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Abstract

The problem of estimating the Urnit/^ of a sequence/„ converging as / , — fx = O(n~*)
as n —• oo, where X > 0, is discussed. Using the generalization of the e-algorithm
proposed recently by Vanden Broeck and Schwartz, an acceleration scheme is devel-
oped. The method is illustrated on several test sequences and compared to other
acceleration procedures.

1. Introduction

The problem of estimating the limit of a sequence given a finite number of terms
is a common one in applied mathematics and theoretical physics. Various
procedures for doing so have been devised (for reviews, see [2] and [11]). The
applicability of these methods depends crucially on the way the limit is ap-
proached.

Recently Vanden Broeck and Schwartz [12] have introduced a one-parameter
family of non-linear sequence transformations defined by the relations

, - / " ) ) , (la)

£>,). (lb)

Here a is an arbitrary free parameter, e*"1* = 0 and/J0), n = 1, 2, . . . , N, are the
available terms of the original sequence whose limit is to be estimated. One
iteration of (1), namely^0, is equivalent to the Shanks transform [10], (or the
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Aitken-algorithm [9], p. 348) which is then iterated by setting a = 0. If a = 1, (1)
reduces to Wynn's e-algorithm [13] for generating the diagonal Pade approxi-
mants to a power series. In this case, ̂ 0 ) is the nth partial sum of the original
series. We shall refer to the transformation (1) as the "generalized e-algorithm".

Like the Shanks transform, (1) is exact for sequences of the form

fn = / » + M" (2)

in the sense that fjp = / „ . Thus (1) is likely to successfully accelerate the
convergence of sequences converging linearly, that is those asymptotically
satisfying

fn - / « — ?(/„-1 - / « , ) as n->oo. (3)

By judicious choice of the parameter a, Vanden Broeck and Schwartz were able
to successfully extrapolate a far wider variety of sequences including formally
divergent ones. Despite these spectacular examples, little mathematical justifica-
tion of the procedure is available. Nor is it clear what value of a should be
chosen for "optimal" acceleration of any particular class of sequences.

In this paper, we specifically consider the extrapolation of sequences converg-
ing logarithmically, that is, as

/„ - / „ = O(n~x) as n-»oo, (4)

where X > 0. In particular, in Section 2, we prove that if the parameter a in (1)
is chosen to be - 1 , then^2) converges t o / ^ at least as o(n~x) and possibly as fast
as O(n~x~2). Secondly, we show that if the generating function,

H*) = 2 /„*"> (5)
n = 0

of the sequence {/n}~=0 *s exactly of the form

Hx) = /ooO - *)"' + A{\ - x)'l+x where X > 0, (6)

then^2) is exactly f^ = limn^oo/n if a is again chosen to be - 1 .
On the basis of these results, we formulate in Section 3 a new algorithm to

accelerate logarithmically convergent sequences. This algorithm is then tested
and compared to alternative algorithms using several test sequences.

2. Basic theorems

Our application of the generalized e-algorithm to the extrapolation of logarith-
mically convergent sequences is based on the following theorems.
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THEOREM 1. Let the sequence {fn} approach its limit fx as

/ « - / « - An^ + °("~*) «* « ̂  oo, (7)

where A > 0. TTien «/ f^2\oi) is the second iterate of fn under the generalized
e-algorithm (\)for arbitrary a,

2 ) l ) - / 0 0 = o(^) - (8)

PROOF. We first observe from (1) that if gn =/i/n + TJ, where jti and TJ are
constants, then g*m) = /x£m) + ij. Consequently we may take foo = 0 and A = 1
without loss of generality.

Thus we set

/n
0 ) = n~x + o(n^) as n -» oo. (9)

Explicit calculation gives

eW = -A-'«1+^ + o(«1+A), (10)

so that

/£° - IT*/(1 + A)+ <>(#!-*) as II-» oo. (11)

Repeating the calculation but allowing for an arbitrary value of the parameter a
which enters the definition of e ^ gives

e(') = _ ( a + i + \)\-W+x + o(nl+x), (12)

so that

/n
2>(«) = (1 + a)n-*/ ((1 + A)(l + « + A)) + o(n~x) (13)

The result (8) is now immediate on observing that the leading n dependence of
O(n~x) vanishes if a is set to - 1 .

A more detailed consideration of correction terms yields the stronger result
contained in Theorem 2.

THEOREM 2.

then

where

as n -> oo.

