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Power and commutator

structure of groups

David Shield

The purpose of this paper is to prove a result about the power

and commutator structure of groups which generalises some results

of Phi Iip Hal I . The results presented here are the key to

determining the class of a nilpotent wreath product.

Introduction

0.1 SCOPE

If a and $ are two elements of a group, their commutator is

defined to be

[a, (3] = a~1B"1ae .

An arbitrary group element may be regarded as a commutator

[a] = a

with only one entry, namely, a ; if a and 0 are commutators, then

[a, 3] is a commutator whose entries are elements of the disjoint union of

the sets of entries of a and $ .

In Phi lip HalI's well-known "contribution to the theory of groups of

prime-power order" [4] it is established that in an arbitrary group there
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2 Davi d Sh ield

are relationships between the operations of commutation, powering, and

multiplication. In particular, his Theorem 3.2, as modified in 3.3 of the

present paper, states that for arbitrary elements a and 3 of a group,

prime p , and positive integer h ,

h h h ( h{q)
(OB)P = aP 6P T T {P

where F is a finite ordered index set, and for each g in T the

integer h(g) satisfies 0 5 h(g) 2 ft , and < is a commutator with at

least max{2, p ~ & } entries from the set {a, £5} .

This and similar relationships are studied in the present paper.

Essentially, the conclusion is that if a group element is expressed in

terms of a particular subset of the elements of the group by finitely many

applications of the operations of commutation, raising to the pth power,

and multiplication, then that element may also be expressed in terms of the

same subset by a finite sequence of operations in which all commutations

precede all pth powerings which in turn precede all multiplications -

that is, the element is expressible as a product of p-power powers of

commutators. Moreover, the final expression has weight at least as great,

measured by each of a family of weight functions, as has the given one.

The weight functions themselves are of some interest. They are used,

in 2.k, to define a family of descending central series of a group, which

includes as a special case the lower central series. These series and

weight functions, as well as main results already mentioned, are used in

[6] to determine the class of a nilpotent wreath product.

0.2 APPROACH

The use of the word "expression" in the preceding subsection reflects

one of the major difficulties in this undertaking. Suppose a" = [3, Y ]

where a, 8 , and y a r e elements of a group; that is, the same group

element may be expressed in terms of a, 0 , and y in two essentially

different ways. We wish to discuss the expressions rather than the element

itself, but how can they be named? The symbols "a?" and "[(3, y]" denote

an element - the same element - of the group.

This difficulty is here resolved by the recognition (compare Ward,
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Structure of groups 3

[7], p. 3^6) that the expressions are themselves elements of a free

universal algebra (see Cohn [2]) with operations corresponding to

commutation, pth powering, and multiplication in the group. There is a

homomorphism from this algebra to the group, under which each expression is

mapped to the group element which it represents. Although this paper aims

at results about group theory, its arguments are carried out mainly in

terms of universal algebras. A reader to whom these are unfamiliar should

keep in mind the idea that each element of the universal algebra is

essentially a way of obtaining a group element from a generating set.

It may appear surprising that the operation of inversion has been

omitted from the universal algebra. The need for it is avoided by the

choice of a set of generators for the group which includes the inverses of

all its- elements, and the observation that the inverse of a commutator

[6, a] in a group is simply the commutator [a, 3] .

0.3 OUTLINE

In the first two sections, {y, n, y}-algebras are introduced, with

some special types of elements (notably cpp-elements and scpp-elements)

and, in 1.3, several weight functions. Weight ideals, based on these

functions, correspond with important descending central series in groups.

When a group with the operations of commutation, raising to the pth

power, and multiplication is considered as a {y, IT, p}-algebra, several

laws, or identical relations (defined in 3.1) hold in it. Some of these

are used in 3-1 to define group-like varieties. The central theme of the

paper is a derivation, from these laws, of laws which express an arbitrary

element as a product of scpp-elements without loss of weight under any of

the functions defined in 1.3.

One step, in Section 4, is to derive laws linking an arbitrary element

with a product of cpp-elements, without loss of weight.

Section 5 interrupts consideration of laws to introduce subword arrays

for a cpp-word. In section 6, these are used to obtain further laws which

link a cpp-element with a product of scpp-elements.

0.4 NOTATION AND TERMINOLOGY

Elements of groups and algebras will be denoted by lower case Greek
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letters, such as a, 0, <p , and ty ; mappings (and elements of operator

sets in universal algebras) by underlined Greek letters such as a, y » and

n ; and integers and integer-valued functions by lower case Roman letters

such as a, b , and / . The symbols Z, N , and Z respectively denote

the sets of all integers, all non-negative integers, and all positive

integers. For I in Z , the underlined symbol t_ denotes the set

J = ( U N : 0 5 i < 1} .

Upper case Greek letters T, A , and 0 are used to represent index sets;

it will save repetition later if the convention is laid down now that

unless otherwise stated, all sets denoted by these symbols are finite and

ordered, so that, for example, such a product as ~| \ {6 , : d € A} of

group elements is well-defined. Finally, upper case German script, here

represented by double underlining, for example V_ , is used to represent

varieties.

1. A {y, IT, pi-word algebra

1.1 WORDS AND SUBWORDS

Let H be a countably infinite set, and let B be the {y, TT, y}-

word algebra on H , where y and u are binary operations and ir a

unary operation (see, for example, Cohn [2], III.2, p. 117). The elements

of B are of precisely four possible types:

(i) elements of E ;

( i i ) {y, TT, vi}-rows of the form a@y where a and 3 are

words;

( i i i ) {y, TT, y}-rows of the form onr where a i s a word; and

(iv) {y, n, u}-rows of the form agy where a and 3 are

words.

Correspondingly, given a {y, IT, vi}-word I|J in B , define (p to be

a subword of \p (written "<p S f ) if and only i f ei ther

(i) <p = \j> ; or

( i i ) <J> = af5y and ei ther cp S a or (p < 3 ; or

( i i i ) <p = otfT and tp £ a ; or
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Structure of groups 5

(iv) ^ = aSy and ei ther cp £ a or cp S 8 .

If one of the conditions ( i i ) , ( i i i ) , or (iv) holds, then cp i s a proper

subword of ij> (written "cp < \p" ) .

If cp i s a proper subword of ty , then there exis ts a f in i te sequence

{cp. : i € n+l) of subwords of \p such that

cp = c p Q < ip1 < . . . < <pn = \\i

which is maximal in the sense that for £ in n_ , there is no subword <p'

of ip satisfying

Corresponding to each word \p In B there exists a finite subset,

say {£, . : j € mj , of E such that every element of H which is equal
0

(as a word) to a subword of IJJ is contained in {£ . : 3 € rn} . To
0

emphasise this, the notation ty = ̂ (Cp,* •••> C -,) will sometimes be used.

There is no implication that every element of {£ • : J € nz} should occur

as a subword of 5 j

If a is a homomorphism from B to a (Y, IT, y}-algebra D such

that for i in m , £ .a = p. , then i{>a is denoted

A subword of a word iji which belongs to H is called an initial

subword of i|i .

Words in B which contain neither symbol tr or vi are called

c-words. Those which do not contain the symbol y are called cpp-words.

(The reference is to "commutator" and "commutator p-power".) Words of the

form a-rr where a is a c-word and n 2 0 will be called simple cpp-

words , abbreviated to scpp-words.

In order to simplify later notation, mappings y' and y' from the

set of finite, non-empty ordered sets of elements in B to B are defined

inductively as follows:

Let A be a finite, non-empty, ordered set of elements in B . If
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6 D a v i d S h i e l d

|A| = 1 , say A = {a} , then

AM ' = a and Ay' = ot .

If |A| > 1 , then let A* be the ordered set obtained by deleting the

"last element", a say, of A ; and define

Ay' = A*p'ay and Ay' = A*Y'CXY •

That is, the effect of \i' or y' on an ordered set is that of successive

application of the operation M or y respectively to the elements of the

set arranged with left-normed bracketing.

1.2 THE TREE OF A cpp-WORD

In the following pages, much attention will be given to cpp-words;

that is, words not containing the symbol y . The structure of a cpp-word

may conveniently be visualised in terms of a graph which is in fact a

rooted tree, or arborescence, except that the directions of the arrows

constituting its arcs are here reversed (for example, see Berge [/],

Chapter 3, §3, p. 33). There is a one-one correspondence between vertices

of the tree and subwords of the word, the root corresponding to the word

itself. Every vertex is considered labelled with the corresponding

subword. To each symbol Y in the word corresponds a pair of arcs

directed toward the same vertex, and to each symbol TI a single arc.

A formal definition may be made inductively, as follows:

(i) The tree representing an element E, of 5 consists of a single

vertex labelled E, . oE,

(ii) The tree representing a word agy

is obtained from the disjoint union of the

trees representing a and 3 , drawn with that

representing a on the left, by adjoining a

new vertex labelled CXBY which becomes its

root, and an arc directed toward this new

vertex from each of the previous roots labelled

a and g . The new arcs are referred to as

Y-arcs, sometimes as left- and right-y-arcs, respectively.
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(iii) The tree representing a word om is obtained from

the tree representing a by adjoining a new vertex labelled

OCTT which becomes its root, and an arc directed toward it from

the previous root labelled a . The new arc is called a

Ti-arc.

