

(21) xpnk A n(eo, cees Bm_l, [p, e]lr)lrk —l—l- {Gdlrh(d) :d € A} where for d

in A, 6 d 18 a epp-word with at least two distinet subwords equal

to o ; and corresponding to a subword array E' for an arbitrary
factor on the right-hand side of equation (ii), there exists a sub-

word array F' for w1_1k such that for all & €% ,
c-wt(F', &) = c-wt(E', E)
and
n(F') = n(E") .
Proof. () 1In Lemma 3.2, set B = [pm, 8] and
a=[p, 8ln TT {69 1 g € 1"1} where the latter product is as described in

Lemma 6.1. It is easily checked that the conditions for Lemma 3.2 are

satisfied, and that all resulting terms, except the first one on the right-
hand side of (Z), have at least two distinct subwords equal to p . Let F
be a subword array for an arbitrary factor, f say, on the right-hand side

of equation (Z). Lemma 3.2 shows that the cpp-word g has at least one
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subword from the set {[p, 9]3} u {Gg t g € Fl} ,and for all © in m at

least c-wt(n, Ei) further distinct subwords equal to Bi ; and E

induces an array for each of these subwords. To the induced array for the
first subword mentioned, Lemma 6.1 gives a corresponding array for

[pE, 6] . This, together With precisely c—wt(n, Ei] distinet arrays for
ei for each 7 in m , is used in the obvious way to construct an array

F for ¢ . Since n 1is a c-word, there are no symbols w in ¢ out-
side the subwords already discussed. This constiruction clearly satisfies

the required conditions.
(i2) Law (v) is applied to the result (i). For each d in A , dd

k-h(d)

is a cpp~word with at least p distinct subwords equal to factors on
the right-hand side of equation (i), and these in turn contain at least two
distinct subwords equal to p . The first h(d) stages in the

construction of F' exsctly parallel those in the construction of E' for

h(d)
T

847

, so that there is a one-one correspondence between subwords equal

k-h(d)
T

to ¢ and subwords equal to Gd . In the next k - h(d) stages,

all n-edges are allocated to 52 subsets; then there are pk_h(d)
copies of Y corresponding to each word éd . Each is placed in
correspondence with a separate subword of Gd equal to a factor on the

right-hand side of equation (Z); to the array induced by E' for this
subword corresponds, by part (), an array for 1§ , and the construction of
F' is completed in accordance with this correspondence. The required

inequalities are again immediate. a
6.3 LEMMA

Given a group-like variety V¥ and a epp-word ¢ , there exist a

finite ordered index set T and corresponding sets {Kg : g €T} of
c-words, {h(g) : g € T} of non-negative integers, and {Eg : g €T} of

subword arrays for ¢ such that

o LTT {9+ g 1}
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and for all g in I and all § in = ,

c-wt(E'g, E) = c-wt(Kg, E] >
(*)
: n(E'g) < hig) .

Proof. Consider two propositions:

(a) Let ¢ and ¢ be cpp-words, % & non-negative integer,

and F a subword array for ¢ such that for all § in E ,

c-wt(E, £) < c-wt(y, &)

n(E) =h
Then there exist ordered sets {Kg 1 g € I‘l} of c-words,
{n(g) : g ¢ I‘l} of non-negative integers, and {E'g tg €T}

of subword arrays for ¢ such that
EY rig) |
[ {Kgg g €1,

and for all g in T, and all § in EZ +the conditions

1
(*) are satisfied.

(b) Let y be a cpp-word ending in the symbol y and h a

non-negative integer. Suppose that to every subword array

F for lpnh there corresponds a subword array F for ¢

satisfying the conditions

c-wt(E, £) < e-wt(F, &)

n(E‘) = n(F) s
for all & € = . Then there exist sets {Kg :g €T} of

c~-words, {h(g) : g € T} of non-negative integers, and

{E’g : g €T} of subword arrays for ¢ such that

wﬂh I {Kggh(g) i g € I‘}

and for all g in I and all § in E , conditions (%)
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are satisfied.