Let

fn~

Un)

/ -

approach its

= An~x[ 1 +

/n
2)(-0

/ o(n~Pn" 1 o(«

limit fn

bn~* +

• - / • =

-A) /or

o(«"A)] as n

An^pn,

A> 1,

A< 1,

^ 0 0 , (14)

(15)

(16a)

(16b)
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PROOF. Again we setfx = 0, A = 1 and write

(17)

where

£(<» = bn~A + o(«-A) as n -+ oo. (18)

From (la) we then calculate ê 0) which we write as

ej,o) = -X-'n^^l + PZ>~\, (19)

where

/•(«) = ^»<°>/[ 1 -4>W] (20)
with

+ \/n)-x - 1 + X/n] + (1 + \/nyx[E?lx - E™]

For future reference, we note that if Ef> satisfies (18), then ^ and hence
are 0(/TA) if A < 1, but O(n~l) if A > 1.

The calculation of /n
(1), ê ^ and finally J^\-\) is now straightforward if

somewhat tedious. The resulting expressions are most conveniently written as

/n» = (l + \)- 1 / I^[ l + £(1>]) (22)

e(D = _„>+*[ 1 + /•(')], ( 2 3 )

and finally

/n
2>(-l) = « > „ , (24)

where

, (25)

*<•)) (26)

and

Pn = (l+X)-1[^1)-^»/(l-^1))]- (27)

In (25)-(27), Q™ is given by (21) with the E^'s replaced by £(1>'s and

for i = 0, 1.
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It remains now to estimate the order of pn. In view of the remark after (21) we
consider three cases.

Case I: A < 1. In this case, <j>^ = O(n~*) and a straightforward sequence of

calculations establishes that E^\ Fj®, Fn
(l) and pn are all similarly O(n~A), with

explicitly,

Pn = ((A2(l - Afb)/ (X\l + \)2))n~* + 0 ( O (29)

which establishes (16b).

Case II: A > 1. In this case, the dominant term in $f® is the first, which yields

<t>™={(\+l)n-l + o(n-1). (30)

However, the leading O(n~l) term drops out of Ejp and yffi leaving both of

o(«"'). Hence pn is also o(n~l).

Case HI: A = 1. In this case, all three terms in (21) are of the same order
leading to

<$> = |(X + 1)(1 - 2b/X)/n + o(/i-'). (31)

However, the leading O(n~x) is again removed leaving pn = o(n~x) which estab-
lishes (16a) and completes the proof of the theorem.

The exact order of pn in (15) for A > 1 depends on the nature of subsequent
correction terms in (14). We do not present a general analysis, but note that if,
as occurs often in practical examples,

+ 2 bjn-A as n -» <x>, (32)

then a tedious asymptotic analysis establishes that

ff-fn-A'n-*-2 as «^oo (33)

where A' is non-zero.
In assessing the applicability of a sequence extrapolation algorithm it is useful

to know of the cases for which the algorithm is exact. We have already noted in
the Introduction that j ^ is exactly the limit of a sequence of the form
/{0) = fx + q". The following theorem gives a further example.

THEOREM 3. Let the generating function of the sequence {/„}, F(x) = 2 " _ 0 x%,

be of the form

F{x) = / . 0 - *)"'[ 1 + A{\ - xf}. (34)

Then with a = -\,f^\-\) is exactly fx = lim,^/n.
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PROOF. We note first that if F(x) is of the form (34), then

fn-fx[l+An^ + O(n-i-x)] as n -* oo, (35)

so that the remark after Theorem 2 implies that

/ n
2 ) ( - l )=/co+O(«- 2 - X )- (36)

We now show that^2 )(-l) is exactly/„.
To do so, we expand (34) and write

/ n = / o o + C n , (37)

where Cn satisfies the recurrence relation

Cn = {n-X)Cn_x/n with C0 = Afx. (38)

Hence

E<°> = - ( « + l)/(XCn) (39)

and

/n
1>=/00 + C n / ( l + \ ) . (40)

Repeating the calculation but allowing for the factor of a gives

e<1> = - ( « + l)(« + A + l ) / ( X C j , (41)

so that

/n
2 ) = /oo + Cn(a + 1)/ ((X + l)(a + X + 1)), (42)

from which the theorem follows immediately on putting a = -1.