The introduction of a distinction between left- and right-y-arcs

directed toward a vertex makes it possible to establish a one-one

correspondence between such trees with labelled vertices and elements

B .

of

and nAs examples, i f

the words

a = CTrriir-yTTKY and f3 =

then the t r e e s representing a and 3 a r e :

?€

elements of 5 , and a and 8 are

When distinct subwords of a given word are equal as words, then

different vertices of the tree of that given word have the same label.

In the tree corresponding to a word ij; , a vertex which is not the

terminal point of an arc must correspond to an initial subword of \p .

Such a vertex is called an initial vertex of the tree.

Through the remainder of this paper, tree diagrams will be drawn only

occasionally. However, large numbers of them were used in the process of

formulating the various definitions, statements, and proofs; and the

reader will probably find it an advantage to draw his or her own diagrams

quite frequently, and to formulate definitions in terms of the diagrams.

1.3 INTEGERS ASSOCIATED WITH WORDS

The first two functions to be defined are from the set of ordered
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8 Dav i d S h i e l d

pai rs {(ip, y) : y € B and cp 5 y) to the set N of non-negative

in tegers . Let if) be a word in B and cp a subword of \\) , and l e t

<P = <P0 < (Px < • • • < <PW = *

be "the maximal sequence of subwords linking <p with \j) described earlier.

Define k(<p, y) and Z(<p, y) to be the number of subwords in the set

{<p. : 1 £ i 5 n] which terminate in y and in IT , respectively. (Note

that ip = <p is not contained in the set. Subwords ending in v are

omitted from the counts.) When |i is a cpp-word, the directed path in the

tree representing y from the vertex labelled ip to the root passes

through precisely k(<p, y) y-arcs and l((f>, ty) w-arcs.

Several weight functions from S to Z will now be introduced. The

most important of these, to be called c-weight and cpp-weight (again

referring to "commutator" and "commutator p-power" respectively) are in

fact special cases of more general functions which will be defined first.

Let p be a fixed prime, e an integer which may be either 1 or

p , and a and b integers such that a > b > 0 and a > 1 (this use of

the symbols "e", "a" , and "b" will recur throughout this paper). The

function we , : B •* Z is defined inductively as follows:
a,D

(i) if i/) € H , then i/ (̂ifi) = a ;

( i i ) i f i|> = aBy » then if Ay) = uf , (a) + wf A&) ;

( i i i ) i f ^ = cm , then

(a) u^ &(i{)) = u^ fe(a) + b and

(b) i / Ay) = pt<^ fe(a) ; and

( i v ) i f (i = agy , t hen i/ Ay) = minju® , ( a ) , u e , ( B ) i •

For example, i f £ and n a r e e lements of E , then

to .(dYTlY) = 3a ,
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= 3a

= 3a +

p3H

32>

K2p

a ,

a,Z

ard

The function hf - is independent of Z? ; in fact it is easy to see

that for all ip in S ,

The function u , does depend on & . An easy way to compute its value
(X yD

is to note that if a cpp-word \p contains I symbols y and m symbols

IT , then w ,(Ui) = a(l+l) + bm .
- a,b

In the application to wreath products in [6] these weight functions

are used in a normal subgroup of finite p-power index in a group, and the

integers a and b depend on the quotient group. When the quotient group

is trivial, a = 1 and b = 0 . This special case is the important one

already referred to: u . is the c-weight function and u^ n the cpp-
± ,u _L,u

weight function.

These simpler functions may be defined for a word, not only as a

whole, but also with respect to each element of the generating set H .

That is, functions from B x H to N are defined as follows: for all E,

in H ,

(i) if ty € 5 , then

1 if <|>=£.

c-wt((|;, £) = cpp-wt(^, 5) = •

0 if * / £ ;

(ii) if I|J = ag-r , then
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c-wt(ij>, C ) = c-wt(a, E.) + c-wt(B, C)

and

cpp-wt(i|), £) = cpp-wt(a, E.) + cpp-wt(B, E.) ;

(iii) if tp = CUT , then

c-wt(ijj, 5) = e-wt(a, C)

and

cpp-wt(ij>, ?) = p.cpp-wt(a, £,) ;

and

(iv) if ip = agy , then

c-wt(ij), £) = min{c-wt(a, O , c-wt(g, O) ,

and

cpp-wt(i|>, C) = min{cpp-wt(a, E,), cpp-wt(3, E,)}

Note that for all words </J in B ,

c-wt(<j0 = uj Q(^) = ̂  {c-wt(^, E.) :

and

cpp-wt((()) = uP Q(^) = ̂  {cpp-wtC*, E.) : E, € =} .

In the special case that ty is a cpp-word, simple interpretations of

these weights are available. For example, it is easy to see that

c-wt(i|), E,) is equal to the number of occurrences of the symbol E, in the

word ty . This in turn is equal to the number of vertices labelled E, in

the tree representing \p . Correspondingly,

cpp-vt(¥, C) = E {pZ(p'";) : p < * and p = £} .

For words not containing the symbol TI , the c-wt and cpp-wt take

equal values. In particular on a c-word, which corresponds to a commutator

in a group, both take values equal to the usual commutator weight.

The following lemma deals with the behaviour of the weight functions

on a cpp-word under operations that may be regarded either as endomorphisms
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of B or as "substitutions" into words.

1.4 LEMMA

Let tp = <P(?Q5 • • • > £ ) be a opp-word, and for i in m_ let

a. = a.(CQ, . . . , Ci( -\ •,) also be app-words. [without loss of generality,

it may be assumed that m > l(i) for all i in m_ ; then set

a. = a . (£ n , • • • , £ ) for all i in m_ .) Let a be an endomorphism of

B such that £ .a = a . for all i in m_ . Then, for all h in m and

all integers a and b satisfying a > b > 0 and a 2 1 ,

(a) *£)b(q>«) = I |c-vt(cp, C^w^j^J : i € m| + U^fc(cp) - v^W ,

(b) ^-^(cpa) = X. |cpp-wt((p, C ^ ^ ^ l a J : i € m| ,

(a) c-wt((pa, C Ĵ = Z {c"wt((P' C ^ c - w t ^ . Cfe) : i € m} , and

(d) cpp-wt(cpa, 5^) = ^ {cpp-wt[(p, ^JcPP-wt(ou, ^^} : i € m] .

Proof. The proofs of (a), (b), (a), and (d) are very similar in

outline, proceeding by induction on the number of symbols y or IT in the

word <p , and treating separately

(i) the initial case, where without loss of generality

(ii) the case in which ip ends in the symbol y »

(iii) the case in which cp ends in the sumbol IT .

The details are routine, and are omitted.

1.5 PRE-ORDERS ON B

A relation denoted -' is defined on B t>y the condition that

a 51 $ if and only if every weight function defined in 1.3 takes at a a

value less than or equal to its value at 3 • More formally, a S1 3 if

and only if for all integers a and b such that a 2 b 5 0 and a 5 1 ,

all e in {1, p} , and all £ in 5 ,
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12 Dav i d S h i e l d

and

c-wt(a, O S c-wt(B,

cpp-wt(a, £) < cpp-wt(g,

The relation 5' is clearly transitive, and is therefore a pre-order.

It is reflexive, but is not antisymmetric, even on cpp-words.

For example, if

then

a = and g =

Wa fc 2b

and

c-wt(a, C) = c-wt(6, C) = p + 1 ,

cpp-wt(a, 5) = cpp-wt(B, C) = P + P •

Nevertheless the structures of the words a and 3 are quite different,

as can be seen by considering values of t(p, a) and l(p, B) for various

initial subwords p .

A non-reflexive relation <" is now defined as follows: a <" £5 if

and only if a £' g , and for all suitable integer triples (a, b, e) ,
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we ( a ) < vP , ( B ) .a,b a,b

Note that <" is also a pre-order. The preceding example makes clear

that " a <" B " is a stronger statement than " a S' B and ex t B " .

The pre-orders are affected in the obvious ways by operations y , V ,

and y ; namely:

(a) a <" agY ;

(b) a s' an ;

(c) aBy_ £' a ;

and "respect" the operations, in the sense that if a, 5' B-, and

a2~' ®2 ' t h e n :

(d) a^Y S1 ĝ gY ;

(e) a ^ s' B ^ ;

(f) ajdgM 5' B^gy •

Implications similar to (d), (e), and (f) with <" replacing s1 also

hold. Note also that

(g) a s ' B-L and a s 1 B 2 « a < ' B-^y •

One special situation in which these relations will frequently be used

deserves comment. If T and A are finite (non-empty) ordered sets of

epp-words, then the relation Fy' 5' Ay' holds if and only if for each

weight function w defined earlier and each element B in A , there

exists a in T such that u(a) 5 w(B) . Since in general the choice of

a depends on w as well as on 3 , it does not necessarily follow that

for each B in A there exists a in T such that a 5' B • A useful

exception holds when |r| = 1 ; the statements a S' Ay' " and " a -' B

for all B in A " are equivalent.