It is not hard to see that the lemma follows from proposition (b),

!
since the given cpp-word ¢ may be expressed in the form w'nh vwhere

either ¢' € & or ¢' ends in the symbol y . In the former case, ¢ is
already in the form required by the conclusion of the lemma; in the
latter, the assumptions of proposition (b) are satisfied with ¢ = ¢' and
h="h'

Proposition (a) is used at some points in the proof of proposition

(b), and is proved first.
Proof of Proposition (a). By Lemma 4.3,

v

w'—‘-]——]—{)‘d:dEAl},

where each ) is a c-word such that for all § € Z ,

d
ce-wt(E, &) = c~wt(y, £) < c-wt[xd, £)

Hence, by law (v),

b LT {ngh(g) tg € Fl} :

h-h(g)

where for g in T Kg is a c-word with at least p distinct

l s
subwords (not necessarily unequal as words) from the set {Ad :d € Al} R

whence, for all § € = ,

ph-h(g)c-wt(E, g) = c-wt(Kg, E]

For g in T, such that h - h{g) =z n(E) , Lemma 5.3 is used with

1 = n(E) +to show the existence of a subword array Eg such that for all
E €5,

h-h(g)

c—wt(Eg, E) =p c-wi(E, &) < c-wt(Kg, £)

and

n(E'g) =0 = h(g) s

so that conditions (*) are satisfied. For g in I, such that

https://doi.org/10.1017/50004972700025478 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700025478

46 David Shield

h - h(g) =n(E) , Lemma 5.3 is used with I =% - h(g) to construct Eg
such that for all § €2 ,

h-h(g)c-wt(E', £) = c-wtk_, &)

c—wt(Eg, E) =p g

n[Eg) =n(E) - (h-h(g)) = h - (h-nig)) = hlg) .

This completes the proof of proposition (a).

Proof of Proposition (b). The proof of proposition (b) is
unfortunately rather more complicated, proceeding by a sequence of four

nested induction arguments. As a preliminary, let FM and Fm be the

maximal and minimal subword arrays respectively for ¥ ; and let EI:! and
Er;z be the subword arrays for ¢ corresponding respectively to FM and
Fm under the hypotheses of proposition (b). Let EM and E’m be the
maximal and minimal arrays for ¢ . Note that Em’ E'M, E”;7 , and E’& are
all subword arrays for ¢ ; the first two depend on ¢ only, and the last

two depend also on the word ¢ .

The first induction is in the reverse directionon A . If

h = n(Em) , then the assumptions of proposition (a) are satisfied by the

choice E = E’m , and the conclusion of porposition (a) gives the required

result. From now on, only words of the form th with % < n(Em) need be
considered. The first inductive hypothesis will be that the result is

1
established for all words w'Eh satisfying the assumptions of the

proposition and the condition that &' > h .
Suppose ¢ = w(f-,'o, ey ‘52_1) . The second and third inductive

arguments between them cover only a finite number (at most c—wt(EM]) of

steps. ©Note that if, for all ¢ in 2z ,
c—wt(w, E‘i) = c-wt(E’M, Ei)

then a fortiori, for all < in gz ,
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c—wt(w, Ei) > c-Wt(Ek, gi) .

If the latter condition is satisfied, then the assumptions of proposition

(a) are satisfied by the choice F = E& , and again the required result

follows. Thus only words wlh such that for some < in z ,

c—wt(w, gi) < c-wt(E&, Ej) need henceforth be considered. Let j be the

least integer in z such that c-wt(y, Ej] < c-wt(E&, EjJ . Assume that

'
the result is established for all words w’Eh such that either (second

inductive hypothesis, on j ):

c-wt(y', Ei) z c-wt(E

y §;) for 0=i=y

(note the final equality) or (third inductive hypothesis, in the reverse
direction on c-wt(y, Ej] )

3.

c-wt (Y, Ej) < c-wt(y', EJ

For every word wﬁh satisfying the conditions remaining to be

considered,

- ) < e-wt\E], §.) = c- .} = cpp- .

c wt(w, £J] c wt(EM, EJ) c wt(FM, EJ) cpp wt(w, &J)
This strict inequality shows that there exists a subword of Y ending in
the symbol = and having c-weight in Ej at least 1 . Among such

subwords, let pr be one such that the value of k(p, ¥) is minimal. The
fourth induction is on this value k(p, ¥) . Since 1§ itself ends in the
symbol Y it follows that p 1is a proper subword of ¢ and

k(p, v) = 1 .