3. Numerical examples

The result of Theorem 2 suggests that further acceleration can be achieved by
re-applying the transformation to f®\ In doing so, the parameter a entering ê 2)

must be reset to zero to offset effects arising from ej,l\ Thus the successive
transformations are generated by the relations

Jn ~ Jn + VLe« £n-lJ'l
Am) _ .(/n-1) • 1 / f flm) _ Am) 1 |en ~ amen ^ l/lJn+l Jn J ' J

where

am = -[l-(-)m]/2. (44)

We shall refer to this transformation as the alternating e-algorithm. One should
also note that on each iteration, that is from^2m) to fn-

2m+2\ four terms of the
sequence are lost. Thus in practice the number of possible iterations is usually
very limited.
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TABLE I. Logarithmically convergent test series (see [11])

No.

1

2

3

4

5

6

7

8

nth term

1 + n1 + n4

n2(l + n4)
2n - 1

n(n + l)(n + 2)
sin(l/n) ln(cos(l/V^))
(l//i) + ln(l - 1/n)

(a, = 1)

\ /i / V« + 1 /
(„ + el/-)-V2

/ - 1 / 2 \ ( - ^
Vn_ i /4/ i -3

Sum

w 2 / 6 = 1.644 9 3 4 0 6 6 848 . . .

2 . 2 3 3 4 1 1 6 4 7 6 5 2 . . .

3 / 4

- 0 . 8 5 2 0 9 0 7 5 4 199 . . .

Eider 's c o n s t a n t = 0 . 5 7 7 215 6 6 4 . . .

(In 2 ) ( l n K) = 0 . 6 8 4 7 2 4 7 8 8 5 6 . . .
w h e r e K = K h i n c h i n ' s c o n s t a n t .

1.713 7 % 7 3 5 5 4 0 . . .

t r ^ V 4 ) l = i . 3 i i 0 2 8 7 7 7 146 . . .
4V2W

Algorithms for the acceleration of logarithmically convergent sequences have
been reviewed and compared by Smith and Ford [11]. Their numerical testing
was performed on the eight sequences Sn = 2"_, a, listed in Table I. On the
basis of these results they concluded that the Levin u-transform [6] defined by

(45)

where

R.
R

n+l

n + 1

n + k

n + k

Rn_
~k-\

R,n + k

(n + l)k-\ (n + k)k-\

, (46)

with

was the most efficient.
A close second was the ^-algorithm of Brezinski [1] defined by the equations:

(47a)

(47b)

; ( 4 7 c y
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where A0n = 9n+l — 9n. For k = 0, this corresponds to the W-transform of
Lubkin [7], which is of special interest here since its properties are similar to
those of the alternating e-algorithm (43). In particular, Drummond [4] has shown
that if

An~\l + O{\/n)) (48)

then

0™ = SM + 0(n"*~2), (49)

while the exactness of 0n
(2) on sequences satisfying the conditions of Theorem 3

follows from the results of Cordellier [3] (see also [11]). Since in transforming
from 0n

(O) = Sn to 0n
(2) only three terms are lost compared to four for the

alternating e-algorithm, it would appear that the ^-algorithm should be a more
efficient accelerator*.

15

£

3 10

0

in 5

o
b

j i I i

0 6 8 10 12

No. of terms

16 18 20

Figure 1. Performance of alternating e-algorithm ( ), 0-algorithm ( ) and Levin
u-transform (—), averaged over the series in Table I.

•Drummond [4] has devised an acceleration procedure which also satisfies (48) and (49) but at the
cost of only two terms. This method however requires knowledge of X which in many situations is
not available.
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[91 Extrapolation of sequences 237

This expectation is borne out for the series given in Table I. Following Smith
and Ford [11], we summarize these tests by plotting in Figure 1, the number of
significant digits of the limit as a function of the number of terms used. All
calculations were performed in double precision on a CYBER 72 using FOR-
TRAN. The superior performance of the Levin u-transform is evident, while the
alternating e-algorithm is a very poor third. Indeed on series (7), for which both
the ^-algorithm and the w-transform gave better than 10 figures from 20 terms,
the alternating e-algorithm gave only three.

Closer inspection of the sums in Table I shows that this is not in fact, a very
sensitive or wide ranging test as only (7) and (8) do not converge as l/n.
Theorem 3 suggests that one should also compare the algorithms on sequences
whose generating functions have the form

as x 1. (50)

This we have done using the generating functions listed in Table II. The results,
again presented as a significance plot, are indicated by Figure 2. Rather
suprisingly, the alternating e-algorithm (43) is at least as efficient as the 0-algo-
rithm, with the Levin w-transform significantly less so. Two other trends should
be mentioned. The accuracy of both the 9- and alternating e-algorithms de-
teriorates if the number of algebraic singularities increases, for example 20 terms

C
D

IIU
JI)

E 5
V)
V

o 3

1 2
1/1

0 1
az

-

/

-

1 1

/

1

10

No. of terms

15 20

Figure 2. Performance of alternating e-algorithm ( ), 0-algorithm ( ) and
u-transform (—), averaged over the sequences generated by the functions in Table II.
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No.