1.6 LEMMA.

Let (f> = <P(C0, • • • , £ : ) be a word (in B ) and for i in m_ let

a., and B- be words such that a. s ' 6 . . Then
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If, further, for some i in m_ ,

c-wt(cp, £.) > 1 and a. <" 0. ,

then

Proof. (i) If cp contains no symbols y, TT , or y , then without

loss of generality o = £- , and all conclusions of the lemma clearly hold.

For the remaining cases in which cp does contain at least one symbol

Y, IT , or \s , suppose inductively that the result is already established

for all words with fewer such symbols. Let a and B tie endomorphisms of

B defined by

5 . a = a. and £ . 8 = 6. for all i in m_ ,

and

£a = £ 0 and £6 = £ Q for all £ in ~\{^ : i € m} .

Hence (p(aQ, ..., a^-J = <pa and <p(eo> ..., B ^ J = <p3 •

(ii) If (p = î ,i(JpY > then by the inductive hypothesis ^.a 5' i|) B

and \j;pa 5' if̂pB • Hence, by property (d) in 1.5.

(pa = fy-^Yja 5' fy-^YJS = <p6 ,

as required. If for some i in rn_ , c-wt(cp, E,.) > 1 and a. <" 6- »

then there is an element d in {1, 2} such that c-wtfij;,, E,.) 5 1 ,

whence by induction ijj,a <" if;,8 ; and again the required conclusion

follows.

( i i i ) If cp = ip-rr , then from either of the relations i|»a 5 ' 1J16 or

ijja <" ipB , the corresponding relation between cpa and cpB follows

immediately, by property (e) in 1.5.

(iv) If cp = ip t̂ ipy , then the inductive hypothesis states that

ij; a S1 ip.B and ij> a 5 ' \p B , whence by property (f) in 1.5, the required
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result follows. If for some i in m_ , c-wt(<p, £.) > 1 , then both
7s

c-vtUi , £ .) > 1 a n d c-vtU>o> C •) - 1 • Thus, inductively, if a . <" 8 .
X Is C. Is Is Is

then both \p a <" (KB and i|) a <" tyJS , and the required result follows as

before. D

2. Other {y, T, y}-algebras

2.1 DEFINITIONS

Every countable {y, n, y}-algebra is a homomorphic image of the word

algebra B described in 1.1. The homomorphic images of c-words, cpp-

words, and scpp-words are referred to as c-elements, cpp-elements, and

scpp-elements respectively. In a group, a c-element is more usually called

a commutator, and the homomorphic images of the initial subwords of the

corresponding c-word are called its entries.

There are difficulties in extending definitions of weight functions,

or the pre-order relations <' and <" to general {y, i, p}-algebras.

For example, there may be many different words in B , with different

weights, mapped by a homomorphism to the same image.

For a given weight function w on B , a countable {y, IT, p}-algebra

D , and a surjective homomorphism a : B -*• V , it is possible to define a

3 Z u {°°} by setting, for all 6

max{u((p) : cpa = 6 } if this exists

function from D to Z u {°°} by setting, for all 6 in D ,

w(6, a) =

if no such maximum exists.

Correspondingly, a weight function from D to Z u {°°} which is

independent of a particular homomorphism may be defined by setting, for all

6 in D ,

)max{u(6, a) : a a surjective homomorphism from B to D}

if such a maximum exists

if no such maximum exists.

This procedure involves the possibility that different weight functions

might, for a fixed element of D , take values related to quite
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differently-structured elements of B , so that the relationship between

values taken by different weight functions on a fixed element of D is

lost. Such an approach is implicit in the use of the weight ideals defined

in the next subsection.

Comparisons between elements of D may be made in terms of relations,

again denoted 5' and <" , defined as follows:

for arbitrary p and a in D , p S' a if and only if for

every word <p in B and surjective homomorphism a* from B

to D such that cpa* = p , there exist an element ty in B and

surjective homomorphism a from B to D such that cp 5' ijj ,

tya = a , and for all £ in 5 which occur as subwords of <p ,

£ct = E,a* . (The last condition implies that ipa = <pa* = p .)

Relation <" is defined similarly. Both relations defined in this

way are transitive; the proof is routine, and is omitted.

2.2 WEIGHT IDEALS OF {y, TT, y}-ALGEBRAS

As before, let p be a fixed prime, and a and b integers such

that a 2 b 2: 0 and a 2 1 . Suppose that the generating set H for B

is H = {£, • : £ € N} • Now, corresponding to sets of non-negative integers

{lie) : e = 1 or g = p}, {wU) •• i € N} , and {«(£) : i € N} ,

satisfying the conditions that £ {w(i) : t f i} and £ {u(i) : i € N}

are finite, let J be the set of words a in B satisfying the

conditions:

(a) for all e € {1, p} , we , (o) 2 Z(e) ,
a }D

(b) for all I € N . c-wtfct, £.) > w(i) , and

(c) for all i ( N , cpp-wt(a, C^) - u ^ ) •

The set J is closed under the operations y, i , and \i . In fact, if

a € J and B € B , then OBY € J and gay € I • If the operation u is

regarded as playing the role normally played in an algebra by addition, the

set J may be called an ideal of B .
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If D is an arbitrary {y, it, y}-algebra and a is a surjective

homomorphism from B to D , then the image in D of an ideal in B is

again an ideal, in the same sense.

Conditions (b) and (c) may be made trivial by setting w. = v. = 0

for all i in N . The ideals defined in this way by condition (a) only

are easily seen to be fully invariant, mapped into themselves by every

endomorphism of B . Such ideals of B , and their images in other

{y, it, u}-algebras, will be called weight ideals. Lemma 2.3 shows that a

weight ideal in an arbitrary {y, it, yj-algebra is independent of the

surjective homomorphism from B to the algebra used in its definition.

2.3 LEMMA

If I is a weight ideal of the {y, n, v)-word algebra B } and if a

and 6 are surjective homomorphisms from B to a {y, it, \x}-word algebra

D , then la = 16 .

Proof. From the symmetry of the situation, it is sufficient to show

that J a c I B . Let p € Ja . Then there exists a word, say

cp = (p(rn, ..., E, ,) in J such that (pa = p . Since 6 is a

surjection, for each i in z_ there exists a word x- in B such that

X-8 = C-a ; then <p(xQ> •••> X T) 6 = (pa = p . However, by Lemma l.k the

word (p(xn' •••»X -i J n a s at least as great a value under each weight

function w , used in the definition of J as has <p = <p(Cn, •••, £ ,J ;

and hence <p(xo» •••> X -J f I • Thus p € 16 , as required. D

2.4 DESCENDING CENTRAL SERIES

Let W •, be one of the weight functions defined in 1.3, and a a

surjective homomorphism from B to a {y, it, y}-algebra D . Define

and

= {(pa

The series
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D = y^
D'e(D) 3 ya*D'e(D) 3 ... 3 ya.'D'e(D) 3 ...

obtained in this way from each of the weight functions is strongly central

in the sense that for all i, j in I ,

<p € y . ' ' ( 0 ) > i|/ € y •' ' ( ^ ) o n l y i f g>ipy € y . ' . ' (D) •

It is not hard to see that the series based on the weight function u

is the most rapidly descending of these series. In fact, a routine

inductive proof shows that it descends more rapidly than any other central

series - which, when D is a group, identifies it as the lower central

series.

For each weight function other than u , it is also true that

<P € y"'b'e(D) only if cpir € Yy^'e(#) •

In a group, this means that the factor ya'b 'e(D)/ya'b'@{D) is not only

central, but elementary. A similar inductive proof shows that the series

based on the function w is the most rapidly descending elementary

central series.

A series which appears particularly important in the study of

extensions by p-groups is that defined by the function w? . This is

the most rapidly descending central series such that

<p € Y ' ' (D) only if cpu € y ' ' (D) ,

and is here called the cpp-series.

When D is a group G , set

y.(G) = Y 3 " 0 > 1 ( G ) ,

and
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Note, however, that the lower elementary central series and the cpp-series

are well-defined only after the prime p has been chosen.

3 . G r o u p - l i k e v a r i e t i e s o f {y, * , y } - a l g e b r a s

In this section, the idea of a law is introduced. When a group is

considered as a {y, TT , p}-algebra, with commutation, raising to the pth

power, and multiplication as the three operations, many laws hold. Some

obvious ones are not considered in this section, but those that are chosen

for the definition of a grouplike variety, and checked to hold in all

groups, are sufficient for the calculations in later sections.

3.1 DEFINITIONS AND NOTATION

Following Cohn [2], IV.1, p. 162, define a law in a {y, IT, u}-algebra

to be a pair of words in B * B . The law (9, cp) is said to hold in a

{y, it, p}-algebra D if under every homomorphism a : B •* D , the words 9

and cp have the same image, that is, 9a = cpa .

The variety defined by a set of laws is the class of algebras in which

all laws of the set hold. The statement that a law (9, (p) holds in a

V
variety _V will be denoted 9 = <p .