Thus ¢ has a subword ¥ with form either [prm, 8] or [6, pr]

(for convenience, assume the former) with c-wt(p, gj) =1 . The

minimality of k(p, ¥) shows that I(x, ¢) = O , and hence that there

exists a non-negative integer m , a c-word n = n(&o, e &m_l, gmj with

c—wt(n, EmJ = 1 , and cpp-words © .oy em such that

0’ °
l’) = 1’1[90, LI 3 em_19 [011, em]) .

Lemma 6.2 (ZZ) now gives
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ll)gk

i<

k
n(8g> ++-» 81 [ps 8 J0)7 ﬁ{adgh(d) . d ¢ A} ,
where for all d in A , c—wt(éd, EJ.J > c-wt (v, EJ.] , and if ¢ is a

subword array for Gdﬂh(d) then there exist corresponding arrays F for

wgk and hence E for ¢ such that for all ¢ € = ,
c-wt(E, &) < c-wt(F, &) = c-wt(G, &)
and

n(E) < n(F) = n(c)

By the second or third inductive hypothesis, then, according as

(@)

c-wt(tSd, Ej) is or is not at least c—wt(E’;v, «EJ.) . each word 6d may

be expressed in the required form.
The word ' = n(eo, cees em-l’ [0, em]1_r) also is shown by Lemma 6.2

to satisfy the hypotheses of proposition (b). Further, ' has a subword
p'm = [p, Gm]g such that

k(p', v') =k(p, ¥} - 1.

In the initial case, k(p, P) =1 ; this means that ¢' = p'n , whence

k+1

\b'nk =p'r , which by the first inductive hypothesis may be expressed in
the required form. Otherwise, ¢' ends in the symbol vy , and the result
is given by the fourth inductive hypothesis on k(p, ¥) .

This completes the proof of proposition (b), and hence of the lemma. D

6.4 APPLICATION OF LEMMA 6.3 - COMMENT AND EXAMPLE

An arbitrary cpp-word ¢ may be written ¢ = cp'1_rn where n = 0 and
¢' 1is a cpp-word ending in the symbol Y - The word ¢' is then called
the crown of ¢ (because the tree of ¢' is the crown of the tree of
¢ ). Let ¥ be a group-like variety of {y, 7, u}-algebras, and

(pl| {Knh(g):gGF}

g—

the law linking ¢ with a product of scpp-words, given by Lemma 6.3.

One word K nh(g)

is obtained from ¢ simply by moving all symbols
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ul from their positions in ¢ to the end of the word; this is the only
word in the product whose c-weight has the minimal value equal to

c-wt{p) ; and it corresponds to the minimal subword array for ¢ . If ¢
is not already an scpp-word, then this word has strictly greater cpp-weight

than has ¢ .

Those words Kggh(g) whose cpp-weight is minimal, that is, equal to

cpp-wt(p) are at another extreme. Each of them has c-wt(Kg) = cpp—wt(w’)

and corresponds to a subword array for ¢ which, while not itself
necessarily maximal, induces only maximal arrays of ¢' on all labelled

copies of ¢' which it contains.

Between these extremes, Lemma 6.3 gives information about the minimum

value of c—wt[Kg) -~ or values of C—Wt(Kg, 5) - associated with each

possible value of h(g) , as is shown in the following example. Note that

for each integer h , 0 =h = n[Em) , the subword array of minimal

c-weight (or minimal c-weight in a specified generator) does not contain a
labelled tree in which a path from a starred w-edge to the root passes

through an unstarred ‘m-edge.
As an example, let ¢ = EmyEwnnyn , and as usual let Em and EM be
minimal and maximal arrays for ¢ . If E is an arbitrary array,

2
3= c-wt(Em) < c-wt(E) = c—wt(EM] = 2p3 +p° .