1
2
3
4
5
6

(1
(1

TABLE

(1
(1
(1
(1

- x ) - 1

II. Test generating functions

-xy
- x)~l

- x ) -
- x)-'
+ ( 1 -
+ (1

1 +
+

1 +
+

- X

- .

(1
(1
(
(1

r)"

Function

— x)1/2

- x)"3/4

- x)-06

- x)" l / 4

/* + (1 -
0 2 + (! -

+ ( 1 -
+ 0
+ d
+ (1
JC)-'/

x)-°-

- x)- ' /4

- x)~1/2

- x)^-5

- x)-1 /3

2 + (l-x)-V4

1 + (! - x)-°*

of the sequence (1) of Table II yields 5 figure accuracy by both methods, while
20 terms of sequence (5) gives only 4 figure accuracy by the alternating
e-algorithm and 2 by the ̂ -algorithm. Secondly, if one of the exponents y(- in (50)
is close to unity, corresponding to a small value of \ in (48), convergence is
again slow. Indeed, if \ < 0.25 we have found it almost impossible to extract
more than 2 figure accuracy from 20 terms with any algorithm.

Our interest in sequences generated by functions of the form (50) arose from
extrapolation problems in statistical mechanics. Our final example on the
alternating e-algorithm and its comparison with the ̂ -algorithm is drawn specifi-
cally from this area [5]. The first column of Table III lists the first seven terms of
a sequence** xn which is expected to diverge as n —* oo as

Xn~An»[l + O(n-*)] (51)

where probably A > \. The problem is to estimate w. To do so, we define

Pn =
 n(xn+i - X n ) / X n , (52)

which, given (51), approaches w as

pn = w + for n -» oo. (53)

Thus the sequence pn tabulated in the second column of Table III is precisely of
the form analysed in this paper. The third column of Table HI lists p*2), the
e-algorithm transform; further iterations not being feasible because of the
shortness of the series. The extrapolation of pn by the ^-algorithm is shown in

••Specifically, Xn is the Hamiltonian field theoretic analog of the susceptibility of the 2-dimen-
sional 3-state Potts (or Z3-model) on a chain of (n + l)-sites. The exponent a> is then related to the
nature of the critical divergence of the susceptibility of the infinite chain [5].
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TABLE III. Extrapolation of (pB) (see text)

239

n

1
2
3
4
5
6
7

Xn

2.821367
5.943208
9.936795
14.739091
20.304015
26.595732
33.585213

Pn = "lXn+1 -XnVXn

1.106499
1.343916
1.449853
1.510249
1.549378
1.576828

PP

1.733512
1.734886

1.742861
1.738696
1.737326

the last column of Table III. In this example, both methods have similar
accuracy and together give confidence to the estimate

lim Pn = w = 1.734 ± 0.002, (54)
n—>oo

which agrees very favourably with the theoretically expected value ([5], [8]) of

a = 26/15 = 1.73333 . . . (55)

One final point should be made concerning round-off. For the numerical
examples given in Tables I and II, all sequence terms were computed to machine
accuracy (28 figures on a CYBER 72 in double precision). Running the program
in single precision (14 figures) approximately halved the accuracy obtainable,
although interestingly the effect on the alternating e-algorithm was less than on
either 9 or Levin w-transforms. In our experience, the Levin u-transform, while
very accurate on series of the type in Table I, is somewhat subject to round-off.
The "real" series of Table III is, on the other hand, known only to the accuracy
quoted. Here round-off is presumably more serious. However, the problem is
limited by the small number of iterations performed.

4. Conclusion

In this paper, we have developed a new method for accelerating the conver-
gence of sequences converging as

/ . = / « + o(«-*)- (56)
The method makes use of the generalized e-algorithm (1) introduced recently by
Vanden Broeck and Schwartz [12]. In essence, it consists of using their algorithm
alternately with a = 0 and a = -1 to generate each new column of the table.
The procedure is illustrated on several test sequences including one drawn from
recent research in statistical mechanics. The results of these applications are very
encouraging and suggest that the method should be a useful addition to
algorithms for accelerating logarithmically convergent sequences (for example,
see [5]).
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