Let £,, r\, C,, E,. for i in N , and n. for i in N be elements

of H . A group-like variety of {y, it, p}-algebras is defined to be a

variety Y_ with laws of the form:

(i) CnvCy = CiCw (that is, the operation p is associative);

(ii) n£p = 5npn?yy (if V is identified as group

multiplication, then this law identifies y as the

operation of commutation);

(iii) £(£y)" = £n (again, if y is identified as group

multiplication, then this law identifies TT as the

operation of raising to the pth power);

(iv) for arbitrary finite sub-ordered-sets T and A of N ,

r V

^g ' g '- d '-- t g^dX ' '- t ~1
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where for t in 0 , £. is a c-word and there exists a

triple [git), d{t), h(t)) either belonging to T x A x T

such that git) £ hit) and

or belonging to r x A x A such that dit) # hit) and

[if the product indexed by 0. were deleted from the right-hand side, this

law would say that the operation y distributed over the operation y .]

(v) For arbitrary finite sub-ordered-set A of N , and m

in Z+ ,

{Zd : d 6 Aju'/"

where for all i in 0_ , £ is a c-word and

Further, there is a subset Q* of 0_ such that

: t € eg} = {*£" : d 6 A} .
and for each t in 0_\0i , there are at least two

distinct elements d in A such that c-wt(£ , £,) > 1 .

[If the terms indexed by elements of 02\©| w e r e deleted from the

right-hand side, this law would say that the operation TT distributed over

the operation \i .)

(vi) For arbitrary m in Z ,

(a) c

m V
Y =

where for each t in 0, , £, is a c-word such that
j t
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c-wt(£t, £) 2 max{2, p
7"" ^*'} and c-wt(?t, n) 2 1 , and

for each t in 0, , £ is a c-word such that

c-wt(?t, C) > 1 and c-wt(ct, n) » max{2,

(if all terms indexed by 0_ and 0, were deleted from the right-

hand sides, and if the language were stretched a little to refer in this

way to a binary and a unary operation, then this law would say that the

operations y and ir commuted.)

It should be noted that because elements of the sets {{, : t € 0.}

for 1 5 i 5 k are not fully specified, (iv), (v), and (vi) are not,

strictly speaking, laws; but are conditions which laws must satisfy.

Note that in each of the six types of law, the expression on the

right-hand side is a y-product of scpp-words. Also, if the left-hand side

is a and the right-hand side is g , it can be checked that a s' g .

Note also that when t, is a cpp-word, the statement " c-wt(t;, £) 2 n"

is equivalent to the statement "the word t, has at least n distinct

subwords, all equal as words to £ ". The latter interpretation will be

used in some applications of these laws, particularly in Section 6.

Simplified notation and terminology is now introduced, in the light of

the application of this theory of {y, IT, y}-algebras to groups. The

operation \i will be referred to as multiplication and denoted simply by

juxtaposition; that is, a$y will be written as aB . The familiar

symbol "| [ before an ordered set of elements of a {y, IT, y}-algebra will

replace y' after the set, and a and 8 will be called factors of the

product <x8 • Similarly, the expressions u$y, {a. : i € mjy' > and

a(3y)" will be written [a, g ] , [aQ, o^, ..., a ^ ] , and [a, ng] ,

respectively. However the expression air is retained, because the

expression of now means a(ay)"

The laws, in this notation, are:

(i) (5n)C
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(ii) nC - 5n[n, €3 ;

(iii) £w = S P ;

(iv) | j T U d : d € A}, T T {ng : <? € r}]

1 T T {[Cd, n^] : ( < f , ? ) a x r t x

(v) [TT {Cd : d € A}];"1 ^ I T {?* : * € 0,,} ;

(vi) (a) [£/", n] I [5, n ] ; " T T {zt = * € 63} ,

0>> [C, n;™] - T T {Ct : * « e u } [ c , n ] ^

where the symbols and sets are as described earlier.

The first consequence of these laws to be worked out deals with the

type of substitution considered in Lemmas 1 .k and 1.6, in the special case

where <p is a cpp-word, only one initial subword of <p is mapped non-

identically, and that subword is mapped to a product of cpp-words.

3.2 LEMMA

Let <p = ip [E, , . . . , £ , , £_) be a app-word in B suoh that

c-wt((p, £ J = 1 . Let B be an arbitrary cpp-word in B , and

{ou : I £ n] a set of epp-words such that 3 - ' a = "| [ {a, : I € n} .

every group-tike variety V_ has a law of the form

, a) ^ T T { * ( ? 0 . - . . , Km_v az) : I I n]

where for each d in A > S-, is a app-word such that

/ o r h in m_ }

c-wt(6d> lh) > c-wt(<p, 5ft) + 2 c-vt(B, Cfc)

and
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, g > 2c-vc(6, g .

Proof. Proceed by induction on the number of symbols y or IT in

the word <p .

Case (i) . If cp has no symbols y or IT , then cp = £ and

<p (£ , . .., E, , a) = a = "I f {a7 : I Z n} . The statement of the lemma

clearly holds true, with A = 0 .

For the remaining cases, in which the word tp terminates in either y_

or it , assume inductively that the result is already established for all

words with fewer symbols equal to y or i than has <p .

Case (ii) . If cp = ̂ -^Y = C^. 4>^\ » then either c - w t ^ , g = 1

and c-wt[4u, E, ) = 0 or the roles of ij). and ijj_ are reversed. Assume

the former; the proof is essentially the same in either case. By the

inductive hypothesis,

«} TT
where for each d in A. ,

for all h in m_ ,

c-wt(cd, g 2 c-wt(^, Cfe) + 2 c-vt(B,

and

c-vt(cd, g > 2 c-vt(B, g .

Now

Application of law (iv) to the last expression above gives
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- T T {CfilCo ?m_i. «Z)» *al : I € n} J T {Dy. *2] ^ E Ax}

T T [zd •• d e A 2 } ,

where for <2 in Ag > there exist elements S- and d~ in the set

{^(Sg. •••> ?m_-L» ô J : H K ] u 1?^ : <i 6 A.J such that

For each Z in

For each d in A- , Lemma 1.6 shows that

and Lemma l.k that for h in m. ,

c-wt([?d, y , 5ft) > c-wt^, Kh) + 2 c-wt(B, ih) +c-wt(*2, ?ft)

> c-wt(<p, y + 2 c-wt[g, ̂ )

and that

c-wt([Sd, * 2 ] , g > 2 c-wt(e, g .

Thus each word of the form [£,, iJ/2] for d in A, is of the required

form. If, for d in L , one of the corresponding words $ or $„ is

from the set {t, : d € A } , then a fortiori E, satisfies the same

conditions. For all other d in A 2 > ?j = [<?-,> ip2> "?J where toth t?.

and t?_ are in the set {i|)1(CQ, •••, C -i » <*7J : I € n} ; and again it is

routine to check that the appropriate conditions are satisfied.

Case (iii) • If <p = ijm , then c-wt(i/>, £ ) = 1 . If for some non-

negative integer n , i) = C ' > then the required result follows

77 7 -
immediately from law (v). Otherwise, by the inductive hypothesis,

https://doi.org/10.1017/S0004972700025478 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025478


Structure of groups 25

where for each d in A ,

for all h € m_ ,

c-wt(cd, Cfc) 5 c-vtfo, Cft) + 2 c-wt(B,

aad

°-wt(5d, g » 2 c-wt(6, g .

Application of law (v) with m = 1 gives

where for d in A^ , C,, is a cpp-word; the set {STI

contains {<p(£-, ..., £ , , ou) : I d n} an^ \^/f : ^ ^ ̂ o} as subsets;

and for those d in Aĵ  such that £ ,-rr is not in one of the sets

already mentioned, either l(d) = 1 and £ , has at least two distinct

subwords equal to words from the set

{(J>(£~, . .., £ , , ou) : 1 € n} u {tj : d € A-,} ,

or l(d) = 0 and t, has at least p distinct subwords equal to words

from the same set. In each of these cases it is easily checked that

t,ir satisfies the required conditions. •

Lemma 3.^ will show that the variety of all groups is a group-like

variety of {y , IT , y}-algebras. This proof involves the adaptation of some

well-known results, gathered here for convenience as Lemma 3.3.

3.3 LEMMA

Let a, 6 j and y be elements of a group G , and h be a positive

integer. Then

(a) (see, for example, Huppert [5], Kapitel III, Hilfsatz 1.2,

p. 253),
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[<xg, y] = [a, y]6[3, Y ]

and

[a, BY! = [«, YHa> 3] Y ;

(b) (cf. Hall [4], Theorem 3.2).

(aB)/ = cmV IT {K
ffl

ft

tj?ze:re / o r <y in F, , 0 5 /J(^) 5 fa and K i s a
y

commutator in G with at least p & entries from the

set {a, 3) ;

(0) (.of. Hall [4], Theorem i*.l^, where the same argument is used

in a more specialised context. Haebich gives a more

detailed result in terms of toasic commutators in [3], Lemma

3.1+.6)

[cm*, 3] = [a, M*!1 TT {<jLhl9) '• 9

[a, 3^] = TT fal1^ : 9 «
where for g in Fp , 0 < h(g) 5 h and K is a

commutator with at least p * entries from the set

{a, [a, 3]} , and hence may also be expressed as a

commutator with at least max{2, p " } entries equal to

a and at least one equal to & ; and for g in P_ ,

0 5 h(g) £ h and K may be expressed as a commutator

with at least max{2, p 9 } entries equal to 3 and at

least one equal to a .