Since n(Eﬁ) =5 ,values 0 <}k <5 are of interest.

When h(g) =5 , clearly Em itself is the minimal array, so
c-wt(Kg) z c—wt@%ﬂ) = 3 . 1In this case, cpp—wt[KgEh(g)] = 3p5 .  There
are two candidates for a minimal array with n[Eg) = 4 ; they are not

essentially different, each containing one word equal to ¢ and (p-1)

equal to & , and having

c—wt(Eg] =3+p-1l=p+2.
Hence for hl(g) = L, c—wt(Kg] Zp +2 and cpp—wt[KgEh(g)J > p5 + 2ph .

Among arrays Eg for ¢ such that n[Eg] = 3 , it is easy to see
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that the one with the least value of c-wt (E‘g) is

{ednyEdfyd (1)) u {&(4) : 2 = ¢ = 2p1) .
Hence for those g in I with &(g) = 3 , it follows that

c—wt(Kg) >2 +1 and cpp—wt{ngzh] > gph + p3 .

Among arrays E’g for ¢ such that n[E’g] =2 , it is not obvious at

first sight whether that containing gfnﬁgéfﬁ or that containing

3 2. 3% . 2

EinyrEfnyr has less c-weight; the values turn out to be p~ +p +1 and
pe + 2p respectively. Hence for each g in T with hig) =2 ,

c-wt(Kg) > p2 +p+1 and CPP-Wt[KgEh(g)] > ph + P3 + p2 .

The lightest array E’g with n(Eg] = 1 1is clearly that containing

g%nﬁgfr’%ﬁ , which has c-weight 2p2 +p; so for each g in T with
(
hig) =1, c-wt(Kg) > 2p2 +p and ch_thKgl'h(g)] > 2p3 + p2 . Note
2 . . 3 2 .
that 2p~ + p 1is the cpp-weight of the crown of ¢ , and 2p~ + p  is the
cpp-weight of ¢ itself, and consequently the minimal possible cpp-weight.

Finally, if n(E'g) =0 then E =F and for each g in T with

M;
h(g)=09

c-wt(Kg) = cpp-wt{KgEh(g)] > 2p3 + p2 .

The information given in this way by Lemma 6.3 appears to be the best
possible. However, it is very complicated, and for many purposes the

simpler result obtained by combining it with Lemma 5.4 is sufficient.
6.5 COROLLARY

Corresponding to a group-like variety V and a cpp-word ¢ , there
exists an ordered set A of scpp-words such that ¢ Im and o ='TA . D

Combining this in turn with Lemma 4.2 (a) gives the main result.
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6.6 THEOREM

Corresponding to a group-like uamiety Y and an arbitrary word ¢ 1in
B , there exists an ordered set & of sepp-words such that ¢ XA MA and
¢ <' 1A . o

Return now to the descending central series described in 2.4. Theorem

6.6, together with the definitions there, gives:

6.7 LEMMA

In an arbitrary {y, n, wl-word algebra D , the ideal Yz’b’e(D) is

a,b,e(D)

generated, modulo Y by the set of homomorphic images in D of

sepp-words” ¢ such that wZ ple) =< .

In particular, in a group G ,
Yi(G) is generated modulo Yi+l(G) by the set of commutators of
weight 1 ;

Ei(G) is generated modulo €., (G) by the set of p‘7th powers of

41
commutators of weight w , where w + j=1 ; and

m,(G) is gemerated modulo T, (G) by the set of pjth powers of

1
commutators of weight w , where wp? = i . o
The well-known result that, in fact, the commutators of weight <
generating Yi(G) may be restricted either to being basic or to being

left-normed carries across also to the other series. This fact is not

needed in [6], and since the proofs are rather tedious, they are omitted.
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