Proof. Statement (a) is so familiar as to require no proof. It is

easily verified by expanding both sides.

Theorem 3.2 of [43 is stated as holding modulo a term of the lower

dentral series. However, if statement (b) holds modulo the p th term,

Y z,(<2) » tnen it is true as stated, since an arbitrary element of Y IS^

P P
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is, by definition, equal to a product of commutators of weight at least

h
P •

[In terms of Hal I's proof, the condition of nilpotency is required to

ensure that his "commutator collecting process" terminates after finitely

many steps. If this process is continued until all commutators of weight

less than or equal to p - 1 are collected (a finite process) then the

expression remaining, though not in "collected form", satisfies the

requirements of the present lemma.]

Another point to be noted is that the terms of the final product are

claimed to be of the form K IT ^ = K5 where Hal I gives only K ^

where p " \e(g) . This change may be achieved simply by rewriting K "

as a product of factors each equal to K it " or its inverse.

To prove the first part of statement (a), note that

= cTP (a[a,

and then use part (b) to show that

(a[a, &]/ = / [ a , s / TT {</{g) :

which gives an expression of the required form.

The second part of statement (a) follows from the first by the

observation that for all £ and n in G , [£,, r\] = [n, £ ] ~ . •

3.4 LEMMA

The variety of all groups is a group-like variety of {y, n, y}-

algebras.

Proof. Laws (i), (ii), and (iii) clearly hold. What remains to be

proved is that laws (iv), (v), and (vi) hold in an arbitrary group G .
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To show tha t law (iv) holds in G , l e t {a. : i (. m] and

{6 • : 3 € n} **e non-empty se ts of elements of G , and proceed by
0

induction on m + n to show that

*i • I € rn} > T T {Bj- : 0 €

= T T { [ a r B̂ .] : U , j ) € in x «} f f {«d ' ^ € A

where for each <i in A, there exists a triple (•£, j , k) either in

rn_x- n_x n_ with j # fe such that [a., 3 •» 3j,J 51 6 , , or in m x n_ x m_

with -i £ k such that [a ., B •» ex, 1 5' 6 , , where of course the relation

<' is that described in 2.1.

When m + n = 2 , the least possible value, the result is trivially

true. When m + n > 2 , either m 2 2 or w > 2 ; suppose the former.

From Lemma 3-3 (a) and then by the inductive hypothesis,

= [jT K : * € 2=1}, TT {^ : * € 2}] | v i ' TT {ê  :
 J ««

= (IT { K . Bj] : U, J

where for each g in T. or T o , 6 satisfies the conditions required

of elements of the set {6 , : d € A,} • Since

6 m~1 = 6 [6 , am_1]

and

and since all new commutators introduced by rearranging the order of the

factors in the product above also satisfy the conditions required of

elements of the set {6 , : d £ A.} , it is readily seen that the expression
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above is equal to

T T {[<V ejJ : (i> 3) \ 1 * n)TJ {&d •• d t Ax} ,

as required.

To show that law (v) holds in G , let {a. : i £ m] be an arbitrary
'If

non-empty set of elements of G . Consider the proposition P(w) : Let

{6, : d £ 1} be a set of commutators, each with at least W entries from

the set {a. : i € m} , and let k be the least non-negative integer such

W > p ; then

where for g in To> 0 5 h(g) 5 k 5 7z , the commutator K has at least

n-h[g) e n t r i e s from t h e s e t j a - . ̂  € ^j s there is a subset r* of T

such that

and for g in T^XFi , the commutator K has at least two entries from

the set ja. : i. € ml .

The proposition P(l) is the required result, that law (v) holds in

G • The proposition V[p J is clearly true, since in that proposition

each K may be taken to be one of the 6 , , and each h{g) to be zero,
y

For arbitrary w less than p , suppose that P(v) is true for V > W .

How proceed by a second induction, on 1 . When 1=1, the result

is trivial. Suppose Z > 1 , and the result established for expressions

with fewer than I factors. Lemma 3.3 (b) shows that

• «^;* • TT {v_
where for g in I\ , 6 is a commutator with at least min{2, p }
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entries equal either to the product ] |" {6 , : d d l-X] or to the element

6~ 1 . By law (iv) applied as often as required, each such 6 for g in

I\ may be expressed as a product of commutators, each with at least

min{2, p*-fe("'} entries from the set {6 : d d l-l} , and hence as a

product of commutators each with at least min{aj, p"~*1"'} entries from

the set {a. : i € m} . The inductive hypothesis on w shows that each of

these may be expressed in the required form. From the inductive hypothesis

on Z , the expression ] [" [S, : d € l-l} TT may be expressed as the

product of a set of powers of commutators of the required form which

contains the subset j'Sji : d i Z-—X> . This, together with the factor

v
8 IT gives the distinguished subset required in the total product; and

so the truth of ?{w) is proved.

By induction the truth of P(l) follows, and law (v) holds in G •

That law (vi) holds in G is already shown in the proof of Lemma

3.3 (o). •

4. Laws connecting a word with a product of cpp-words

The laws referred to in the heading of this section are the first step

toward the aim of finding laws in a group-like variety which link an

arbitrary given word with the product of a set of scpp-words which have

appropriately heavy weights. Lemma k.2 (a) is the central result; the

others are technical lemmas useful in Section 6.

4.1 COMPLEXITY

A proper subword g of a word a in B is called a y'-subword if

and only if

(i) the last symbol in (3 is p , and

(ii) the last symbol in the subword which immediately follows 8

in the maximal sequence of subwords linking 8 with a ,

is either y o r f •
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The complexity of a word a i s now defined by

comp(a) = Y, ik[p, a)+l(p, a) : p is a v'-subword of a} ,

where k and I are as described in 1.3.

A word has complexity zero if and only if it is a (possibly trivial)

product of cpp-words.

4.2 LEMMA

Let y_ be a group-like variety. Then:

(a) corresponding to an arbitrary word a in B , there exists

an ordered set A of cpp-words in B such that a 5 ' IIA

and a = M ;

(b) corresponding to a word a in B whose last symbol is y 3

there exists an ordered set A of cpp-words in B , all

Y
ending in y , such that a 2' IIA and a = IIA ; and

(c) corresponding to a word a in B which does not contain the

symbol TT , there exists an ordered set A of c-words in B

such that a s' IIA and a = IIA .

Proof. Proceed by induction on comp(a) . If comp(a) = 0 , then in

each part of the lemma it is clear that the given word a already is in

the required form. Otherwise, a has a subword 3 satisfying the

conditions: either

(i) 3 = B-g-pir , or

(ii) 8 = B,B2yB,Y or B = B J ^ B ^ Y ;

where in either case 8 and B 2 »
 a n d i n c a s e (ii)> 8o > have complexity

zero.

(That a subword 8 of one of the forms (i) or (ii) exists follows

from the fact that comp(a) + 0 ; that the subwords 8- of 8 have

complexity zero can be arranged inductively, because if one of the 8- had

non-zero complexity, it would itself have a subword 8 of strictly smaller

complexity, of one of the forms (i) or (ii).)
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Since 8. and Sp are themselves products of cpp-words, there

e x i s t s , by law ( i ) , an ordered set 0 of cpp-words such that S^o^ - ' H0

and 3.8pti = 110 . By law (v) in case ( i ) and law (iv) in case ( i i ) , i t now

follows tha t there ex is t s an ordered set T of cpp-words such that
Y

B S1 Iff and 3 = IIP . In the situation of part (a) of the lemma, no word

in F contains a symbol IT ; and i f the word 3 ends in the symbol y

[ that i s , in case ( i i ) ) then each word in T also ends in the symbol y .

Suppose t ha t a = a(£n> •••> ? -• J • Since 3 is a subword of a ,

there exis ts a word a ' = a1 (Cn) • ••> £ > £ ) such that

a = B) I a '

and from Lemma 1.6, a s' a'(?n, ..., £ ., Ill") . If the word a ends in

the symbol y , then either a' also ends in y or a' = £ and
— — s

a = 6 = nr . In the latter case, the proof of part (b) is complete. In the

former case for part (b) , and in all cases for parts (a) and (a) , the

expression a'(E,., ..., £ ., Iir) satisfies all the conditions required of

a in the statement of the lemma and has strictly lower complexity. From

the inductive hypothesis then, there exists a set A of cpp-words

satisfying the condition of the appropriate part of the lemma such that

a <• a ' ( 5 0 , . . . , ? 2 _ 1 5 nr) <' M

and

a 1 ^ , . . . , cs_15 nr) ^ M .

As both re la t ions 5 ' and = are t r an s i t i ve , th i s completes the proof. •

4.3 LEMMA

Corresponding to a group-like variety V_ and an arbitrary word

a = c t ( C , • • • » £ ) ^n s ' there exists an ordered set A of c-words in

B such that for all 6 in A and all i in z_ ,

c-wt[6, C j > c-wt(a, Ĉ )
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and a = IIA .

Proof. Proceed by induction on the number of symbols IT in the word

a . If there are none, then the result follows immediately from Lemma 1*.2

(a). Otherwise, a must have a subword $TT where 0 does not contain

the symbol TT . Law (iii) shows that

BTT = mvf'1 = 6P ;

and although the weight functions w , with either e = p or b t 1

take greater values at giT than at g" , it remains true that, for all E,

in ~ ,

C-Wt(&TT, £) = C-wt(gP, £) .

Let a' = a'(C0, •-., C3 ±, C3) be the word in B with

c-wtfa', £ ) = 1 such that

2

The las t word above has fewer symbols IT then has a , but has the same

c-weight in every element of H . Hence the required resul t follows by

induction. •

5. Subword arrays

In this section, laws are no longer the subject of direct attention,

though the form of laws (v) and (vi) influences some definitions.

Attention is focussed again on cpp-words in the {y, u, y}-word algebra

B ; and corresponding to each, various subword arrays are defined, with

weights and a "power integer" attached to each. The definition of a

subword array reflects the idea that, in the operation of laws (v) and

(vi), a symbol ir may either remain, on the right hand side, at least as

effective as it was on the left or disappear; but in the latter case the

c-weight of a subword on which it acted on the left is increased at least

p-fold on the right.
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5.1 DEFINITIONS AND EXAMPLES

A subword array of a cpp-word cp i s a family (constructed as

described below) of subwords of <p whose symbols w are labelled in a

sui table way.

A ^-labelled app-word i s a cpp-word, cp say,

ato which has been attached, at each symbol TT

symbol from the set {*} u Z in accordance with

the rule that for some fixed non-negative integer

n , the final symbol IT in each subword of the

form pir has attached to it either the integer

I (p, cp ) + n or the symbol * . A basic

ir-labelling of cp is one in which n = 0 . For

3 23 1 6 *^3 ,.32 , ^ ^
example, T̂rnYTT̂ TnrYU" ani^ £wr\vnE,tntyn are

Tr-labelled cpp-words (the former being basic), but

h *_*2 *2 * * * * ,
tJTTr|YTrc,T"T'Y7r a n d are not.

Let <p be a ir-labelled cpp-word, and k a positive integer.

Partition the set of symbols n in ip labelled with the integer k into

two (possibly empty) subsets, S. and £„ . A k-propagation of cp

corresponding to this partition is a family of ir-labelled words, whose

elements are:

(i) the labelled word obtained from cp by replacing, for al l

IT in S. , the symbol k attached to TT by a symbol *

(if S, is empty, then the labelled word cp is included

without alteration]; and

(i i ) p - 1 distinctly-identified copies of each labelled

subword p of cp on which a symbol TT in S? acts.
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k3 2 2 2 1
•n-nr\yn^yC'nynFor example, let <p =

and k = 2 . Consider first the partition

2
such that 5. contains all symbols TT in

<p , and S is empty.

A corresponding 2-propagation of tp

is simply:

iTTrTi

Consider another partition of <p in which

2
S-. contains the second symbol IT , and 5 ?

contains the first and the third. A

corresponding 2-propagation of cp is

: p+1 S i S 2p-l} ;

(p+1) ... (2p-l)

A subword array of a cpp-word cp is a family of Ti-labelled cpp-

words, constructed as follows. Let h = max{Z-(p, ip) : PIT S cp} . Let E

be a family whose only member is <p with a basic labelling not including

any stars (that is, to each symbol TT in <p is attached the integer

lip, <p) where p is the subword on which the symbol TT acts). For

arbitrary k in h_ , suppose that E, has been constructed, and choose a

(fc+l)-propagation of each copy in Ev of a labelled word. Call the

https://doi.org/10.1017/S0004972700025478 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025478


36 D a v i d S h i e l d

disjoint union of these families £,,+1 * Finally, E = E-, .

As an example, suppose p = 5 and cp = CTTTTOY • Then

EQ =

Now, for k = 1 , choose 5, = 0 and SU to contain the only symbol IT

in the copy of cp in E^. • Then

E± = ?!(£) : 2 < i < p) ,

(2) (3) (10 (5).

o

Suppose that in each of the words (l), (3), and (5) the sole symbol IT is

allocated to S , and that in words (2) and (k) it is allocated to S ? .

Then

_*1
E2 = u (5(i) : 6 < i < 13} ,

* 2

(2) (6) (7) (8) (9) (3) (U) (10) (11) (12) (13) (5)

If ji is a subword of cp , and E is a subword array for <p , then

E must contain at least one labelled word with a subword equal to i|) .

Each such labelled word induces a subword array for \p , in the natural

sense that during the construction of the array for ty , each symbol IT

occurring is treated in the same way (in allocation to an S^ or S^

subset} as was the corresponding symbol in the selected labelled word in

E . Other generated subwords, and symbols TT contained in them, remain in

one-one correspondence throughout the construction.
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Suppose E = {p(i) : i € m} is a subword array for a cpp-word. For

each £ in H , define

c-wt(£, C) = £ {c-wt(p(£), C) : i f m}

and

c-wt(tf) = £ {c-wt(p(£)) : i i. m} = £ {c-wt(£, £) : € f =} .

Define K ( £ ) to be the total number of starred symbols TT in labelled

words p(i) for i in m_ .

Corresponding to a given cpp-word <p , let E be the subword array

for <p in which every symbol IT which occurs is starred; thus E

contains only one IT-labelled word, a TT-labelling of cp itself. Let E

be the subword array for cp such that no symbol TT in a word in Ey. is

starred. Corresponding to each initial subword p of cp there are

precisely p ^Pw/ distinct copies of words in Ej. each containing a

subword corresponding to p , and equal as a word to p . Hence, for all

S in 5 ,

c-wt[Em, Cj = c-wt((p, O

and

c-wtfff^, Cj = cpp-wt(cp , C) •

It is easy to see from the construction process that if E is an

arbitrary subword array of cp , then there exists a subfamily of S1 in

one-one correspondence with E such that corresponding elements are

TT-labellings of the same word. In the other direction, E contains a

labelling of the word cp . Hence, for an arbitrary subword array E of cp

and for all E, in H ,

The arrays E and E are called respectively the minimal and maximal

arrays for cp .
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5 . 2 LEMMA

Let <p be a opp-word and E the minimal subword array for (p . If

E is an arbitrary subword array for <p , then

c-wt(£) > c-vt[E ) + (p-l)(n[E )-n{E)) .

Proof. If nfe ) 5 n(E) , then the conclusion is obvious. Otherwise,

in the construction of E , at least n[E ) - n{E) symbols IT in the

basically-labelled copy of <p are left unstarred; and correspondingly at

least (p-l) {n(E )-n(E)) copies of words, each of c-weight at least one,

are included in E in addition to the basically-labelled copy of cp . D

Given a subword array other than the maximal one for a word, it is

possible to construct for the same word another array with fewer stars and

higher, but boundedly higher, c-weight.

5.3 LEMMA

Given a subword array E for a app-word cp , and an integer I such

that 0 S I s n(E) , there exists a subword array E' for cp sueh that

ME1) = n(E) - I ,

c-wt(ff) + l(p-l) 2 c-wt(£") < plc-vt(E) ,

and for all £ € H ,

c-wt(ff, C) S c-wt(5", C) ^ pZ(c-wt E, 5) .

Proof. The case 1=0 is trivial. The form of the statement is

such that it follows immediately by induction from its special case

I = 1 .

Suppose then that 1 = 1 and that the array E for q> contains at

least one labelled word with a starred symbol w . Consequently, that

labelled word has a subword of the form pw where the array for p

induced by E is the maximal one, P say, not containing a star. Note

that for all £ in H ,

0 5 c-wt(FM, £) S c-wt(£, £) ;
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and for at least one £ in - >

1 5 c-wt(F , £] 2 c-wt(ff, £) •

Adding these inequalities gives

1 5 c-wt(FM) S c-vt(E) .

Now a subword array E' for <p is constructed in the same way as

E , except that the final sumbol IT of the copy of pn under

consideration is allocated to the S^ instead of the S. subset, and

consequently E' contains p - 1 copies of F. in addition to a complete

copy of E lacking one star. Thus

n(E') = n{E) - 1

and for all £ i H ,

The inequalities for c-wt[.F , £} and c-wt(.F ) written earlier now give

the required result. •

The final result in this section links comparison of subword arrays

with the earlier comparison of words, when the heavier word is an scpp-

word.

5.4 LEMMA

Let E be a subword array for a app-word <p , and let K be a a-word

and h a non-negative integer, such that for all £ € 5 ,

c-wt(2, C) 2 c-wt(K, 5)

and

n(E) < h .

Then

Proof. The required inequality in c-weights is immediate: for all
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c-wt(cp, 5) 2 c-vt(E, £) 5 c-wtfio/1, 5] .

To deal with cpp-weights, set 2? to be the maximal subword array for <p ,

and apply Lemma 5-3 with I = n(#) : for all £ € H ,

cpp-wt((p, 5) = c-vt{EM, C) £ p
 V 'c-wtte, £)

£ p c-wt(ic, 5) = cpp-wt(icif , E,) .

From this it follows automatically that for a > b > 0 ,

Final ly, l e t E be the minimal array for <p .

I f n[E 1 < n(E) , then for a > 2? 2 1 ,

S a c-wt(ff) + bn{E)

s a c-wt(<) + bh = w^ b[<-nh) •

I f n(E ) > n{E) , then Lemma 5-2 is used:

=a c~

< a c-vt(s) - {a(p-l)-b){n[Em)-n(E)) +

£ a c-vt(E) + bn{E) ,

as before. D

6. Laws l ink ing a cpp-word with a product of scpp-words

In Lemma k.2 (a) it was shown that the laws of a group-like variety

link an arbitrary word with a product of cpp-words of greater or equal

weight. Corollary 6.5 in turn links a cpp-word with a product of scpp-

words of greater or equal weight ; and the two results combine in Theorem

6.6 to complete the programme outlined at the beginning of Section 4.

The earlier lemmas in Section 6 lead up to Lemma 6.3, which is really

the central result of the section. It gives more detailed information than

its Corollary 6.5, and Subsection 6.k illustrates the way in which this can
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be used. Finally, Lemma 6.7 applies Theorem 6.6 to the series described in

Subsection 2.U; it in turn has applications in [6].

6.1 LEMMA

For arbitrary opp-words 9 and p ,

(i) tpw, 9] = [p , 6]ir ]~T {<5 : g € T },- g ±

(ii) [9, PTT] = T T {&g : 9 € r 2 } [9 , P]TT ,

where for g in T or r . s 6 is a app-word with at least two sub-

words equal to p , and where, if E is a subword array for one of the

factors on the right-hand side of one of the equations, then there exists a

subword array F for the word on iihe left-hand-side such that for all

c-wt(F, S) < c-wt(£, £)

and

n{F) < n(E) ,

Proof. Apply law (vi) (a) to the left-hand side of equation (i) to

obtain the right-hand side. Let E be a subword array for either [p, 9]IT

or a word 6 ending in the symbol IT . If the final symbol TT was
9 ~ ~

allocated to 5, (respectively S^ ) in the construction of E , then

there are at least two (respectively p ) subwords equal to p and at

least one equal to 9 in E . In the construction of F , the final

symbol IT of pir is also allocated to 5, (respectively S^ ) , and the

subwords 9 and p (respectively 9 and p distinct copies of p ) are

placed in one-one correspondence with equal distinct subwords in E . The

construction of F is continued in accordance with the corresponding

induced arrays for 9 and p , and clearly satisfies the required

inequalities.

If E is a subword array for a word 6 not ending in the symbol

IT , then 6 contains at least p subwords equal to p , and in the

construction of F the final symbol n of pn is allocated to 5 ? , and

a correspondence is set up and the construction of F continued as before.
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The proof of (ii) i s exactly similar. •

6.2 LEMMA

Let n = n ( f 0 , • • • , £„,_! ' £m) b e a o-word with c -wt (n , E,m) = 1 , let

p , 0 , . . . , 6 and 9 fee epp-worcfe, aw<i set
U W 2 — 1 ffl

= n(e0, ..., em_1, [>*, e J J

or g- in P , r] = r\ [£,,..., ?^+1) *s a opp-word such

that c-wt(n , ̂ n+i) - 2 J and corresponding to a subword array E

for an arbitrary factor on the right-hand side of equation (i), there

exists a subword array F for i|) such that for all £ € E ,

(ii) ^ k = n (6 0 , . . - , 9 ^ , [p, 6 ] ; ) / 7 7 {<S^ ( < i ) : d € A | u?iere for d

in A j 5 , i s a cpp-word with at least two distinct subwords equal

to p ; and corresponding to a subword array E' for an arbitrary

factor on the right-hand side of equation (ii), there exists a sub-

word array F' for ijiu such that for all C € E ,

c-wt(F', C) * c-wt(£", C)

and

n(F') < n(£") .

Proof. (i) In Lemma 3.2, set $ = [pir, 8] and

a = [p, 9]ir 1 [" {6 : g € P.. } where the latter product is as described in
y

Lemma 6.1. It is easily checked that the conditions for Lemma 3.2 are

satisfied, and that all resulting terms, except the first one on the right-

hand side of (i), have at least two distinct subwords equal to p . Let E

be a subword array for an arbitrary factor, C, say, on the right-hand side

of equation (i). Lemma 3-2 shows that the cpp-word £ has at least one
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atsubword from the set {[p, 9]n} u {6 : g € T } , and for all i in m_

least c-wtfn, C•) further distinct subwords equal to 6. ; and E

Is %

induces an array for each of these subwords. To the induced array for the

first subword mentioned, Lemma 6.1 gives a corresponding array for

[pir, 6] . This, together with precisely c-wt(r|> C-) distinct arrays for
9. for each i in m , is used in the obvious way to construct an array
Is "~*

F for ijj . Since n is a c-word, there are no symbols IT in 4> out-

side the subwords already discussed. This construction clearly satisfies

the required conditions.

(ii) Law (v) is applied to the result (i) . For each d in A , 6 •,

is a cpp-word with at least p distinct subwords equal to factors on

the right-hand side of equation (i) , and these in turn contain at least two

distinct subwords equal to p . The first h{d) stages in the

construction of F' exactly parallel those in the construction of E' for

6 jTr , so that there is a one-one correspondence between subwords equal

to \py and subwords equal to 6, . In the next k - h(d) stages,

all n-edges are allocated to S^ subsets; then there are p

copies of ij; corresponding to each word 6 , . Each is placed in

correspondence with a separate subword of 6 , equal to a factor on the

right-hand side of equation (i) ; to the array induced by E' for this

subword corresponds, by part (i), an array for ty , and the construction of

F' is completed in accordance with this correspondence. The required

inequalities are again immediate. •

6.3 LEMMA

Given a group-like variety v_ and a app-word <p , there exist a

finite ordered index set Y and corresponding sets {< : g € I"} of

c-words, {h(g) : g (. V] of non-negative integers, and {E : g € V] of

subword arrays for (p such that
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and for all g in V and all £, in 5 ,

(*)
< Hg) .

Proof. Consider two propositions:

(a) Let cp and i|> be cpp-words, h a non-negative integer,

and E a subword array for cp such that for all £ in H ,

and

Then there exist ordered sets [K : g € T,} of c-words,
fTj(g') : j f F.) of non-negative integers , and {E : g € F1}1 9 -1

of subword arrays for q> such that
rj

and for all ^ in F, and all £ in H the conditions

(*) are satisfied.

(b) Let ty be a cpp-word ending in the symbol y and h a

non-negative integer. Suppose that to every subword array

F for I|>TT there corresponds a subword array E for cp

satisfying the conditions

c-wt(£, £) £

and

n(.E) 5

for a l l E, € 5 . Then there exist sets {K : g € r} of

c-words, {/i(g) : ^ € F} of non-negative integers , and

{E : g € r} of subword arrays for cp such that

and for all g in T and all 5 in ~ > conditions (*)
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are satisfied.

It is not hard to see that the lemma follows from proposition (b),

since the given cpp-word cp may be expressed in the form cp'ir where

either cp' € E or cp' ends in the symbol y . In the former case, cp is

already in the form required by the conclusion of the lemma; in the

latter, the assumptions of proposition (b) are satisfied with \j> = cp' and

h = h' .

Proposition (a) is used at some points in the proof of proposition

(b), and is proved first.

Proof of Proposition (a). By Lemma k.3,

where each X , is a c-word such that for all f ( E ,
a

c-wt(i?, E,) 2 c-wt(i(>, £) 2 c-wt(x,, E,) .

Hence, by law (v),

, h V -r-r / h(g) , , ]

where for g in T , K is a c-word with at least p " distinct

subwords (not necessarily unequal as words) from the set {X, : d € A.} ,

whence, for all £ € E ,

ph~h^9K-vt(E, C) 2 c-wt(K , C) •

For g in r, such that h - h(g) > n(E) , Lemma 5-3 is used with

I = n{E) to show the existence of a subword array E such that for all

ff , O < c-wt(K , C)

and

n(£?J = 0 s ft(^) ,

so that conditions (*) are satisfied. For g in V. such that
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h - h(g) 5 n(E) , Lemma 5.3 i s used with I = h - h(g) to construct E

such tha t for a l l £ € H ,

c-wtfs , E,) 5 p ^ c-wt(£, £) 5 c-wtfic , C]
^ g

and

- (ft-fc(ff)) < ft - (fc-ft(gr)) = M < ? ) .

This completes the proof of proposition (a).

Proof of Proposition (b) . The proof of proposition (b) is

unfortunately rather more complicated, proceeding by a sequence of four

nested induction arguments. As a preliminary, let F and F be the

maximal and minimal subword arrays respectively for ib ; and let El, and
M

E' be the subword arrays for <p corresponding respectively to F.. and

F under the hypotheses of proposition (b). Let E,. and E be the
m Mm

maximal and minimal arrays for m . Note that E , E,,, E' , and El. are
v m M m M

all subword arrays for <p ; the first two depend on <p only, and the last

two depend also on the word $ .

The first induction is in the reverse direction on h . If

h 2 n[E ) , then the assumptions of proposition (a) are satisfied by the

choice E = E , and the conclusion of porposition (a) gives the required
m

result. From now on, only words of the form (JJTT with h < n[E ) need be

considered. The first inductive hypothesis will be that the result is

h'
established for all words i|»'ir satisfying the assumptions of the

proposition and the condition that h' > h .

Suppose \p = I|>(?Q> •••> £ -,) • The second and third inductive

arguments between them cover only a finite number (at most c-wt(S )) of

steps. Note that if, for all £ in z_ ,

c-wt(ij>, C •) - c-wt'~

then a fortiori, for all i in z_ ,
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c-wtfy, Zj) > c-wt{E'M, Zj .

If the latter condition is satisfied, then the assumptions of proposition

(a) are satisfied by the choice E = El. , and again the required result
M

follows. Thus only words i|m such that for some i in z_ ,

c-wt(i|), E,.) < c-wt^' , E,.) need henceforth be considered. Let j be the

least integer in z_ such that c-wt(ijj, E, .) < c-wtfi?', E,.) . Assume that
0 3

the result is established for all words ty'-n such that either (second

inductive hypothesis, on j ):

c-wt^1 , ^ ) ^ c-vt[EM, Ĉ J for 0 5 I 5 j

(note the final equality) or (third inductive hypothesis, in the reverse

direction on c-wt(ij), C •) ]
0

c-wtty, C.) < c-wt(i|)' , C 0 •
d O

For every word ijnr satisfying the conditions remaining to be

considered,

c-wtfy, K-) < c - w t ^ , £_.) S c-wt(FM, £.) = cpp-vt(*, ̂ } .

This strict inequality shows that there exists a subword of ty ending in

the symbol IT and having c-weight in E, . at least 1 . Among such

subwords, let pir be one such that the value of kip, ty) is minimal. The

fourth induction is on this value k(p, tjj) . Since ^ itself ends in the

symbol y > it follows that p is a proper subword of ij> and

k(p, i|>) > 1 •

Thus ii has a subword x with form either [pir, 6] or [6, pir]

(for convenience, assume the former) with c-wt(p, £ .) > 1 . The

minimality of k{p, ty) shows that Z-(x, 4>) = 0 , and hence that there

exists a non-negative integer m , a c-word n = n(Cg> •••> ? _15 C J with

c-wt [r\, E, 1 = 1 , and cpp-words % , .. . , 9 such that

* = n(e0, ..., em_l5 [pE, ej) .

Lemma 6.2 fiij now gives
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•n* Z n(e0. ..., e ^ , [P, AJ ,
where for all <2 in A , c-wt(6,, £.J > c-vtfy, £.) » and if 5 is a

Q- 3 3

subword array for 6 ,ir then there exist corresponding arrays F for

t|ra and hence E for cp such that for all £ € H ,

c-wt(£, C) S c-wt(F, £) 5 c-wt(G, C)

and

n(E) < n{F) 5 n(O .

By the second or third inductive hypothesis, then, according as

c-wt(S,, E,.) is or is not at least c-wt(ff' , £.) , each word SJT may

be expressed in the required form.

The word \p' = i(90, ..., 9 ,, [p, 6 ]TT) also is shown by Lemma 6.2

to satisfy the hypotheses of proposition (b). Further, ij;' has a subword

p' ir = [p, 9 1 TT such that

kip' , I|I') = k(p, i|>) - 1 .

In the initial case, fe(p, i|/) = 1 ; this means that ij;' = p'-u , whence

k k+1
I|I'TT = P'TT , which by the first inductive hypothesis may be expressed in

the required form. Otherwise, lji' ends in the symbol y , and the result

is given by the fourth inductive hypothesis on kip, <Ji) .

This completes the proof of proposition (b), and hence of the lemma, d

6.4 APPLICATION OF LEMMA 6.3 - COMMENT AND EXAMPLE

An arbitrary cpp-word cp may be written cp = cp'w where n > 0 and

cp' is a cpp-word ending in the symbol y . The word cp' is then called

the crown of tp (because the tree of cp' is the crown of the tree of

cp ). Let V̂ be a group-like variety of {y, TT , y}-algebras, and

the law linking cp with a product of scpp-words, given by Lemma 6.3.

One word K TT * is obtained from cp simply by moving all symbols
9~
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it from their positions in cp to the end of the word; this is the only

word in the product whose c-weight has the minimal value equal to

c-wt(<p) ; and it corresponds to the minimal subword array for cp . If cp

is not already an scpp-word, then this word has strictly greater cpp-weight

than has cp .

Those words K IT ° whose cpp-weight is minimal, that is, equal to
y

cpp-wt(cp) are at another extreme. Each of them has c-wt(i< ) > cpp-wt(<p' )
y

and corresponds to a subword array for cp which, while not itself

necessarily maximal, induces only maximal arrays of cp' on all labelled

copies of cp' which it contains.

Between these extremes, Lemma 6.3 gives information about the minimum

value of c-wt(i< ) - or values of c-wt(< , £) - associated with each

possible value of h{g) , as is shown in the following example. Note that

for each integer h , 0 5 h 5 n fe ) , the subword array of minimal

^ m'

c-weight (or minimal c-weight in a specified generator) does not contain a

labelled tree in which a path from a starred ir-edge to the root passes

through an unstarred iT-edge.

As an example, let cp = £irnYCT1TY71 •> an(i a s usual let E and E,, be

- — m M

minimal and maximal arrays for cp . If E i s an arbi t rary array,

3 = c-wtfe ) 5 c-vt(E) 5 c-wt(ff] = 2p3 + p 2 .

Since n{E ) = 5 , values 0 5 h S 5 are of in te res t .

When h{g) = 5 , clearly E i t s e l f i s the minimal array, so
c-wtfK ) 2 c-wtfe 1 = 3 . In th i s case, cpp-wt K IT ^ > 3p . Therel S m { g- j r

are two candidates for a minimal array with n[E 1 = U ; they are not
9

essentially different, each containing one word equal to cp and (p-l)

equal to t; , and having

c-wt(£ ) = 3 + p - l = p + 2 .

Hence for h(g) = k , c-wt[< ) 5 p + 2 and cpp-wt K TT 9 > p + 2p .
y v y )

Among arrays E for cp such that n [E ) = 3 , it is easy to see
y y
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tha t the one with the l eas t value of c-wt [E 1 i s

{3ni\E&yZ (!,} u {£(£) : 2 5 i 5 2p-l} .

Hence for those g in T with h(g) = 3 , i t follows that

c-wt(K ) > 2p + 1 and cpp-wt K TT > 2p + p 3 .
y V y"~ J

Among arrays E for <|> such that n [E ) = 2 , i t i s not obvious at

f i r s t sight whether tha t containing £iin.Y*£^Y* or that containing

^nrr/Tr^ifnyn has less c-weight; the values turn out to be p + p + 1 and

p + 2p respectively. Hence for each g in F with h(g) = 2 ,

c-wt(< ) > p + p + 1 and cpp-wt K IT ^ > p + p + p .

The l igh tes t array E with n(j? ) = 1 is clearly that containing

-rrrv"ir£7nTYTr , which has c-weight 2p + p ; so for each g in T with

h(g) = 1 , c-wt(K } 2 2p2 + p and cpp-wt|K TT71 g \ 2 2p3 + p 2 . Note

2 3 2
tha t 2p + p i s the cpp-weight of the crown of <p , and 2p + p is the

cpp-weight of (p i t s e l f , and consequently the minimal possible cpp-weight.

Final ly, i f n[E ) = 0 then E = E ; and for each g in T with
= 0 ,

c-wtfic ) = cpp-wt|K TT s ) > 2p3 + p 2 .
^ 9 iff-)

The information given in this way by Lemma 6.3 appears to be the best

poss ible . However, i t i s very complicated, and for many purposes the

simpler resu l t obtained by combining i t with Lemma 5-^ is suff icient .

6.5 COROLLARY

Corresponding to a group-like variety V_ and a cpp-word cp , there

exists an ordered set A of scpp-words such that <p == IIA and <p s ' IIA . D

Combining t h i s i n t u r n wi th Lemma k.2 (a) g ives t h e main r e s u l t .
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6 . 6 THEOREM

Corresponding to a group-like variety V_ and an arbitrary word <p in
V

B , there exists an ordered set A of sapp-words such that <p = IIA and

cp S' IIA . CJ

Return now to the descending central series described in 2.U. Theorem

6.6, together with the definitions there, gives:

6.7 LEMMA

In an arbitrary {y, IT, \i}-word algebra D , the ideal y.' 'e(D) is
—• _ _ • £

generated, modulo ya-l-. >6(0) by the set of homomorphia images in D of

sapp-words' <s> such that wf *,(*) = ^ •

In particular, in a group G 3

y.(G) is generated modulo y. (G) by the set of commutators of

weight i ;

E.(G) is generated modulo £. (G) by the set of p th powers of

oommutators of weight w , where w + j = i ; and

TT .(G) is generated modulo u. (G) by the set of p"'th powers of

commutators of weight w , where wp3 = i . D

The well-known result that, in fact, the commutators of weight i

generating y.(G) may be restricted either to being basic or to being
If

left-normed carries across also to the other series. This fact is not

needed in [6], and since the proofs are rather tedious, they are omitted.
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